- Паяльная станция своими руками / Проекты /
- Паяльная станция на Atmega8 (Atmega328p)
- cxema.org — Крутая паяльная станция своими руками
- Паяльная станция своими руками на ATMega8
- принцип работы, характеристики, разновидности, инструкция по сборке, как пользоваться
- Для чего нужна паяльная станция
- Общие характеристики и принцип работы паяльной станции
- Разновидности паяльных станций по конструкции
- Как сделать своими руками термовоздушную паяльную станцию
- Инфракрасная паяльная станция своими руками
- Особенности изготовления своими руками паяльной станции на Arduino (Ардуино)
- Особенности изготовления своими руками паяльной станции на Atmega8 (Атмега8)
- Как пользоваться паяльной станцией
- Simple Solder MK936. Простая самодельная паяльная станция своими руками
- Как сделать паяльную станцию своими руками
- Для чего нужна паяльная станция
- Общие характеристики и принцип работы паяльной станции
- Разновидности паяльных станций по конструкции
- Как сделать своими руками термовоздушную паяльную станцию
- Инфракрасная паяльная станция своими руками
- Особенности изготовления своими руками паяльной станции на Arduino (Ардуино)
- Особенности изготовления своими руками паяльной станции на Atmega8 (Атмега8)
- Как пользоваться паяльной станцией
- YouTube Premium
- Текст видео
- ATmega SMD v2 — EasyEDA
- Самодельная паяльная станция 2 (АВР)
- Паяльная станция | Hackaday.io
- Как сделать беспроводной паяльник
- 180348 Паяльная станция своими руками | Elektor Magazine
- Сделай сам: как создать свой собственный ПИД-регулятор температуры
- Простой припой MK936 SMD.Паяльная станция на SMD-компонентах своими руками / Sudo Null IT News
Паяльная станция своими руками / Проекты /
Проект по сборке цифровой паяльная станция на микроконтроллере Atmega 328P.Паяльная станция создается по по схеме Oleg A, но была доработана и еще дорабатывается.
Многие скажут что проще купить готовую паяльную станцию, выбор которых немалый как в офлайне, так и на том же aliexpress.
- Во первых, купить проще, но мы не ищем простых путей;)
- Во вторых, готовые паяльные станции будут дороже, даже на aliexpress и даже при небольшой цене готовой паяльной станции, из за габаритов и веса, цена доставки может быть даже превысить цену станции.
- В третьих, дешевые паяльные станции аналоговые и устанавливают температуру на термопаре. В моем проекте реализуем цифровую станцию, температуру настроим непосредственно на жале и воздуха термофена.
Кто не хочет заморачиваться, то покупайте готовую паяльную станцию, а если хотите сделать своими руками, цифровую паяльную станцию, которая к тому же дешевле чем самая дешевая китайская, то читаем далее…
Практически все детали покупались на aliexpress
Список деталей:
Ссылки по проекту:
Канал автора оригинальной станции Oleg A.: Перейти
Оригинальная статья: d-serviss.lv
Форум по этой паяльной станции: перейти
Плата в LAY (Sprint-Layout 6) доработана мной, лучше разведена и сгрупированы выводы: Скачать
Плата в PDF, у кого нет Sprint-Layout или не хочет в нем разбираться: Скачать
Скачать скетч для среды Arduino ver. 0.5 Скачать
Скачать .hex файл для прошивки программатором Скачать
Для тех кто будет прошивать программатором PonyProg, скрин установки фьюзи битов:
Видео первого запуска без паяльника и фена, электроника заработала с первого раза:
При запуске обнаружилось что микроконтроллер работает на частоте 1МГц вместо 16МГц, прошил в ATmega правильные FUSE Bits и все стало как нужно:
Сменить нужно фьюзы на внешний кварцевый резонатор частотой выше 8МГц и отключить CLKDIV8,
Фюзы по умолчанию: Low = 62 и High = D9 и измененные: Low = DE и High = D9 (Это для ATmega 328, для других МК используйте фюзикалькулятор)
Промучился с паяльником, при подключении паяльника, БП уходил в защиту. Купил новый БП по мощнее, он в защиту не уходил, но выдно было что его сильно нагружало. Решил прозвонить, поискать, может где что не правильно подключил, когда в корпус пересаживал и обнаружил что короткое между нагревателем и термопарой на паяльнике.
Проект еще не завершен. Будет замена блока питания, нужен новый нагреватель в паяльник, переписать скетч под нагреватель на терморезисторе (под нагреватель на термопаре ничего не нужно переписывать) и нужно сделать корпус лицевую панель. Продолжение следует…
И напоследок несколько фото проекта:
Паяльная станция на Atmega8 (Atmega328p)
Для начала немного переделанная (спасибо operator6446)Автор схемы susskiy и теперь его схема:
Существует 2 варианта плат, по выводные элементы (DIP) и под SMD, начнем с первого, фотографии автора и прошивка:
Подключение фена и паяльника:
Паяльник:
1) Зеленый – Нагревательный элемент Х7
2) Коричневый — Нагревательный элемент Х8
3) Желтый – «+» термопара Х144) Синий – «-» термопара Х13
5) Черный – Масса Х5
Фен:
1) Белый — Нагревательный элемент Х1
2) Серый — Нагревательный элемент Х2
3) Желтый — Масса Х5
4) Коричневый — «+24» мотора фена Х9
5) Синий — «-24» мотора фена Х10
6) Красный — «+» термопары Х11
Реклама0,56 «DC 0 — 100V Mini 4 знака цифровой вольтметр Отзывы: ***Хорошее качество, быстрая доставка.***
Реклама жала для 900 м, Отзывы: ***Доставка месяц. По качеству вроде хорошие. Паять удобно.***
7) Черный – «-» термопары Х12
8) Зеленый – Герокон (в данной схеме не используется)
Список деталей:
1 Операционный усилитель LM358 1шт
2 Потенциометр 10К 3шт
3 Потенциометр крутилка 3шт
4 Подстроечный резистор 3362 10К 3шт
5 Резистор 0805 220К 2шт
6 Разъем питания СНП 226-3ВПВ-И 1шт
7 Разъем PLS 40 1шт
8 кабель Кабель питания 1шт
9 Гнездо GX16-8 1шт
10 Гнездо GX16-5 1шт
11 Блок питания Импульсный 24В, 4А 1шт
12 Паяльник 24В с К термопарой 1шт
13 Фен Вентилятор с К термопарой 1шт
14 Экран LCD дисплей 16х2 1шт
15 Резонатор 16 Мгц 1шт
16 Резистор 0,5Вт 22К 1шт
17 Светодиод: 3 мм красный 20мА 2шт
18 Резистор 0805 10К 4шт19 Микроконтроллёр Atmega328p 1шт
20 Опторазвязка MOC3063 1шт
21 Мосфет N-канал IRFZ44N 2шт
22 Симистор BT-138-600B 1шт
23 Стабилизатор L7812CV 1шт
24 Стабилизатор L7805CV 1шт
25 Резистор 0805 220 2шт
26 Коеденсотор 0805 1 мкф 3шт
27 Переключатель SWR-45-B-B 2шт
28 Провода(м) Цветный 2шт
29 Корпус собственный +ножки 1шт
Видео автора:
Печатка и прошивка конечно.
В следующей части плата и немного измененная прошивка под SMD компоненты
cxema.org — Крутая паяльная станция своими руками
Давно хотел купить станцию, но из-за финансовых проблем не представилась возможность и чуть подумав решил — а нельзя ли ее сделать своими руками?
Немного порылся в сети и нашел такой ролик https://www.youtube.com/watch?v=wzGbTwlyZxo. Станция как раз то, что мне нужно — управление микроконтроллером, вывод данных на жк дисплей 16х2, на котором отображается.
Верхняя строка — заданная температура паяльника и действующая температура на нем, данные обновляются несколько раз в секунду (0-480гр)
Нижняя строка — заданная температура фена, действующая температура на нем (0-480гр), а также скорость вращения встроенного в фен вентилятора (0-99)
Плата и схема
Печатную плату можете скачать (+ схема и прошивка) тут, все в оригинале, как у автора.
Несколько советов для тех, кому лень смотреть ролики (хотя в них я все довольно подробно пояснил)
Размеры печатной платы уже установлены, зеркалить тоже не нужно. Клеммы, через которые органы управления стыкуются с платой желательно заменить, т.е вместо клемм использовать обычный способ — взять провода и запаять в соответствующие отверстия на плате.
Во время травления ОБЯЗАТЕЛЬНО сверить участки платы с шаблоном , поскольку в некоторых местах выводы SMD компонентов могут образовать КЗ, на фото все это прекрасно видно
МК типа ATMEGA328 — тот же микроконтроллер, которых на платках программатора с набором arduino uno, в Китае стоит копейки, но с мк вам будет нужен либо самодельный программатор, либо родной arduino uno, а также кварцевый резонатор на 16МГц.
МК полностью отвечает за управление и вывод данных на ЖК дисплей. Управление станцией довольно простое — 3 переменных резистора на 10кОм (самые обычные, моно — 0,25 или 0,5 ватт) первых отвечает за температуру паяльника, второй — вена, третий увеличивает или уменьшает обороты встроенного в фен кулера.
Паяльник управляется мощным полевым транзистором, через который будет протекать ток в до 2-х Ампер, следовательно на нем будет нагрев, будет также нагреваться и симистор — его вместе с транзистором и стабилизатором на 12 Вольт проводами вывел на общий теплоотвод, дополнительно изолировал корпуса этих компонентов от радиатора.
Светодиоды обязательно взять 3мм с небольшим потреблением (20мА) из за использования более мощных светодиодов 5мм (70мА) у меня не работал фен, точнее не шел нагрев. Причина в том, что светодиод на плате и светодиод, который встроен в опторазвязку ( он и собственно управляет всем узлом нагрева фена) подключены последовательно и попросту не хватало питания, чтобы светодиод в опторазвязке засвечивался.
Паяльник
Сам взял паяльник Ya Xun для станций такого типа 40 ватт с долговечным жалом. Штекер имеет 5 пинов (контактных отверстий), распиновка штекера ниже
Учитывайте, что на фото распиновка штекера, который на самом паяльнике,
Паяльник имеет встроенную термопару, данные из которого принимаются и расшифруются уже самой станцией. ОБЯЗАТЕЛЬНО нужен паяльник с термопарой, а не с термистором в качестве датчика температуры.
Термопара имеет полярность, при неверном подключении термопары паяльник после включении наберет максимальную температуру и станет неуправляемым.
Фен
В принципе мощность может быть от 350 до 700 ватт, советую не более 400 ватт,
того сполна хватит для любых нужд. Фен тоже со встроенной термопарой в качестве температурного датчика. Фен должен быть со встроенным кулером. Имеет гнездо 8 пин, распиновка гнезда на фене представлена ниже.
Внутри фена имеется сам нагреватель на 220 Вольт, термопара, вентилятор и геркон, последний сразу можно выкинуть, в этом проекте он не нужен.
Нагреватель не имеет полярности , а термопара и кулер — имеют, так, что соблюдайте полярность подключения, в противном случае мотор не будет крутиться, а нагреватель наберет максимальную температуру и станет неуправляемым.
Блок питания
Любой (желательно стабилизированный адаптер) 24 Вольт минимум 2 Ампер, совету- 4-5 Ампер. Отлично подойдут универсальные зарядники для ноутбуков, в которых есть возможность подстройки выходного напряжение 12 до 24 Вольт, защита от коротких замыканий и стабилизированных выход — а стоит копейки, сам выбрал именно такой.
Можно также использовать маломощный блок питания для светодиодных лент 24 Вольт, есть с током от 1 Ампер.
Можно также слегка доработать электронный трансформатор ( как самый бюджетный вариант) и внедрить в схему, более детально о блоках питания я пояснил в конце видеоролика (часть 1)
Можно также использовать трансформаторный блок питания — можно и не стабилизированный, но повторюсь — стабилизацию иметь желательно.
Монтаж и корпус
Корпус от китайской магнитолы, к ней отлично подошел дисплейчик 16х2, все органы управления установлены на отдельный пластиковый лист и стыкованы к нижней части магнитолы.
Основные силовые компоненты укреплены на теплоотвод, через дополнительные изоляционные прокладки и пластиковые шайбы. Теплоотвод взят от нерабочего бесперебойника.
Он нагревается, но только после долгой работы феном на большой мощности, но все это терпимо, к стати — на плате предусмотрен дополнительный выход 12 Вольт для подключения купера, так, что можно и отдувать радиатор если в этом есть нужда.
Настройка
В принципе для настройки нужен либо термометр либо тестер с термопарой и возможностью измерения температуры.
Для начала нужно выставить на паяльнике некоторую температуру (к примеру 400гр) дальше прижать термопару к жалу паяльника, чтобы понять реальную температуру на жале, ну а дальше просто с помощью подстроечного резистора на плате (медленное вращение) добиваемся того, чтобы сравнить реальную температуру на паяльнике (которая выводится на дисплей) с той, что показывает термометр.
То же самое нужно проделать с феном, только термометр нужно поставить под струю горячего воздуха.
Очень совету- подстроечные резисторы взять многооборотные для удобной и наиточной настройки.
К стати — третий подстроечник на плате отвечает за контраст дисплея.
Минусы
Честно скажу — не заметил, конструкция универсальна, удобна, проста и одновременно получаем профессиональную паяльную станцию для любых нужд, за что и автору большой респект.
Основные достоинства и затраты.
Ценовая категория таких станций в районе 100 — 150 $, у нас есть полное управление феном и паяльником и достаточно умная начинка, которая выводит все данные на жк дисплей, в бюджетных станциях вместо дисплея обычные светодиодные индикаторы.
Умная система управления термофеном — при отключении самого фена кулер будет работать до тех пор, пока не охладит нагреватель, затем сам по себе отключится, тоже очень продуманное решение для безопасности, которое имеется на всех профф. станциях.
Также имеется возможность регулировки оборотов кулера.
И в случае фена и в случае паяльника максимальная температура 480гр.
На счет затрат
- Паяльник можно купить тут
- Фен тут
- Насадки для фена тут
- Плата ардуино с мк тут
- ЖК дисплей тут
- Набор жал для паяльника тут
- Блок питания тут
P.S. данная статья была напечатана за пол часа, если что пропустил — простите.
Паяльная станция своими руками на ATMega8
После того, как меня окончательно измучила моя паяльная станция 40 Вт неизвестного происхождения, я решился на создание паяльной станции своими руками профессионального уровня на АТМега8.
На рынке представлена недорогая продукция разных производителей (например, AIOU / YOUYUE и др.). Но у них, как правило, есть какой-то значительный дефект, либо спорный дизайн.
Предупреждаю: эта цифровая паяльная станция нужна, чтобы единственно паять, без лишних украшений типа AMOLED-дисплеев, сенсорных панелей, 50-ти режимов работы и интернет-управления.
Но все же у него будет несколько особенностей, которые вам пригодятся:
- неактивный режим (поддерживает температуру 100-150°С, когда паяльник лежит на подставке.
- таймер автоматического отключения, чтобы забывчивость не стала причиной пожара.
- УАПП для отладки (только для данной сборки).
- дополнительные разъемы на плате для подключения второго паяльника или фена.
Интерфейс достаточно прост: я сделал две кнопки, поворотный регулятор и ЖК-дисплей 16х2 (HD44780).
Для чего делать станцию самому
Причин, по которым представленные на рынке станции, не вызывают доверия, несколько: никогда нельзя знать наверняка, что вы приобрели хорошее изделие, до тех пор, пока оно не пройдет полный тест-драйв; пока вы не разберёте станцию, чтобы увидеть и оценить начинку и качество сборки; и, наконец, вы не можете пообщаться с другими владельцами этой же модели, чтобы поделиться впечатлениями и обсудить плюсы и минусы станции из-за того, что многие компании выпускают свою продукцию на рынок под новыми брендами каждые пару лет.
Пару лет назад я приобрел паяльную станцию через интернет, и, хотя работает она до сих пор хорошо, я устал работать с ней из-за дурацкого дизайна (короткий шнур питания, обдув не компрессорный и короткий неотсоединяемый шнур жала). Из-за недочетов в дизайне эту станцию даже на столе переставлять неудобно, корпус крутится вслед за жалом. Нутро было залито термоклеем, неделя ушла только на очистку компонентов и устранение мелких и крупных недостатков.
Крепление шнура подставки паяльника держалось на честном слове, изоляция постоянно сбивалась, а это и разрыв провода, и возможный пожар.
Шаг 1: Необходимые материалы
Список материалов и компонентов:
- Преобразователь 24 В 50-60Вт. У моего трансформатора есть вторичная линия 9В, которая пойдет на логические элементы, в то время как первичная линия пойдет на паяльник. Также можете использовать понижающий преобразователь 5В для элементов, и отдельно внутреннее содержимое блока питания 24В для паяльника.
- Микроконтроллер ATMega8.
- Корпус. Подойдет любая коробка из твердого материала, предпочтительно металлическая, можно взять корпус от блока питания. Можно заказать такой корпус.
- Двухсторонняя медная плата 100х150 мм.
- Поворотный регулятор от старого кассетного магнитофона. Работает отлично, нужно только заменить колпачок регулятора.
- ЖК-дисплей HD44780 16х2.
- Радиокомпоненты (резисторы, конденсаторы и т.д.).
- Стабилизатор напряжения LM7805 или аналогичный ему.
- Радиатор размером не больше корпуса TO-220.
- Сменный наконечник HAKKO 907.
- МОП-транзистор IRF540N.
- Операционный усилитель LM358N.
- Мостовой выпрямитель, две штуки.
- 5-контактное гнездо и штекер к нему.
- Выключатель.
- Штепсельная вилка на ваш выбор, я использовал разъем от старого компьютера.
- Предохранитель 5А и держатель для предохранителя.
Время на сборку – примерно 4-5 дней.
Что касается источника питания, то вы можете сделать вполне жизнеспособные версии/дополнения. Например, можно получить блок питания 24В 3А, использовав LM317 и LM7805, чтобы сбросить напряжение до.
Все детали из этого списка можно заказать с китайских интернет-площадок.
Шаг 2: День первый – продумываем электрическую схему
У паяльника HAKKO 907 много клонов, еще существует две разновидности оригинальных жала (с керамическими нагревательными элементами A1321 и A1322).
Дешевые клоны – примеры ранних копий, с применением ХА-термопары и керамического нагревателя самого паршивого качества, или вовсе с нихромовой катушкой.
Клоны чуть подороже практически идентичны оригинальным HAKKO 907. Определить оригинальность можно по наличию или отсутствию маркировки на оплетке провода бренда HAKKO и номера модели на нагревательном элементе.
Можно также определить подлинность изделия, измерив сопротивление между электродами или проводами нагревательного элемента паяльника.
Оригинал или качественный клон:
- Сопротивление нагревательного элемента – 3-4 Ом
- Термистор — 50-55 Ом при комнатной температуре
- между жалом и ESD заземлением — меньше 2 Ом
Плохие клоны:
- На нагревательном элементе – 0-2 Ом для нихромовой катушки, больше 10 Ом для дешевой керамики
- на термопаре – 0-10 Ом
- между жалом и ESD заземлением – меньше 2 Ом
Если сопротивление нагревательного элемента слишком велико, скорее всего он поврежден. Лучше обменяйте его на другой (если есть возможность) или купите новый керамический элемент A1321.
Питание
Чтобы вы не запутались в схеме, преобразователь на ней изображен как два преобразователя. В остальном схема довольна проста и у вас не должно возникнуть трудностей с ее чтением.
- На выходе каждой вторичной линии напряжения устанавливаем мостовой выпрямитель. Я купил несколько выпрямителей 1000 В 2 А хорошего качества. Преобразователь на 24В линии выдает максимум 2А, а паяльнику нужна мощность 50 Вт, получается общая расчетная мощность будет примерно 48 Вт.
- К линии вывода 24В подключен сглаживающий конденсатор 2200 мкф 35 В. Кажется, что можно было взять конденсатор емкостью поменьше, но у меня в планах подключение дополнительных приборов к самодельной станции.
- Для снижения напряжения питания контрольной панели с 9В до 5В я использовал регулятор напряжения LM7805T с несколькими конденсаторами.
Управление через ШИМ
- На второй схеме изображено управление керамическим нагревательным элементом: сигнал с микроконтроллера ATMega идет на МОП-транзистор IRF540N через оптрон РС817.
- Значения резисторов на схеме условные, и в окончательной сборке могут быть изменены.
- Пины 1 и 2 соответствуют проводам нагревательного элемента.
- Пины 4 и 5 (термистор) соединяются с разъемом, к которому подключим операционный усилитель LM358.
- К пину 3 подключено ESD заземление паяльника.
Подключения к плате контроллера
Основа паяльной станции – микроконтроллер ATMega8. На этом микроконтроллере достаточно разъемов, чтобы не использовать сдвиговые регистры для входов/выходов и сильно упрощает дизайн устройства.
Три пина ОС для ШИМ дают достаточно каналов для будущих дополнений (например, второй паяльник), а количество каналов АЦП дает возможность контролировать температуру нагрева. На схеме видно, что я добавил дополнительный канал для ШИМ и разъемы для датчика температуры на будущее.
В правом верхнем углу находятся разъемы под поворотный регулятор (А и В для направлений, плюс кнопка-выключатель).
Разъем для ЖК-дисплея разделен на две части: 8 пинов – под питание и данные (пин 8), 4 пина – под настройки контраста/фоновой подсветки (пин 4).
Помимо основных разъемов я добавил 4-хпиновый разъем УАПП для установочной отладки (мы подключим только пины RX, TX и GND).
ISP коннектор не вводим в схему. Для подключения микроконтроллера и его перепрограммирования в любой момент я установил DIP-28 разъем.
R4 и R8 контролируют усиление соответствующих схем (максимально до ста крат).
Какие-то детали будут изменены в ходе сборки, но в целом схема останется такой.
Шаг 3: День 2 – подготовительная работа
Корпус, который я заказал, оказался слишком мал для моего проекта, или компоненты оказались слишком велики, поэтому я заменил его на более вместительный. Минусом стало то, что и размер паяльной станции увеличился соответственно. Зато появилась возможность добавить дополнительные приборы – диодную лампу для комфортной работы, второй паяльник, разъем под жало для пайки припоем или дымоудалитель, и т.д.
Обе платы были скомпонованы в один блок.
Подготовка
Если вам повезло, и вы раздобыли подходящее гнездо для паяльника HAKKO, пропустите два параграфа.
Сначала я заменил родной штекер на паяльнике на новый. Он цельнометаллический и с блокирующей гайкой, это значит, что он всегда будет на своем месте и практически вечный. Я просто отрезал старый 5-типиновый штекер и припаял новый вместо него.
Для разъема сверлим отверстие в стенке корпуса. Проверьте, входит ли разъем в отверстие, и оставьте его там. Остальные компоненты передней панели мы установим позже.
Припаяйте к разъему 5 проводков и смонтируйте 5-типиновый разъем, который пойдет на плату. Затем вырежьте отверстия под ЖК-дисплей, поворотный регулятор и 2 кнопки. Если вы хотите вывести кнопку включения на переднюю панель, под нее тоже нужно вырезать отверстие.
На последней фотографии видно, что для подключения дисплея я использовал шлейф от старого флоппи-дисковода. Это отличный вариант, также можно использовать шлейф IDE (от дисковода жёстких дисков).
Затем подключите 4-хпиновый разъем к поворотному регулятору и если вы установили кнопки, подключите и их.
По углам выреза под дисплей хорошо было бы просверлить 4 отверстия под монтажные маленькие винты, иначе дисплей не будет держаться на своем месте. На заднюю панель я вывел разъем под шнур питания и выключатель.
Шаг 4: День 2 – Делаем печатную плату
Вы можете использовать мой чертеж для печатной платы, или сделать свой, удовлетворяющий вашим требованиям и техническим характеристикам.
Прикладываю ZIP-архив со схемой и топологией печатной платы в Eagle (окончательный вариант) и PDF-файл с верхним и нижним слоями платы.
Примечание: моя плата сделана для ленивых, если вы хотите, можете сделать однослойную плату, можете просто припаять соединительные провода к 5В дорожке/дорожки питания или поиграть с вариантами подключений так, что для работы понадобится только нижний слой платы. Для легкого монтажа/демонтажа я сделал дизайн со сквозными контактами, но с компонентами с поверхностным монтажом и определенными знаниями вы сможете сделать схему раза в два меньше.
На последнем фото схема практически полностью собрана и готова к установке в корпус.
Шаг 5: День 3 – Завершение сборки и кодировка
На этом этапе обязательно нужно проверить напряжение в ключевых точках вашего агрегата (5VDC, 24VDC выводы и т.д.). Стабилизатор LM7805, МОП-транзистор IRF540 и все активные и пассивные компоненты не должны нагреваться на этом этапе.
Если ничего не нагрелось и не загорелось, можно собирать все компоненты на места. Если ваша передняя панель уже собрана, вам осталось только припаять провода преобразователя, плавкий предохранитель, разъема питания и выключателя.
Шаг 6: Дни 4-13 – Микропрограммное обеспечение
Пока я пользуюсь сырым и непроверенным микропрограммным обеспечением, поэтому я решил отложить его публикацию, пока не напишу самодиагностирующую отладочную подпрограмму. Я бы не хотел, чтобы ваш дом или мастерская пострадали от пожара, поэтому дождитесь окончательной публикации.
Я планирую добавить ПИД-регулирование и несколько дополнительных режимов с фиксированной выходной мощностью. Если вы не хотите ждать пока я выложу программу и решили написать свою, поищите хорошие источники информации на следующие темы:
- Дискретные ПИД-регуляторы
- Реализация ПИД-регуляторов
принцип работы, характеристики, разновидности, инструкция по сборке, как пользоваться
Современная, более усовершенствованная техника, увы, выходит из строя не меньше, чем старые образцы. И если раньше вопрос об усовершенствовании привычного нам паяльника не стоял, то сегодня по старинке отпаять или припаять деталь, не «задев» соседние чипы, практически невозможно. Именно поэтому умельцы собирают более современные термовоздушные и инфракрасные паяльные станции своими руками. В этом обзоре расскажем, какими бывают паяльные системы, как работает блок управления и как его подключить, что входит в элементы конструкции. Только в нашем обзоре вы найдете рекомендации, иллюстрирующие особенности сборки и регулировки современных паяльных станций.
Современные паяльные станции бесконтактного типа позволяют припаивать микрочипы и элементы плат для ПК и планшетовЧитайте в статье
Для чего нужна паяльная станция
Паяльная станция, в отличие от простого паяльника, – система более усовершенствованная. Она позволяет спаять мелкие детали, такие, к примеру, как SMD-компоненты, контролировать нагрев на табло, программировать кнопки. Кроме того, благодаря бесконтактной системе пайки перегрев соседних элементов здесь исключён.
Благодаря «умному» блоку управления можно задать необходимые настройки температуры, включить и выключить систему нажатием одной кнопкиПаяльная станция бесконтактного типа относится к современным системам пайки. К примеру, нагрев с помощью термофена помогает мастерам в ремонте бытовых электроприборов и мобильников. А вот с помощью ИК-систем можно производить монтаж и демонтаж микросхем (даже формата BGA).
Общие характеристики и принцип работы паяльной станции
Внешний вид промышленной воздушной паяльной станции: 1 – блок управления, 2 − паяльник, 3 – фен, 4 − ручка для переноски, 5 – регуляторы температуры для фена и нагревателяАнатомия паяльной станции достаточно проста и максимально отвечает необходимым условиям: аккуратная, «умная» пайка элементов. Сердце прибора − блок питания, внутри которого находится трансформатор, выдающий напряжение двух вариантов 12 или 24 Вольта. Без этого элемента все системы станции были бы бесполезны. Трансформатор отвечает за регулировку температуры. Блок питания снабжён терморегулятором и специальными кнопками запуска прибора.
Для справки! Некоторые устройства оборудованы специальной подставкой, которая нагревает печатную плату во время пайки, что помогает избежать её деформации.
С помощью блока управления также может быть реализована функция запоминания температуры и программирования кнопок. Мастера «прокачивают» прибор, используя процессор, благодаря которому появляется возможность измерять температуру в ходе пайки.
Вариация самодельного паяльника для микросхемРазберём особенности работы термовоздушной паяльной станции: поток воздуха с помощью специальных спиралевидных или керамических элементов (они находятся прямо внутри трубки термофена) нагревается, а затем через специальные насадки направляется в точку пайки. Такая система позволяет нагреть необходимую поверхность равномерно, исключив точечную деформацию.
Комментарий
Андрей Винокуров
Электромонтер 5 разряда ООО «Петроком»
Задать вопрос«Температура, которую могут обеспечить современные фены для пайки, в том числе и собранные своими руками, варьируется от 100 до 800°C. Причём показатели эти могут настраиваться оператором.
«В качестве ещё одного дополнительного элемента может выступать специальный инфракрасный нагреватель. Принцип его похож на работу термофена, он нагревает не место стыка, а определённую площадь. Однако, в отличие от термофена, здесь отсутствует поток тёплого воздуха. Профессиональные паяльные станции могут оборудоваться специальными сопутствующими инструментами, оловоотсосами и вакуумными пинцетами.
Разновидности паяльных станций по конструкции
Существуют как простые паяльные станции, оборудованные привычным нам классическим паяльником, так и более продвинутые. Причём вариаций сочетания компонентов и систем может быть великое множество. Без труда можно в одной станции совместить контактный паяльник и фен, вакуумный или термопинцет и оловоотсос. Для удобства приведём таблицу основных типов паяльных станций.
Контактные ПС− это обыкновенный, имеющий при пайке прямой контакт с поверхностью, паяльник, оснащённый электронным блоком управления и регулирования температуры. | Бесконтактные ПС − в основе работы блок управления и особая система управления элементов. | |||
Свинцовые | Бессвинцовые Требуют повышенной температуры плавки. | Термовоздушные Обеспечивают эффективную пайку в труднодоступных зонах с единовременным прогреванием сразу нескольких поверхностей. Позволяет осуществлять пайку любого типа, как со свинцом, так и без него. | Инфракрасные Здесь присутствует нагревательный элемент в виде инфракрасного излучателя, сделанного из керамики или кварца. | Комбинированные Сочетают в своей конструкции несколько типов оборудования: фен или классический паяльник, или, как мы уже говорили, ИК-нагреватель и оловоотсос допустим, паяльник и фен. |
По механизму стабилизации температуры и принципу работы управляющих блоков паяльные станции можно разделить также на аналоговые и цифровые. В первом случае нагревательный элемент включён, пока паяльник не прогреется до нужной температуры, самая близкая аналогия – нагрев обычного утюга. А вот второй тип паяльника отличается сложной системой контроля и регулирования температуры. Здесь размещён PID-регулятор, который подчиняется программе микроконтроллера. Такой метод стабилизации температуры намного эффективнее аналогового. Ещё одна классификация позволяет разделить все ПС на монтажные и демонтажные. Первые осуществляют пайку приборов, однако, не имеют оловоотсоса и других элементов, позволяющих проводить чистку и замену деталей.
Демонтажная паяльная станция Xytronic LF-852D с насадкамиТакие паяльные системы снабжены специальной ёмкостью для удаления припоя, который, в свою очередь, отсасывается специальной насадкой, снабжённой компрессором.
К сведению! Существуют комбинированные станции, позволяющие проводить как монтажные, так и демонтажные работы. Они снабжены двумя видами паяльников, различающихся по мощности.
Как сделать своими руками термовоздушную паяльную станцию
Купить паяльную станцию с феном не каждому по карману, хотя ИК-станции стоят ещё больших денег, поэтому самый простой путь – собрать её своими руками. Однако, следует помнить, что такие воздушные паяльные станции обладают определёнными недостатками:
- Потоком воздуха можно случайно сдуть маленькие детали.
- Поверхность прогревается неравномерно.
- Для разных случаев требуются дополнительные насадки.
Паяльный фен своими руками: универсальная схема
Термофен – специальное устройство, которое нагревает место пайки потоком горячего воздуха.
Проще всего собрать прибор с феном на вентиляторе, а в качестве нагревателя использовать спираль.
Универсальная паяльная станция с феномЕсли покупать нагреватель механический, то он достаточно дорогой. И при резких перепадах температур может простой треснуть. Не все могут самостоятельно сконструировать компрессор. В качестве поддувала можно использовать обычный малогабаритный вентилятор. Подойдёт кулер от домашнего ПК. Для знакомства с устройством такого прибора изучим схему паяльной станции своими руками.
Схема паяльной станции с феном состоит из основного блока и манипулятора-термофена, в котором происходит нагревание воздухаВентилятор расположим около термофена. К нему аккуратно присоединяем трубку для подачи тёплого воздуха. На торце кулера вытачиваем отверстие под сопло. С противоположной стороны кулер необходимо закрыть, чтобы обеспечить необходимую тягу.
Для более точечного направления тёплого воздуха можно приобрести готовые насадки на сопло термофенаТеперь подошла очередь сборки нагревательного элемента. Для этого необходимо накрутить нихромовую проволоку спиралью на основание нагревателя. Причём витки обязательно не должны касаться друг друга. Витки наматываются с учётом того, что сопротивление должно быть 70-90 Ом. Основание выбирают с плохой теплопроводностью и хорошей стойкостью к большим температурам.
Комментарий
Андрей Винокуров
Электромонтер 5 разряда ООО «Петроком»
Задать вопрос«Часть деталей можно позаимствовать из обычного фена. В частности, в качестве основы для спирали с низкой термопроводностью подойдёт слюдяная пластина.
«Приступаем к поиску деталей для сопла. Лучше всего для этого подойдёт труба из керамики или фарфора. Оставляем небольшой зазор между стенками сопла и спиралью. Сверху поверхность обматываем изоляционными материалами. Можно использовать асбестовый слой, стекловолокно и т.д. Это увеличит высокое КПД фена, а также позволит брать его руками, не получив ожог. Крепим нагревательный элемент так, чтобы воздух подавался в трубку, а нагреватель находился точно посередине внутри сопла.
Система управления паяльной станцией
Для сборки системы управления самодельной паяльной станции типа фен своими руками в ней необходимо разместить два реостата: один регулирует входящий поток, другой − мощность нагревательного элемента. А вот выключатель обычно делается один как для нагревателя, так и для нагнетателя.
Варианты подключения системы управления к термофену.Здесь очень важно правильно подключить провода, чтобы они соотносились с реостатами.
Затем присоединяем термофен так, чтобы провода соответствовали нужным реостатам и выключателю.
Сборка и настройка работы паяльной станции
Мощность паяльной станции, как мы уже замечали выше, обычно находится в пределах от 24 до 40 Ватт. Однако если вы планируете паять шины питания и проводники, то мощность прибора должна быть увеличена от 40 до 80 Ватт.
А вот паяльные инструменты на 100 Ватт и больше, как правило, используют для крупногабаритных конструкций из цветмета, которые, в принципе, обладают значительной теплопроводностьюПодробнее о том, как паять феном от паяльной станции, смотрите в этом видео.
Инфракрасная паяльная станция своими руками
Инфракрасная паяльная станция − тот инструмент, который проще всего сделать своими руками. Цена на паяльные станции такого типа просто заоблачная. Купить что-то попроще – не вариант, так как всё равно будет ограниченный функционал.
ИК паяльная станция в сборкеИменно поэтому мы расскажем поэтапно, как собрать своими руками инфракрасный паяльник. Разберём этапы сборки ПС для пайки плат размером 250×250 мм. Наша паяльная станция подойдёт для работы с телевизионными платами, видеоадаптерами для ПК, а также планшетов.
Изготовление корпуса и нагревательных элементов
Для основы самодельной ИК паяльной станции, собранной своими руками, можно взять дверцу от антресоли либо фанеру 10-12 мм, прикручиваем к ней ножки. На этом этапе важно примерно прикинуть компоновку исходя из размеров нагревателей и ПИД-регуляторов. От этого будет зависеть высота «боковин» и скосов передней панели.
Алюминиевые уголки используются для формирования «скелета» конструкции. Заранее позаботьтесь о «начинке», в работе пригодятся и старые видеомагнитофоны, ДВД-проигрыватели и тому подобное. Можно обойти специализированных уличных лоточников.
Корпуса от старых видеомагнитофонов или процессоров – идеальное сырьё для обшивки сторонЕщё один вариант корпуса, на этот раз из алюминияТеперь ищем антипригарный поддон. Да, именно тот, что можно купить в обычном магазине бытовой техники. Здесь же можно и присмотреть качественный паяльник для паяльной станции.
Важно! Возьмите с собой рулетку. Ваша задача – найти противень оптимальной ширины и глубины. Размеры зависят от высоты ИК-излучателей и их количества.
Система управления паяльной установкой
Приступим к самому интересному. На торговой площадке заранее заказываем ПИДы (или пропорционально-интегрально-дифференциальные регуляторы), а также ИК — 3 нижних ИК излучателя 60×240 мм, и один верхний − 80×80 мм, не забудьте запастись двумя твердотельными реле на 40А. На этом этапе уже можно переходить к жестяным работам, а именно подогнать всю конструкцию под размеры наших основных элементов. После подгонки боковин и крышки вырезаем технологические отверстия под ПИДы на передней, под кулер на задней стенке.
Сборка и регулировка работы паяльной станции
Итак, после установки излучателей, кулера и соединения всех проводков внешний вид нашей паяльной станции уже обретает практически законченный вид. На этом этапе необходимо провести тестирование оборудования на нагрев, удержание температуры и гистерезис. Переходим к монтажу основного ИК-излучателя. Сделать это несложно.
Больше всего усилий забирает монтаж держателя платы и установка столика. В нашем примере мы рассмотрели возможность сборки держателей так, чтобы можно было сдвигать влево-вправо уже зажатую платуКомментарий
Андрей Винокуров
Электромонтер 5 разряда ООО «Петроком»
Задать вопрос«Для удобства работы можно закрепить на держателе фонарик или светодиодную лампочку. Это очень выручает при отсутствии точечного освещения. Пригодится и ручной обдув.
«Особенности изготовления своими руками паяльной станции на Arduino (Ардуино)
Паяльная станция на процессоре Ардуино – одна из самых прогрессивных моделей. Особенность её в том, что она легко программируется. Можно задать необходимые параметры и алгоритмы работы и управления всех элементов.
Часто используется система подключения Flex Link. Она относительно простая, надёжная, а её элементы вполне можно приобрести самостоятельно и собрать схему без особых проблемДалее все этапы сборки аналогичны уже описанными нами. Если возникнут вопросы, можно обратиться за помощью к специалистам-электронщикам.
Особенности изготовления своими руками паяльной станции на Atmega8 (Атмега8)
Схема на контроллере Atmega8 довольно простая и не требует больших знаний. Самое главное, разбираться в кодах программ на языке C++. Это позволит редактировать его под себя.
Вариант рабочей схемы паяльной станции на Atmega8В открытых интернет-источниках есть разные вариации паяльных станций на основе разных контроллеров.
Внешний вид программатора для будущей паяльной станции на ATmega328Одно из обучающих видео по сборке паяльной станции в этом видео.
Как пользоваться паяльной станцией
Для новичков будет не лишним узнать некоторые особенности работы с паяльными станциями.
Контроллер и паяльник – важнейшие элементы паяльной станции должны быть чистыми и защищёнными от пылиПеречислим некоторые из них:
- Для монтажа или демонтажа крупных деталей проще использовать фен. Так как он охватывает необходимую площадь.
- Температура нагрева подбирается методом «тыка». Начиная с минимально возможной. К примеру, пасты для монтажа SMD-компонентов имеют меньшую температуру плавления, нежели ПОС-61.
- Обзаведитесь обыкновенной спиртоканифолью. Пригодится для обезжиривания.
- Перед монтажом компонентов используйте специальный флюс. Он продаётся в отделах для ремонта сотовых.
- Очень выручает обыкновенная иголка. Ею можно поддеть перепаиваемые детали и при необходимости их перевернуть.
- Контактные площадки в обязательном порядке очищаются от припоя.
Работа с паяльной станцией требует определённых навыков.
Если вы не сможете собрать самостоятельно такой прибор, то воспользуйтесь рекомендациями профессионаловПолучить любую информацию можно также в обучающих видео, в этом вы узнаете о том, как выбрать паяльную станцию.
Свои вопросы и комментарии к статье оставляйте в специальной форме ниже. Надеемся, что наши рекомендации помогут сделать собственную паяльную станцию, которая прослужив вам верой и правдой долгие годы.
ПОНРАВИЛАСЬ СТАТЬЯ? Поддержите нас и поделитесь с друзьями
Simple Solder MK936. Простая самодельная паяльная станция своими руками
В интернете очень много схем различных паяльных станций, но у всех есть свои особенности. Одни сложны для новичков, другие работают с редкими паяльниками, третьи не закончены и т.д. Мы сделали упор именно на простоту, низкую стоимость и функциональность, чтобы каждый начинающий радиолюбитель смог собрать такую паяльную станцию.
Обратите внимание, что у нас также есть версия этого устройства на SMD-компонентах!
Для чего нужна паяльная станция
Обычный паяльник, который включается напрямую в сеть просто греет постоянно с одинаковой мощностью. Из-за этого он очень долго разогревается и никакой возможности регулировать температуру в нем нет. Можно диммировать эту мощность, но добиться стабильной температуры и повторяемости пайки будет очень сложно.
Паяльник, подготовленный для паяльной станции имеет встроенный датчик температуры и это позволяет при разогреве подавать на него максимальную мощность, а затем удерживать температуру по датчику. Если просто пытаться регулировать мощность пропорционально разности температур, то он будет либо очень медленно разогреваться, либо температура будет циклически плавать. В итоге программа управления обязательно должна содержать алгоритм ПИД-регулирования.
В своей паяльной станции мы, конечно, использовали специальный паяльник и уделили максимум внимания стабильности температуры.
Паяльная станция Simple Solder MK936
Технические характеристики
- Питание от источника постоянного напряжения 12-24В
- Потребляемая мощность, при питании 24В: 50Вт
- Сопротивление паяльника: 12Ом
- Время выхода на рабочий режим: 1-2 минуты в зависимости от питающего напряжения
- Предельное отклонение температуры в режиме стабилизации, не более 5ти градусов
- Алгоритм регулирования: ПИД
- Отображение температуры на семисегментном индикаторе
- Тип нагревателя: нихромовый
- Тип датчика температуры: термопара
- Возможность калибровки температуры
- Установка температуры при помощи экодера
- Светодиод для отображения состояния паяльника (нагрев/работа)
Принципиальная схема
Схема предельно простая. В основе всего микроконтроллер Atmega8. Сигнал с оптопары подается на операционный усилитель с регулируемым коэффициентом усиления (для калибровки) и затем на вход АЦП микроконтроллера. Для отображения температуры использован семисегментный индикатор с общим катодом, разряды которого включены через транзисторы. При вращении ручки энкодера BQ1 задается температура, а в остальное время отображается текущая температура. При включении задается начальное значение 280 градусов. Определяя разницу между текущей и требуемой температурой, пересчитав коэффициенты ПИД-составляющих, микроконтроллер при помощи ШИМ-модуляции разогревает паяльник.
Для питания логической части схемы использован простой линейный стабилизатор DA1 на 5В.
Принципиальная схема Simple Solder MK936
Печатная плата
Печатная плата односторонняя с четырьмя перемычками. Файл печатной платы можно будет скачать в конце статьи.
Печатная плата. Лицевая сторона
Печатная плата. Обратная сторона
Список компонентов
Для сборки печатной платы и корпуса потребуются следующие компоненты и материалы:
- BQ1. Энкодер EC12E24204A8
- C1. Конденсатор электролитический 35В, 10мкФ
- C2, C4-C9. Конденсаторы керамические X7R, 0.1мкФ, 10%, 50В
- C3. Конденсатор электролитический 10В, 47мкФ
- DD1. Микроконтроллер ATmega8A-PU в корпусе DIP-28
- DA1. CСтабилизатор L7805CV на 5В в корпусе TO-220
- DA2. Операционный усилитель LM358DT в корпусе DIP-8
- HG1. Семисегментный трехразрядный индикатор с общим катодом BC56-12GWA.Также на плате предусмотрено посадочное место под дешевый аналог.
- HL1. Любой индикаторный светодиод на ток 20мА с шагом выводов 2,54мм
- R2,R7. Резисторы 300 Ом, 0,125Вт — 2шт
- R6, R8-R20. Резисторы 1кОм, 0,125Вт — 13шт
- R3. Резистор 10кОм, 0,125Вт
- R5. Резистор 100кОм, 0,125Вт
- R1. Резистор 1МОм, 0,125Вт
- R4. Резистор подстроечный 3296W 100кОм
- VT1. Полевой транзистор IRF3205PBF в корпусе TO-220
- VT2-VT4. Транзисторы BC547BTA в корпусе TO-92 — 3шт
- XS1. Клемма на два контакта с шагом выводов 5,08мм
- Клемма на два контакта с шагом выводов 3,81мм
- Клемма на три контакта с шагом выводов 3,81мм
- Радиатор для стабилизатора FK301
- Колодка для корпуса DIP-28
- Колодка для корпуса DIP-8
- Разъем для подключения паяльника
- Выключатель питания SWR-45 B-W(13-KN1-1)
- Паяльник. О нем мы еще позже напишем
- Детали из оргстекла для корпуса (файлы для резки в конце статьи)
- Ручка энкодера. Можно купить ее, а можно напечатать на 3D-принтере. Файл для скачивания модели в конце статьи
- Винт М3х10 — 2шт
- Винт М3х14 — 4шт
- Винт М3х30 — 4шт
- Гайка М3 — 2шт
- Гайка М3 квадратная — 8шт
- Шайба М3 — 8шт
- Шайба М3 гроверная — 8шт
- Также для сборки потребуются монтажные провода, стяжки и термоусадочная трубка
Вот так выглядит комплект всех деталей:
Комплект деталей для сборки паяльной станции Simple Solder MK936
Монтаж печатной платы
При сборке печатной платы удобно пользоваться сборочным чертежом:
Сборочный чертеж печатной платы паяльной станции Simple Solder MK936
Подробно процесс монтажа будет показан и прокомментирован в видео ниже. Отметим только несколько моментов. Необходимо соблюдать полярность электролитических конденсаторов,светодиода и направление установки микросхем. Микросхемы не устанавливать до тех пор, пока корпус полностью не собран и не проверено питающее напряжение. С микросхемами и транзисторами необходимо обращаться аккуратно, чтобы не повредить их статическим электричеством.
После того, как плата собрана, она должна выглядеть вот так:
Печатная плата паяльной станции в сборе
Сборка корпуса и объемный монтаж
Монтажная схема блока выглядит следующим образом:
Монтажная схема паяльной станции
То есть осталось всего навсего подвести к плате питание и подключить разъем паяльника.
К разъему паяльника требуется припаять пять проводов. К первому и пятому красные, к остальным черные. На контакты надо сразу надеть термоусадочную трубку, а свободные концы проводов залудить.
К выключателю питания следует припаять короткий (от переключателя к плате) и длинный (от переключателя к источнику питания) красные провода.
Затем выключатель и разъем можно установить на лицевую панель. Обратите внимание, что выключатель может входить очень туго. При необходимости доработайте лицевую панель надфилем!
Подключение разъема паяльника
Далее необходимо скрутить винтами левую и заднюю стенки корпуса. Помните, что оргстекло — хрупкий материал, и не перетягивайте резьбовые соединения!
Сборка корпуса паяльной станции
На следующем этапе все эти части собираются вместе. Устанавливать контроллер, операционный усилитель и прикручивать лицевую панель не нужно!
Сборка корпуса паяльной станции
Прошивка контроллера и настройка
HEX-файл для прошивки контроллера вы сможете найти в конце статьи. Фьюз-биты должны остаться заводскими, то есть контроллер будет работать на частоте 1МГц от внутреннего генератора.
Первое включение следует производить до установки микроконтроллера и операционного усилителя на плату. Подайте постоянное напряжение питания от 12 до 24В (красный должен быть «+», черный «-«) на схему и проконтролируйте, что между выводами 2 и 3 стабилизатора DA1 присутствует напряжение питания 5В (средний и правый выводы). После этого отключите питание и установите микросхемы DA1 и DD1 в панельки. При этом следите за положением ключа микросхем.
Снова включите паяльную станцию и убедитесь, что все функции работают правильно. На индикаторе отображается температура, энкодер ее изменяет, паяльник нагревается, а светодиод сигнализирует о режиме работы.
Далее необходимо откалибровать паяльную станцию.
Оптимальный вариант при калибровке – использование дополнительной термопары. Необходимо выставить требуемую температуру и проконтролировать ее на жале по эталонному прибору. Если показания различаются, то произведите подстройку многооборотным подстроечным резистором R4.
При настройке помните, что показания индикатора могут отличаться незначительно от фактической температуры. То есть, если вы установили, например, температуру «280», а показания индикатора в небольшой степени отклоняются, то по эталонному прибору вам нужно добиваться именно температуры 280°С.
Если под рукой нет контрольного измерительного прибора, то можно установить сопротивление резистора около 90кОм и потом подбирать температуру опытным путем.
После того, как паяльная станция проверена, можно аккуратно, чтобы не потрескались детали, установить лицевую панель.
Паяльная станция в сборе
Паяльная станция в сборе
Видео работы
Мы сняли краткое видео-обзор
…. и подробное видео, на котором показан процесс сборки:
Заключение
Это простая паяльная станция сильно изменит ваше впечатление о пайке, если вы паяли до этого обычным сетевым паяльником. Вот так она выглядит, когда сборка завершена.
О паяльнике надо сказать еще пару слов. Это самый простой паяльник с датчиком температуры. У него обычный нихромовый нагреватель и самое дешевое жало. Мы рекомендуем вам сразу приобрести для него сменное жало. Подойдет любое с внешним диаметром 6,5мм, внутренним 4мм, и длиной хвостовика 25мм.
Паяльник в разобранном виде с запасным жалом
Файлы для скачивания
Печатная плата в формате Sprint Layout
Прошивка для микроконтроллера
Файл для резки оргстекла
Модель ручки энкодера для 3D-печати
UPD
Выложенные выше файлы устарели. В текущей версии мы обновили чертежи для резки оргстекла, изготовления печатной платы, а также обновили прошивку, чтобы убрать мерцание индикатора. Обратите внимание, что для новой версии прошивки требуется включить CKSEL0, CKSEL2, CKSEL3, SUT0, BOOTSZ0, BOOTSZ1 и SPIEN (то есть изменить стандартные настройки).
Печатная плата в формате Sprint Layout V1.1
Прошивка для микроконтроллера V1.1
Файл для резки оргстекла V1.1
Также эту паяльную станцию можно приобрести в виде набора для самостоятельной сборки в нашем магазине и у наших партнеров GOOD-KITS.ru и ROBOTCLASS.ru.
Как сделать паяльную станцию своими руками
На чтение: 6 минут Нет времени?
Современная, более усовершенствованная техника, увы, выходит из строя не меньше, чем старые образцы. И если раньше вопрос об усовершенствовании привычного нам паяльника не стоял, то сегодня по старинке отпаять или припаять деталь, не «задев» соседние чипы, практически невозможно. Именно поэтому умельцы собирают более современные термовоздушные и инфракрасные паяльные станции своими руками. В этом обзоре расскажем, какими бывают паяльные системы, как работает блок управления и как его подключить, что входит в элементы конструкции. Только в нашем обзоре вы найдете рекомендации, иллюстрирующие особенности сборки и регулировки современных паяльных станций.
Читайте в статье
Для чего нужна паяльная станция
Паяльная станция, в отличие от простого паяльника, – система более усовершенствованная. Она позволяет спаять мелкие детали, такие, к примеру, как SMD-компоненты, контролировать нагрев на табло, программировать кнопки. Кроме того, благодаря бесконтактной системе пайки перегрев соседних элементов здесь исключён.
Благодаря «умному» блоку управления можно задать необходимые настройки температуры, включить и выключить систему нажатием одной кнопки
Паяльная станция бесконтактного типа относится к современным системам пайки. К примеру, нагрев с помощью термофена помогает мастерам в ремонте бытовых электроприборов и мобильников. А вот с помощью ИК-систем можно производить монтаж и демонтаж микросхем (даже формата BGA).
Общие характеристики и принцип работы паяльной станции
Анатомия паяльной станции достаточно проста и максимально отвечает необходимым условиям: аккуратная, «умная» пайка элементов. Сердце прибора − блок питания, внутри которого находится трансформатор, выдающий напряжение двух вариантов 12 или 24 Вольта. Без этого элемента все системы станции были бы бесполезны. Трансформатор отвечает за регулировку температуры. Блок питания снабжён терморегулятором и специальными кнопками запуска прибора.
Для справки! Некоторые устройства оборудованы специальной подставкой, которая нагревает печатную плату во время пайки, что помогает избежать её деформации.
С помощью блока управления также может быть реализована функция запоминания температуры и программирования кнопок. Мастера «прокачивают» прибор, используя процессор, благодаря которому появляется возможность измерять температуру в ходе пайки.
Вариация самодельного паяльника для микросхем
Разберём особенности работы термовоздушной паяльной станции: поток воздуха с помощью специальных спиралевидных или керамических элементов (они находятся прямо внутри трубки термофена) нагревается, а затем через специальные насадки направляется в точку пайки. Такая система позволяет нагреть необходимую поверхность равномерно, исключив точечную деформацию.
В качестве ещё одного дополнительного элемента может выступать специальный инфракрасный нагреватель. Принцип его похож на работу термофена, он нагревает не место стыка, а определённую площадь. Однако, в отличие от термофена, здесь отсутствует поток тёплого воздуха. Профессиональные паяльные станции могут оборудоваться специальными сопутствующими инструментами, оловоотсосами и вакуумными пинцетами.
Разновидности паяльных станций по конструкции
Существуют как простые паяльные станции, оборудованные привычным нам классическим паяльником, так и более продвинутые. Причём вариаций сочетания компонентов и систем может быть великое множество. Без труда можно в одной станции совместить контактный паяльник и фен, вакуумный или термопинцет и оловоотсос. Для удобства приведём таблицу основных типов паяльных станций.
Контактные ПС− это обыкновенный, имеющий при пайке прямой контакт с поверхностью, паяльник, оснащённый электронным блоком управления и регулирования температуры. | Бесконтактные ПС − в основе работы блок управления и особая система управления элементов. | |||
Свинцовые | Бессвинцовые |
Требуют повышенной температуры плавки.
Обеспечивают эффективную пайку в труднодоступных зонах с единовременным прогреванием сразу нескольких поверхностей. Позволяет осуществлять пайку любого типа, как со свинцом, так и без него.
Здесь присутствует нагревательный элемент в виде инфракрасного излучателя, сделанного из керамики или кварца.
Сочетают в своей конструкции несколько типов оборудования: фен или классический паяльник, или, как мы уже говорили, ИК-нагреватель и оловоотсос допустим, паяльник и фен.
По механизму стабилизации температуры и принципу работы управляющих блоков паяльные станции можно разделить также на аналоговые и цифровые. В первом случае нагревательный элемент включён, пока паяльник не прогреется до нужной температуры, самая близкая аналогия – нагрев обычного утюга. А вот второй тип паяльника отличается сложной системой контроля и регулирования температуры. Здесь размещён PID-регулятор, который подчиняется программе микроконтроллера. Такой метод стабилизации температуры намного эффективнее аналогового. Ещё одна классификация позволяет разделить все ПС на монтажные и демонтажные. Первые осуществляют пайку приборов, однако, не имеют оловоотсоса и других элементов, позволяющих проводить чистку и замену деталей.
Такие паяльные системы снабжены специальной ёмкостью для удаления припоя, который, в свою очередь, отсасывается специальной насадкой, снабжённой компрессором.
К сведению! Существуют комбинированные станции, позволяющие проводить как монтажные, так и демонтажные работы. Они снабжены двумя видами паяльников, различающихся по мощности.
Как сделать своими руками термовоздушную паяльную станцию
Купить паяльную станцию с феном не каждому по карману, хотя ИК-станции стоят ещё больших денег, поэтому самый простой путь – собрать её своими руками. Однако, следует помнить, что такие воздушные паяльные станции обладают определёнными недостатками:
- Потоком воздуха можно случайно сдуть маленькие детали.
- Поверхность прогревается неравномерно.
- Для разных случаев требуются дополнительные насадки.
Паяльный фен своими руками: универсальная схема
Термофен – специальное устройство, которое нагревает место пайки потоком горячего воздуха.
Проще всего собрать прибор с феном на вентиляторе, а в качестве нагревателя использовать спираль.
Универсальная паяльная станция с феном
Если покупать нагреватель механический, то он достаточно дорогой. И при резких перепадах температур может простой треснуть. Не все могут самостоятельно сконструировать компрессор. В качестве поддувала можно использовать обычный малогабаритный вентилятор. Подойдёт кулер от домашнего ПК. Для знакомства с устройством такого прибора изучим схему паяльной станции своими руками.
Вентилятор расположим около термофена. К нему аккуратно присоединяем трубку для подачи тёплого воздуха. На торце кулера вытачиваем отверстие под сопло. С противоположной стороны кулер необходимо закрыть, чтобы обеспечить необходимую тягу.
Для более точечного направления тёплого воздуха можно приобрести готовые насадки на сопло термофена
Теперь подошла очередь сборки нагревательного элемента. Для этого необходимо накрутить нихромовую проволоку спиралью на основание нагревателя. Причём витки обязательно не должны касаться друг друга. Витки наматываются с учётом того, что сопротивление должно быть 70-90 Ом. Основание выбирают с плохой теплопроводностью и хорошей стойкостью к большим температурам.
Приступаем к поиску деталей для сопла. Лучше всего для этого подойдёт труба из керамики или фарфора. Оставляем небольшой зазор между стенками сопла и спиралью. Сверху поверхность обматываем изоляционными материалами. Можно использовать асбестовый слой, стекловолокно и т.д. Это увеличит высокое КПД фена, а также позволит брать его руками, не получив ожог. Крепим нагревательный элемент так, чтобы воздух подавался в трубку, а нагреватель находился точно посередине внутри сопла.
Система управления паяльной станцией
Для сборки системы управления самодельной паяльной станции типа фен своими руками в ней необходимо разместить два реостата: один регулирует входящий поток, другой − мощность нагревательного элемента. А вот выключатель обычно делается один как для нагревателя, так и для нагнетателя.
Варианты подключения системы управления к термофену.
Здесь очень важно правильно подключить провода, чтобы они соотносились с реостатами.
Затем присоединяем термофен так, чтобы провода соответствовали нужным реостатам и выключателю.
Сборка и настройка работы паяльной станции
Мощность паяльной станции, как мы уже замечали выше, обычно находится в пределах от 24 до 40 Ватт. Однако если вы планируете паять шины питания и проводники, то мощность прибора должна быть увеличена от 40 до 80 Ватт.
А вот паяльные инструменты на 100 Ватт и больше, как правило, используют для крупногабаритных конструкций из цветмета, которые, в принципе, обладают значительной теплопроводностью
Подробнее о том, как паять феном от паяльной станции, смотрите в этом видео.
Инфракрасная паяльная станция своими руками
Инфракрасная паяльная станция − тот инструмент, который проще всего сделать своими руками. Цена на паяльные станции такого типа просто заоблачная. Купить что-то попроще – не вариант, так как всё равно будет ограниченный функционал.
ИК паяльная станция в сборке
Именно поэтому мы расскажем поэтапно, как собрать своими руками инфракрасный паяльник. Разберём этапы сборки ПС для пайки плат размером 250×250 мм. Наша паяльная станция подойдёт для работы с телевизионными платами, видеоадаптерами для ПК, а также планшетов.
Изготовление корпуса и нагревательных элементов
Для основы самодельной ИК паяльной станции, собранной своими руками, можно взять дверцу от антресоли либо фанеру 10-12 мм, прикручиваем к ней ножки. На этом этапе важно примерно прикинуть компоновку исходя из размеров нагревателей и ПИД-регуляторов. От этого будет зависеть высота «боковин» и скосов передней панели.
Алюминиевые уголки используются для формирования «скелета» конструкции. Заранее позаботьтесь о «начинке», в работе пригодятся и старые видеомагнитофоны, ДВД-проигрыватели и тому подобное. Можно обойти специализированных уличных лоточников.
Корпуса от старых видеомагнитофонов или процессоров – идеальное сырьё для обшивки сторон Ещё один вариант корпуса, на этот раз из алюминия
Теперь ищем антипригарный поддон. Да, именно тот, что можно купить в обычном магазине бытовой техники. Здесь же можно и присмотреть качественный паяльник для паяльной станции.
Важно! Возьмите с собой рулетку. Ваша задача – найти противень оптимальной ширины и глубины. Размеры зависят от высоты ИК-излучателей и их количества.
Система управления паяльной установкой
Приступим к самому интересному. На торговой площадке заранее заказываем ПИДы (или пропорционально-интегрально-дифференциальные регуляторы), а также ИК — 3 нижних ИК излучателя 60×240 мм, и один верхний − 80×80 мм, не забудьте запастись двумя твердотельными реле на 40А. На этом этапе уже можно переходить к жестяным работам, а именно подогнать всю конструкцию под размеры наших основных элементов. После подгонки боковин и крышки вырезаем технологические отверстия под ПИДы на передней, под кулер на задней стенке.
Сборка и регулировка работы паяльной станции
Итак, после установки излучателей, кулера и соединения всех проводков внешний вид нашей паяльной станции уже обретает практически законченный вид. На этом этапе необходимо провести тестирование оборудования на нагрев, удержание температуры и гистерезис. Переходим к монтажу основного ИК-излучателя. Сделать это несложно.
Больше всего усилий забирает монтаж держателя платы и установка столика. В нашем примере мы рассмотрели возможность сборки держателей так, чтобы можно было сдвигать влево-вправо уже зажатую плату
Особенности изготовления своими руками паяльной станции на Arduino (Ардуино)
Паяльная станция на процессоре Ардуино – одна из самых прогрессивных моделей. Особенность её в том, что она легко программируется. Можно задать необходимые параметры и алгоритмы работы и управления всех элементов.
Часто используется система подключения Flex Link. Она относительно простая, надёжная, а её элементы вполне можно приобрести самостоятельно и собрать схему без особых проблем
Далее все этапы сборки аналогичны уже описанными нами. Если возникнут вопросы, можно обратиться за помощью к специалистам-электронщикам.
Особенности изготовления своими руками паяльной станции на Atmega8 (Атмега8)
Схема на контроллере Atmega8 довольно простая и не требует больших знаний. Самое главное, разбираться в кодах программ на языке C++. Это позволит редактировать его под себя.
Вариант рабочей схемы паяльной станции на Atmega8
В открытых интернет-источниках есть разные вариации паяльных станций на основе разных контроллеров.
Внешний вид программатора для будущей паяльной станции на ATmega328
Одно из обучающих видео по сборке паяльной станции в этом видео.
Как пользоваться паяльной станцией
Для новичков будет не лишним узнать некоторые особенности работы с паяльными станциями.
Контроллер и паяльник – важнейшие элементы паяльной станции должны быть чистыми и защищёнными от пыли
Перечислим некоторые из них:
- Для монтажа или демонтажа крупных деталей проще использовать фен. Так как он охватывает необходимую площадь.
- Температура нагрева подбирается методом «тыка». Начиная с минимально возможной. К примеру, пасты для монтажа SMD-компонентов имеют меньшую температуру плавления, нежели ПОС-61.
- Обзаведитесь обыкновенной спиртоканифолью. Пригодится для обезжиривания.
- Перед монтажом компонентов используйте специальный флюс. Он продаётся в отделах для ремонта сотовых.
- Очень выручает обыкновенная иголка. Ею можно поддеть перепаиваемые детали и при необходимости их перевернуть.
- Контактные площадки в обязательном порядке очищаются от припоя.
Работа с паяльной станцией требует определённых навыков.
Если вы не сможете собрать самостоятельно такой прибор, то воспользуйтесь рекомендациями профессионалов
Получить любую информацию можно также в обучающих видео, в этом вы узнаете о том, как выбрать паяльную станцию.
Свои вопросы и комментарии к статье оставляйте в специальной форме ниже. Надеемся, что наши рекомендации помогут сделать собственную паяльную станцию, которая прослужив вам верой и правдой долгие годы.
Паяльная станция построена на картриджах Hakko T12. Имеет два паяльника по 70 Ватт, вытяжку дымоуловитель, блоки питания для внешних потребителей. Бюджет составил около 10-15$.
Начало эпопеи было несколько месяцев назад когда пришло купленное на пробу жало Hakko T12-KU. Собранный для пробы паяльник «паяльник на жале Т12» оказался вполне удобным, также сами картридж жала порадовали своей работой. Было заказано еще одно более массивное жало, и я решил сделать законченную паяльную станцию.
Функции паяльной станции:
Два паяльника по 70вт управляемых по отдельным каналам. При выпайке деталей, часто удобней пользоваться двумя паяльниками одновременно. Да и при монтаже не надо терять время на смену жала. Плюс в моей конструкции паяльника замена жал не предусмотрена, для тех кто хочет иметь сменные жала в качестве одного из паяльников нужно поставить покупную ручку.
Вытяжка с фильтром. Дышать флюсом и припоем особо не хочется и лишнего места на столе, как правило нет, а тут одним блоком заменил два.
Блок питания 24в с отдельным выключателем, можно подключить дрель или других потребителей. Дополнительно также экономится место, поскольку не надо держать блок питания для дрели или постоянно перенастраивать лабораторный блок питания.
Блок питания 5в, два разъема USB, для питания самих устройств. Я последнее время на все платы с питанием от 5в распаиваю в качестве питания мини USB разъемы или для совсем мелких плат кидаю шнурок с USB разъемом на конце.
Warning
Сначала несколько предупреждений.
Первое.
В случае отсутствия качественной земли крайне не рекомендую использовать для питания паяльников блок построенный на основе компьютерного блока питания. Т.е. не желательно их использовать в старых домах где не проведена централизованно шина заземления. Использовать в качестве заземления трубы центрального отопления также нельзя поскольку сейчас массово в квартирах заменяются трубы на пластиковые и нельзя быть уверенным в электрическом соединении батареи с землей.
Если вы предполагаете возможность использования паяльной станции при отсутствии качественного заземления, то следует блок питания строить на основе классического трансформатора. (Схемы регуляторов температуры не требуют стабилизированного источника питания, единственное желательно, что бы напряжение лежало в пределах от 19 до 24 в, иначе мощность паяльника значительно упадет. т.е. можно обойтись после трансформатора просто выпрямителем с конденсаторным фильтром)
Второе.
Я не заземлял жало. Предполагаю при пайке особо чувствительных элементов просто бросать провод с крокодилом на жало. Если вы часто паяете маломощные полевые транзисторы и другие элементы, особо чувствительные к пробою, то рекомендую заземление заложить сразу. Единственное по соображениям безопасности жало как и браслет следует заземлить через резистор более 100 кОм (рекомендуется через резистор 1МОм).
Третье.
Как говорится не все йогурты одинаково полезны.
Второе жало купленное за $2.76 имеет заметные недостатки.
Перечислю по возрастанию проблемы.
1. При работе регулятора от жала слышны звуки, щелчки при включении циклов нагрева. Скорее всего при заливке нагревателя остались пустоты, как это скажется на долговечности не понятно.
2. Термопара занижает показания. Если у вас такое жало будет использоваться вместе с нормальными придется проводить постоянно перекалибровку, смешение довольно большое около 100гр. А для аналоговой схемы регулировки перекалибровка представляет не тривиальную задачу.
3. Самый главный недостаток. При протекании тока похоже нагревается холодный спай термопары, что нарушает нормальную работу регулятора.
Привожу осциллограммы работы регулятора со старым жалом (стоило оно около 4$) и нового.
Со старым жалом регулятор нормально функционирует, цикл нагрева и длинная пауза пока набранная температура не упадет до пороговой.
Жало за 2.76$ кардинально отличается в поведении. Как я предполагаю происходит нагрев холодного спая током протекающим во время разогрева. И после цикла нагрева при измерении температуры происходит ошибка и схема снова уходит в нагрев, пока температура горячей части не превысит температуру на которую нагрелся холодный спай протекающим током. После пачки циклов нагрева порог все таки превышается и регулятор уходит в длинную паузу. Холодный спай быстро остывает (менее 100мс) и температура меряется близко к правильной. В итоге фактически удлиняется цикл нагрева и мы получаем колебания температуры жала, для относительно массивного жала на конце они оказались на уровне нескольких градусов, что не фатально влияет на работу. Как подобные жала будут работать с ПИД регуляторами затрудняюсь сказать, но думаю результаты будут более плачевные и добиться устойчивой работы регулятора не получится.
Основной блок
Паяльная станция построена на базе блока питания АТХ с 12см вентилятором. Взял для переделки вот такого махрового китайца. Заявленная мощность совершенно не соответствует начинке, реально блок ватт на 200. Но для наших целей вполне сойдет потребление в пике двух паяльников не превысит 140 Вт.
С верху разместил два регулятора температуры, отдельно для каждого паяльника. И три выключателя позволяющие раздельно включать каждый паяльник и внешнюю нагрузку 24в. Общее включение блока оставил на штатном выключателе блока АТХ. Кабель питания также подключается к штатному разъему. Дополнительно вывел разъемы питания 24в и колодку USB для подключения нагрузки 5в.
12см вентилятор помимо обдува блока, использую для вытяжки дыма. Для увеличения воздушного потока помимо вентилятора внутри корпуса установлен еще один вентилятор на наружной стороне. Желательно использовать вентиляторы мощностью более 4Вт. Мне попался вентилятор 12см 220В 8Вт который я использовал как внешний. Для питания вентилятора 12в используется линейный стабилизатор КРЕН8Б установленный через изолирующую прокладку на радиатор низковольтных диодов. Он понижает напряжение 24В до 12, одновременно он вместе с вентилятором служит нагрузкой блока питания на холостом ходу. При использовании 2 мощных вентиляторов 12В желательно использовать импульсный понижающий стабилизатор (стоимость готовой платы на ток около 2А на али около 1$). В крайнем случае, при использовании линейного стабилизатора установите его на отдельный радиатор. На внешний вентилятор спереди закреплена решетка от вентилятора блока питания, по верх которой размешен воздушный фильтр. Использовал кусок фильтра от кухонной вытяжки, он в составе волокна имеет отсорбент. Можно также поискать и чисто угольные фильтры, мне к сожалению пока не попался подходящих размеров.
Подробно останавливаться на переделке блока АТХ не буду поскольку доработка зависит от модели блока питания. Мой блок был построен на базе микросхемы 3845. Я убрал все все элементы не 12в каналов и все элементы штатных фильтров и конденсаторов вторичного питания. Распаял новый фильтр используя более высоковольтные конденсаторы. Мне повезло, что в максимуме блок выдавал 29в, и для получения 24в пришлось только подобрать сопротивление резисторов в цепи стабилизации, и заблокировать цепи защиты по напряжению.
На задней решётке видны клеммы 24 в и планка с USB взятая от старого корпуса. Отверстия проделывал просто выкусывая элементы решётки.
Конструкция паяльников
Конструкцию рассматривал и в предыдущей статье. Сейчас повторно и более подробно покажу этапы изготовления.
Подключения проводов на скрутке и термоусадках.
А также относительно прошлого раза несколько изменил склейку бумаги. Я в этот раз увеличение площади слоев сделал постепенной, что облегчило склейку.
Сверху обжал термоусадку.
Сзади для увеличения жесткости залил клеем.
Ручка паяльника получается легкая 26 гр. Расстояние от жала не большое всего 4.5 см.
Такую конструкцию можно использовать как минимум для второго паяльника, например сделав его на основе жала T12-K или T12-KF, которые удобны для выпаивания компонентов и микросхем.
Также в сети встречал такой вариант: человек припаивали провода к контактам, а ручку делал из дерева.
Схема регулятора температуры
В этот раз сделал схему на основе LM324. (схема на основе LM358 приведена в прошлый раз).
Китайский вариант схемы взятый за основу должен быть тоже работоспособным, единственное надо параллельно конденсатору С4 поставить защитный диод типа 1N4148, как в схеме на LM358, и полевой транзистор должен иметь разрешённое напряжение по затвору более 25 в.
Основное отличие этой схемы, от схемы на LM358, это то что напряжение с термопары сначала усиливается, а лишь затем подается на компаратор. Моя схема представляет компиляцию предыдущего устройства на LM358 и китайской схемы на LM324.
Плату рисовал в Sprint-Layout версии 5. Переменный резистор ВСП4-1 0.5вт, СМД резисторы и керамические конденсаторы типоразмера 0805, кроме R3 размера 2512 и R8 размера 1206, конденсатор С7 типо размера В. Разводка платы не идеально но мне нужно было что бы по размерам и посадке она совпадала с предыдущей платой. Диод D3 служит для зашиты от неправильного включения и в принципе он не нужен если плата не используется автономно, но я в процессе отладки умудрился включить плату неправильно по полярности в итоге через несколько секунд рванул конденсатор С5, а остальная плата осталась цела. Резистор R3 можно заменить просто перемычкой. Резисторы R1 и R2 вместе с подстроечным резистором определяют диапазон регулировки температуры, к сожалению разброс дрейфа нуля операционного усилителя не позволяет точно подобрать номиналы этих резисторов. У меня диапазон регулировки настроен от 200 до 400 градусов.
Плату делал на двух стороннем текстолите одна из сторон используется под землю. В контакты обозначенные на схеме как с металлизацией впаиваются перемычки остальные зенкуются. Но плату можно сделать и используя односторонний текстолит, тогда со всех точек обозначенных металлизацией бросаются перемычки проводами на точку расположенную рядом с отрицательным выводом электролита С5 (желательно внести изменения в плату добавив там дополнительных площадок). Я обрезаю плату до нужного размера после травления сверловки и лужения, поскольку на краях где резал ножницами фольга деформированна и плохо зачищается.
После распайки СМД деталей отмыл плату, а уже затем распаял переменный и подстроечный резистор, а также ДИП детали с проводами. Это позволяет при пайке СМД меньше ограничиваться в выборе флюсов.
Остальные детали и провода паяю используя спиртоканифоль или последнее время чаще безотмывочный флюс. (Из за проблем с жалом во время отладки и пока не понял причин немного замучил плату перепайками.)
В целом схема на LM324 немного лучше работает чем на LM358, хотя при пайке различия не особо заметны. Схема на LM358 при подходе к температуре стабилизации примерно на секунду частит светодиодом, т.е. подход происходит плавно с падением мощности отдаваемым в нагреватель вблизи температуры стабилизации. Схема на LM324 выходит на режим стабилизации более резко почти сразу переходя на медленное мигание светодиодом. Какую схему выбрать для реализации скорее должно определятся какие детали под рукой, как я говорил при пайке особой разницы я не заметил, хоть схема на LM324 и ведет себя лучше.
Или что хотел сделать и пока не реализовал, как говорится, в мире нет ничего более постоянного чем сделанное временно.
Подумываю поставить разъемы для паяльников. Чтобы можно было сделать еще паяльников под другие жала и в случае необходимости менять подключенные паяльники. Сейчас на корпусе есть два мини джека, но я опасаюсь их использовать для тока в три ампера.
Поставит предохранитель на внешние разъемы 24в и возможно также для USB выходов.
Ну и надо искать, чем заменить старый фильтр вытяжки, а то он уже грязный, и воздух проходит с трудом.
Также хорошо бы сделать какую то новую подставку под оба паяльника.
На вентилятор необходимо установить небольшой козырек, что бы направлять потоки воздуха и улучшить всасывание дыма.
Как продолжения идеи козырька подумываю туда же прикрепить увеличительное стекло с подсветкой, но это совсем из далеких планов.
Очередь просмотра
Очередь
- Удалить все
- Отключить
YouTube Premium
Хотите сохраните это видео?
Пожаловаться на видео?
Понравилось?
Не понравилось?
Текст видео
Вторая часть видео с доработкой паяльной станции – http://youtu.be/3VIInIuTW48
✔ Сайт со сравнением кэшбэк сервисов – http://coinmaps.ru
💰 Возвращайте до 15% с покупок – http://got.by/1qvh0v
**************************************************
Использованные компоненты:
Паяльник на жалах Hakko T12 – http://ali.pub/1q26jv или http://ali.pub/1r1nb1
Паяльный фен – http://ali.pub/1q28av или http://ali.pub/1r1n8w
Симисторный регулятор мощности (диммер) – http://ali.pub/1q26q3
Индикатор температуры (для термопары К типа) – http://ali.pub/1q2858
DC-DC преобразователь для вентилятора (вместо транзистора) – http://ali.pub/1q275u
Ручки для резисторов – http://ali.pub/1q26ax
Каптоновый скотч – http://ali.pub/1q27gq
Разъём для фена – http://ali.pub/1q27ll
Переменный резистор 10 кОм – http://ali.pub/1q28ui
Наборы резисторов – http://ali.pub/1q2a8o
Импульсные диоды FR302 и транзистор КТ816г дешевле будет купить в вашем местном оффлайн магазине.
**************************************************
Полезные инструменты и принадлежности:
Термоусадочная трубка – http://ali.pub/1q2elz
Качественные кусачки – http://ali.pub/1q2f0y
Припой KAINA с флюсом – http://ali.pub/1q2g8i
Флюс RMA-233 – http://ali.pub/1q2gan
Флюс активный NC-559 – http://ali.pub/218s6c
Шприц с иглами для удобного нанесения флюса – http://ali.pub/1q2gky
Термостойкие коврики – http://ali.pub/1q2ge5
Третья рука – http://ali.pub/1q2gsj
На канале вы найдёте:
– обзоры товаров
– сравнение товаров из Китая и Fix Price
– познавательные видео
ATmega SMD v2 — EasyEDA
Паяльная станция для быстрого нагреваT12 с
- Измерение температуры наконечника
- Контроль температуры с помощью энкодера
- Форсированный режим коротким нажатием переключателя поворотного энкодера
- Меню настройки долгим нажатием переключателя поворотного энкодера
- Обнаружение движения рукоятки (проверкой шарового переключателя)
- Обнаружение отсутствия соединения железа (путем определения неверных показаний температуры)
- Спящий режим / режим отключения питания по времени, если утюг не используется (обнаружение движения)
- Измерение входного напряжения, Vcc и внутренней температуры ATmega
- Информационный дисплей на OLED
- Зуммер
- Калибровка и управление различными жалами паяльника
- Сохранение пользовательских настроек в EEPROM
Ссылки:
Паяльная станцияv2.0:
Паяльная станцияv2.5:
Паяльная станцияv2.6:
Обновление пользовательского интерфейсаот LHW-createdkyblue
LHW-createdkyblue создал потрясающее обновление пользовательского интерфейса, которое можно установить по желанию. Особенности:
- Украсьте страницу с подробностями и увеличьте шкалу мощности
- В меню есть ЗНАЧКИ
- Улучшенная анимация прокрутки
- Избавьтесь от графической библиотеки U8g и используйте графическую библиотеку ArduBoy (Lite), чтобы улучшить частоту кадров и уменьшить использование памяти, чтобы сделать графику возможной
- Добавить флип-дисплей Настройки для адаптации к привычкам разных людей
- Меню настройки направления ручки
- Заставка
- Английский и китайский языковой пакет
- Системный пароль
- Улучшенный числовой ввод
- Сигнализация перегрева микросхемы и низкого напряжения
- Сторожевой таймер автоматического сброса MCU
Примечания и ошибки
- В версии платы 2.5 диод D1 может перегреться. На всякий случай следует снять стабилитрон D4 на 18 В и использовать паяльную станцию с максимальным напряжением 20 В. В качестве альтернативы диод D1 можно заменить диодом Шоттки SS54, а BJT Q1 — FMMT619.
Выберите источник питания с выходным напряжением от 12 В до 24 В, который может обеспечивать выходной ток в соответствии с таблицей ниже. Блок питания должен быть хорошо стабилизирован. Ток и мощность определяются сопротивлением (R = 8 Ом) нагревателя.
Напряжение (U) | Ток (I) = U / R | Мощность (P) = U² / R |
---|---|---|
12 В | 1,50 А | 18 Вт |
13 В | 1,63 А | 21 Вт |
14 В | 1,75 А | 25 Вт |
15 В | 1.88 А | 28 Вт |
16 В | 2,00 А | 32 Вт |
17 В | 2.13 А | 36 Вт |
18 В | 2,25 А | 41 Вт |
19 В | 2,38 А | 45 Вт |
20 В | 2,50 А | 50 Вт |
21 В | 2,63 А | 55 Вт |
22 В | 2,75 А | 61 Вт |
23 В | 2,88 А | 66 Вт |
24 В | 3.00 A | 72 Вт |
Термопара (датчик температуры) находится в паяльном жало Т12. Он создает очень небольшое напряжение в зависимости от разницы температур между горячим концом и холодным спаем (около 22 микровольт на градус Цельсия). Чтобы измерить это, обогреватель должен быть выключен, поскольку оба имеют одни и те же соединения. Низкое напряжение усиливается операционным усилителем и измеряется АЦП микроконтроллера. LMV358 — очень дешевый и универсальный операционный усилитель, но не идеальный выбор для этой задачи, поскольку он имеет довольно высокое входное напряжение смещения и довольно шумный.Хотя SolderingStation также работает с этим операционным усилителем благодаря программным алгоритмам сглаживания и калибровки, я настоятельно рекомендую потратить немного больше денег на лучший. OPA2330AIDR или OPA2333AIDR, например, имеют одинаковую распиновку и также могут использоваться с этой платой. Они обеспечивают значительно более точные и стабильные измерения температуры.
Микроконтроллер включает и выключает нагреватель через полевой МОП-транзистор. Поскольку измерение температуры должно производиться по той же линии и относительно заземления, полевой МОП-транзистор должен быть помещен между источником напряжения и нагревателем (переключатель высокого напряжения).MOSFET с P-каналом обычно используется для этой конфигурации. Однако N-канальные полевые МОП-транзисторы обычно имеют более низкое сопротивление (RDS (on)), в случае IRLR7843 всего 3 миллиом. Низкое сопротивление означает более высокий КПД и меньшее тепловыделение полевого МОП-транзистора. Чтобы N-канальный MOSFET работал в качестве переключателя на стороне высокого напряжения, требуется дополнительная схема для поддержания положительного напряжения GATE-TO-SOURCE после включения MOSFET. Это делается с помощью так называемой накачки заряда, состоящей из конденсатора и диода.Принцип действия проиллюстрирован на следующем рисунке Smallp Tsai:
Помимо компонентов для печатной платы вам понадобятся:
- Чехол для 3D-печати
- Штекер Aviator (4- или 5-контактный, в зависимости от ручки вашего утюга)
- Разъем питания постоянного тока (5,5 * 2,1 мм)
- Кулисный переключатель (KCD1 15 * 10 мм)
- Некоторые провода
- 4 Самореза (2,3 * 5 мм)
Убедитесь, что все детали хорошо помещаются в корпус.Припаяйте провода к разъемам и защитите их термоусадкой. Используйте толстые провода (AWG18) для силовых соединений. Выполняйте все подключения в соответствии со схемой ниже, но имейте в виду, что стандартной распиновки нет. Припаяйте провода непосредственно к соответствующим контактным площадкам на печатной плате. Чтобы сделать паяльную станцию устойчивой к электростатическому разряду, подключите клемму заземления (E) штекера Aviator к гнезду dupont и приклейте его к соответствующему отверстию на корпусе. Теперь вы можете подключить паяльную станцию через штекерный разъем Dupont к клемме заземления.Загрузите прошивку и прикрутите печатную плату к корпусу.
Показанная распиновка работает для ручек Quecoo с aliexpress. Разные ручки могут иметь разное расположение выводов. Если вы собираете ручку самостоятельно, следуйте схеме, представленной ниже. Видео Джона Главиноса (electronics4all) показывает, как это делается.
Эта работа находится под лицензией Creative Commons Attribution-ShareAlike 3.0 Unported License. (http://creativecommons.org/licenses/by-sa/3.0 /)
Самодельная паяльная станция 2 (АВР)
И снова здравствуйте, в этом разделе мы сделаем профессиональную паяльную станцию
Первоначальная идея была отсюда
схема на базе atmega8 от Atmel
Основная идея состоит в том, чтобы наблюдать за температурой паяльника через термопару типа k и пропорционально регулировать подачу на паяльник. Он основан на контроллере p.i.d для получения лучших и более точных результатов.Схема питается от 9-15 вольт. Термопара подключается к MAX 6675. Все компоненты очень легко найти.
В каждом цикле:
Ошибка = SetPoint — Наконечник
Total_Error = Total_Error + Ошибка
P = Kp * Ошибка или P = Kp * Ошибка * Наконечник
I = Ki * Total_Error
D = Kd * (ошибка — предыдущая_ошибка)
PID_out = P + I + D
PID_out ограничен диапазоном от -500 до +500
PID_out = PID_out + 500
А теперь запитываем паяльник на PID_out миллисекунды
Previous_Error = Ошибка
Список деталей
Резистор R1 470 Ом 1/4 Вт 5% углеродная пленка
R2 Резистор 470 Ом 1/4 Вт 5% углеродная пленка [
Резистор R3 1 кОм 1/4 Вт 5% углеродная пленка Резистор
R4 1 кОм 1/4 Вт 5 % Углеродная пленка
Потенциометр R5 1 кОм линейный поворотный 1/2 Вт
R6 потенциометр 1 кОм линейный поворотный 1/2 Вт
Потенциометр R7 1 кОм линейный поворотный 1/2 Вт
R8 потенциометр 1 кОм линейный поворотный 1/2 Вт потенциометр
R9 1 / 2W
R10 Потенциометр 1 кОм линейный поворотный 1 / 2W
C1 Электролитический конденсатор 470 мкФ 25 Вольт
Электролитический конденсатор C4 220 мкФ 25 Вольт
Керамический конденсатор C3 0.1 мкФ 50 В
Керамический конденсатор C5 0,1 мкФ 50 В
Керамический конденсатор C2 0,1 мкФ 50 В
Керамический конденсатор C6 0,1 мкФ 50 В
D1 1N4004
Т1 2N3904 НПН
IC1 7805
IC2 Микроконтроллер ATmega8
IC3 MAX 6675 K-термопара с компенсацией холодного спая в цифровой преобразователь (от 0 ° C до + 1024 ° C) [K-термопара с компенсацией холодного спая в цифровой преобразователь (от 0 ° C до + 1024 ° C)]
ЖК-дисплей 16 × 2 символьный ЖК-дисплей с контроллером HD44780U1
Резистор R1 470 Ом 1/4 Вт 5% углеродная пленка
Резистор R2 470 Ом 1/4 Вт 5% углеродная пленка
горшок.4,7 тыс.
Т1 2N3904 НПН
IC1 MOC3021 Выход драйвера TRIAC оптоизолятора случайной фазы [Выход драйвера TRIAC оптоизолятора случайной фазы]
Lfuse = E4h
Hfuse = D9h
Понтезиометр R5 изменяет коэффициент Kd от 0,00 до 100,00
Понтезиометр R6 изменяет коэффициент Ki от 0,00 до 100,00
Понтезиометр R7 изменяет коэффициент Kp от 0,00 до 100,00
Понтезиометр R8 изменяет максимальную температуру от 0 градусов C до 512 градусов C
Понтезиометр R9 изменяет безопасное время от 0 до 900 секунд
Hex файл здесь:
Самодельная паяльная станция_2_AVR_4
печатная плата
печатная плата симистора
Файлы Eagle
вот pcd
начать пайку smd микросхемы на нижнюю сторону
, а затем все остальные компоненты
вот небольшая печатная плата с оптопарой и симистором
Перейдем к паяльнику.Это дешевая пайка от ebay примерно за 5 баксов. Я попытался разместить термопару как можно ближе к наконечнику, чтобы измеренная температура была максимально точной.
Далее стоит деревянный ящик
Нравится:
Нравится Загрузка…
СвязанныеПаяльная станция | Hackaday.io
Выберите источник питания с выходным напряжением от 16 В до 24 В, который может обеспечивать выходной ток в соответствии с таблицей ниже. Блок питания должен быть хорошо стабилизирован. Ток и мощность определяются сопротивлением (R = 8 Ом) нагревателя.
Напряжение (U) | Ток (I) = U / R | Мощность (P) = U² / R |
---|---|---|
16 В | 2.00 A | 32 Вт |
17 В | 2,13 A | 36 Вт |
18 В | 2,25 A | 41 Вт |
19 В | 2,38 A | 45 Вт |
20 В | 2,50 A | 50 Вт |
21 В | 2,63 A | 55 Вт |
22 В | 2,75 A | 61 W |
23 В | 2,88 A | 66 Вт |
24 В | 3.00 A | 72 W |
Измерение температуры и рекомендации по операционному усилителю
Термопара (датчик температуры) находится в паяльном жало Т12. Он создает очень небольшое напряжение в зависимости от разницы температур между горячим концом и холодным спаем (около 22 микровольт на градус Цельсия). Чтобы измерить это, обогреватель должен быть выключен, поскольку оба имеют одни и те же соединения. Низкое напряжение усиливается операционным усилителем и измеряется АЦП микроконтроллера.LMV358 — очень дешевый и универсальный операционный усилитель, но не идеальный выбор для этой задачи, поскольку он имеет довольно высокое входное напряжение смещения и довольно шумный. Хотя SolderingStation также работает с этим операционным усилителем благодаря программным алгоритмам сглаживания и калибровки, я настоятельно рекомендую потратить немного больше денег на лучший. OPA2330AIDR, например, имеет такую же распиновку и может также использоваться с этой платой. Он обеспечивает значительно более точные и стабильные измерения температуры.
Переключатель высокого давления нагревателя с N-канальным полевым МОП-транзистором и нагнетательным насосом
Микроконтроллер включает и выключает нагреватель через полевой МОП-транзистор. Поскольку измерение температуры должно производиться по той же линии и относительно земли, полевой МОП-транзистор должен быть размещен между источником напряжения и нагревателем (переключатель на стороне высокого напряжения). MOSFET с P-каналом обычно используется для этой конфигурации. Однако N-канальные полевые МОП-транзисторы обычно имеют более низкое сопротивление (RDS (on)), в случае IRLR7843 всего 3 миллиом.Низкое сопротивление означает более высокий КПД и меньшее тепловыделение полевого МОП-транзистора. Чтобы N-канальный MOSFET работал в качестве переключателя на стороне высокого напряжения, требуется дополнительная схема для поддержания положительного напряжения GATE-TO-SOURCE после включения MOSFET. Это делается с помощью так называемой накачки заряда, состоящей из конденсатора и диода.
Инструкции по сборке
Помимо компонентов для печатной платы вам понадобятся:
- Корпус, напечатанный на 3D-принтере
- Штекер Aviator (4- или 5-контактный в зависимости от ручки утюга)
- Разъем питания постоянного тока (5.5 * 2,1 мм)
- Кулисный переключатель (KCD1 15 * 10 мм)
- Некоторые провода
- 4 Самореза (2,3 * 5 мм)
Убедитесь, что все детали хорошо помещаются в корпус. Припаяйте провода к разъемам и защитите их термоусадкой. Используйте толстые провода (AWG18) для силовых соединений. Выполните все подключения в соответствии со схемой внизу. Припаяйте провода непосредственно к соответствующим контактным площадкам на печатной плате. Загрузите прошивку и прикрутите печатную плату к корпусу.
Как сделать беспроводной паяльник
Сообщение ardutronic. Иногда хочется паять на улице, но я не могу выносить паяльную станцию на улицу, поэтому решил сделать беспроводной паяльник.Вещи, использованные в этом проекте ×
Беспроводной паяльник — странно звучит.Иногда хочется паять на улице, но я не могу вынести паяльную станцию на улицу. Я купил USB-паяльник, который работал неплохо, но нуждался в небольшой модификации, потому что что, если я захочу паять на открытом воздухе? Посреди озера? Вот и решил сделать беспроводной паяльник. Это будет работать? Так и будет!
Первым шагом было проектирование схемы и печатной платы, которые я, конечно же, заказал у PCBWay — проверьте Шаг 2.Вам, наверное, интересно, сколько времени у меня ушло на размышления обо всем проекте, на проектирование, пайку — эээ, на самом деле одну минуту — посмотрите видео. Все прошло гладко. К сожалению, паять что-то в этом роде будет сложно, поэтому мне еще предстоит спроектировать корпус, и, по сути, я его уже спроектировал. Я буду использовать PLA-нить от 3DJake для печати корпуса, который идеально подходит для этого типа проекта. Осталось только собрать все это целиком. Должен признаться, это выглядит лучше, чем я ожидал, но сработает ли? Я его включу!
×Я зашел на PCBWay и нажал «Quote Now», а затем «Quick Order PCB» и «Online Gerber Viewer», куда я загрузил файлы для своей платы, чтобы увидеть, как это будет выглядеть.Я вернулся на предыдущую вкладку и щелкнул «Загрузить файл Gerber», я выбрал свой файл, и все параметры загрузились сами по себе, я изменил только цвет паяльной маски на синий и черный. Затем я нажал кнопку «Сохранить на карту», предоставил информацию о доставке и оплатил заказ. Через два дня плитку отправили, а еще через два дня она уже была у меня на столе.
× Ух ты, жало паяльника очень быстро нагревается, сразу очень сильно нагрелось, но может ли оно расплавить олово? Да тает жесть! Попробуем что-нибудь припаять.Как вы могли видеть, мой беспроводной паяльник работает очень хорошо, чему я очень доволен, и теперь позвольте мне рассказать вам еще несколько деталей. На плату я поместил микросхему, измеряющую температуру наконечника, и три светодиода на плате, которые должны были указывать температуру, которую можно было установить на один из трех уровней, но во время программирования я обнаружил, что это бессмысленно в 5В. паяльник. Обязательно будет создан второй вариант этого паяльника, с меньшими габаритами. В настоящее время он работает таким образом, что для его включения необходимо нажать кнопку, которая активирует счетчик, который отключит нагрев наконечника через одну минуту.Один светодиод гаснет каждые двадцать секунд, поэтому я знаю, как долго он будет гореть. Батареи хватит примерно на час пайки, поэтому рекомендую приобрести павербанк, если вы хотите паять снаружи подольше.
Хорошо, на сегодня все, расскажите в комментариях, что вы думаете об этом устройстве, и посмотрите мой предыдущий пост!
Мой Youtube: YouTube
Мой Facebook: Facebook
Мой Instagram: Instagram
Получите 10 печатных плат всего за 5 долларов: PCBWay
Магазин аксессуаров для 3d печати: 3DJAKE
×180348 Паяльная станция своими руками | Elektor Magazine
Маленькая паяльная станция для жала Weller RT.Совместимость с Arduino Leonardo для простого обновления прошивки и расширения через USB. Пользовательский интерфейс состоит из небольшого OLED-дисплея и поворотного энкодера.
Это компактная паяльная станция для жала Weller RT. Основываясь на идее паяльной станции Platinostyle = «font-size: 1em;»>, здесь используется ATmega32u4, также имеющийся в Arduino Leonardo. Это означает, что мы можем использовать Arduino IDE напрямую для программирования MCU, а также выполнять загрузку прошивки благодаря включенному загрузчику.Станция также имеет OLED-дисплей и может управляться только одной ручкой.Но что изменилось и что нового?
Начиная с версии прошивки 1.2, включена последовательная консоль, которая позволяет вам устанавливать и считывать уставки станции, а также вы можете считывать текущую температуру и, если есть, ошибки станции. Вы просто можете подключить станцию с помощью кабеля USB к ПК и использовать интегрированный терминал arduino ide для команд. Убедитесь, что вы используете Newline или Carrigereturn как автоматическое окончание строки. Поддерживаемые команды можно получить из файла readme или набрав «help» в терминале.
Помимо того, что он основан на версии Platino, были внесены некоторые изменения. Самым важным шагом было добавление детектора сломанной термопары к входному каскаду. Если наконечник имеет плохой контакт, станция больше не будет включать нагреватель, чтобы предотвратить повреждение наконечника. Также было улучшено усиление вмененного напряжения, чтобы получить лучший диапазон, что означает, что мы можем лучше определить, есть ли у нас наконечник с перегревом. Также теперь вы можете изменять ток, протекающий через наконечник.
Для пользовательского ввода требуется только один поворотный энкодер (со встроенной кнопкой) для управления утюгом, и теперь станция имеет 0,96-дюймовый OLED-дисплей вместо буквенно-цифрового ЖК-дисплея 2×16, который использовался в версии Platino. Все эти небольшие модификации также означает, что у нас есть новое программное обеспечение для станции, но давайте посмотрим, что изменилось в круге.
style = «font-size: 1em;»> Аппаратное обеспечение
style = «font-size: 1em;»> Как видно из изображения, силовой каскад прост.У нас есть полевой транзистор T1, IRF9540 и драйвер перед ним. Драйвер для полевого транзистора состоит из T3, T2 и T4. T2 и T4 от двухтактного драйвера, а T3 — это переключатель уровня для сдвига сигнала AVR PWM с 5 В на V IN . Резистор R18 на 20 мОм и операционный усилитель INA138 используются для измерения тока, подаваемого на наконечник. Но нам также нужен MCP6002 в качестве буфера, чтобы вход АЦП не мешал выходу с высоким сопротивлением INA138. Фильтр нижних частот на выходе буфера усреднит измеренное значение тока.
Вход для измерения температуры имеет подтягивающий резистор 1 МОм до 5 В и понижающий резистор 10 МОм до 0 В на входе. Если по какой-либо причине наконечник не подключен, мы получим показание температуры выше 600 ° C и можем с уверенностью предположить, что это связано с неисправностью.
Наконечник Weller RT имеет внутри термоэлемент. Поскольку он производит лишь небольшое усиление напряжения, зависящее от температуры, требуется для использования полной мощности АЦП микроконтроллера.
Для входа питания (24 В макс.) Style = «font-size: 1em;»> для MCU и OLED используется небольшой LDO.Присутствует диод для защиты платы от обратной полярности.
Делитель напряжения R7-R9 позволяет MCU считывать фактическое входное напряжение. Текущая прошивка имеет функцию обнаружения пониженного напряжения или низкого заряда батареи. Если напряжение на входе опускается ниже 10,8 Vstyle = «font-size: 1em;»> наконечник больше не запитан. Поскольку это довольно компактная паяльная станция, ее можно использовать в полевых условиях с одним из дешевых стартовых комплектов для автомобилей Lipo.
Также может быть интересен датчик угла поворота.100 style = «font-size: 1em;»> были добавлены конденсаторы нФ для подавления сигналов. Это может пригодиться, когда сигналы кодировщика обрабатываются полностью по прерываниям. Также обратите внимание на внешние подтягивающие резисторы, которые обеспечивают четко определенное значение. MCU имеет собственное внутреннее устройство, но их значения указаны в диапазоне от 20 style = «font-size: 1em;»> kΩ до 60 style = «font-size: 1em;»> kΩ, в нашей схеме они имеют стабильный стиль 10 = «font-size: 1em;»> значение кОм.
OLED подключен к SPI MCU, так что здесь ничего особенного.Также USB-соединение осуществляется согласно даташиту и не содержит каких-либо особых ухищрений.
style = «font-size: 1em;»> Программное обеспечение
style = «font-size: 1em;»> Программное обеспечение часто является одной из тех вещей, которые волшебным образом появляются из ниоткуда и должны работать. Программное обеспечение для предыдущей паяльной станции Platino было написано без фреймворка Arduino, хотя в качестве микроконтроллера используется ATmega328P. Это потребовало некоторой доработки, в данном случае нового ядра для программного обеспечения.Поскольку новая паяльная станция и паяльная станция Platino имеют много общего, новое программное обеспечение было построено по модульному принципу. Это означает, что теперь нам нужно поддерживать только одну прошивку для обеих станций. Прошивка доступна на GitHub.После включения станции вас приветствует загрузочный логотип, затем появляется главный экран. Вы можете увидеть текущую температуру, мощность, подаваемую на наконечник, в виде гистограммы и целевую температуру, установленную пользователем. Станция нагреет наконечник, как только появится главный экран.Целевая температура сохраняется в EEPROM микроконтроллера.
Если станция бездействует в течение десяти минут, она переходит в режим отключения питания и снижает температуру до 100 ° C. Если затем он будет бездействовать еще в течение 10 минут, станция перейдет в спящий режим и отобразит подсказку для откладывания, перемещающуюся по экрану. Нажмите кнопку поворотного энкодера, чтобы снова разбудить станцию.
style = «font-size: 1em;»> Ошибки
style = «font-size: 1em;»> Если что-то пойдет не так, появится экран ошибки с указанием причины проблемы.Если, например, обнаружено пониженное напряжение, будет показано текущее входное напряжение. Также есть коды ошибок:1: наконечник не нагревается;
3: соединение датчика температуры плохое.
Если эти ошибки появляются, вы можете подтвердить их, нажав кнопку поворотного энкодера. Затем, если все снова в порядке, станция возобновляет работу через десять секунд.
Последнее, о чем следует упомянуть, — это ограничитель тока. Плата отобразит в среднем 1,5 style = «font-size: 1em;»> A, используя максимальный рабочий цикл 50% для сигнала управления ШИМ.Если у вас есть источник, который может обрабатывать более 1,5 style = «font-size: 1em;»> нагрузку, вы можете изменить значение в коде. Параметр можно найти на HW_150500.h для станции.
Сделай сам: как создать свой собственный ПИД-регулятор температуры
Время сборки: 2-3 часаСложность: Продвинутый
Дизайнер: RossS
Этот ПИД-регулятор температуры был разработан на базе микроконтроллера ATmega328P и использует загрузчик Duemilanove.Этот комплект включает в себя базовый клон Arduino (плата Arduino не требуется).
Необходимые инструменты и компоненты:
Паяльник
Припой
Флюсовое перо
Припой мелкого калибра (23 калибра или мельче)
Кусачки для проволоки
Микросхема интерфейса термопары MAX31855 (приобретается непосредственно у Maxim Integrated)
Термопара с переходом, подходящим для вашего применения (например, зонд, шайба и т. д.)
Тип J (от -40 ° C до + 750 ° C)
Тип K (от -200 ° C до + 1350 ° C)
Тип T (от -200 ° C до + 350 ° С)
Твердотельное реле (зависит от вашего приложения)
USB-кабель FTDI 5V (Примечание: один кабель можно использовать для множества различных проектов микроконтроллеров)
Компьютер с Arduino IDE v1.0
Бородавка 9 В / 1,5 А, 2,1 мм центральный положительный
Кол. | Описание детали | Номер детали производителя |
10 | Конденсатор, радиальный, 47 мкФ, 50 В | R47 / 50 |
1 | IC, 7805T, К-220 | 7805T |
10 | Конденсатор, 0,1 мкФ, 50 В | MD.1 |
10 | Резистор, 1/4 Вт, 1 кОм | CF1 / 4W102JRC |
10 | Светодиод, Т1, зеленый, рассеянный | LTL-4231 |
10 | Диод, 1N4007, 1A | 1N4007 |
1 | Гнездо, питание постоянного тока, вилка, 2.1 мм | GCD014-R |
10 | Конденсатор, керамический диск, 0,01 мкФ, 50 В | DC.01 |
10 | Резистор, 1/4 Вт, 10 кОм | CF1 / 4W103JRC |
10 | Конденсатор, радиальный, 10 мкФ, 25 В | R10 / 25A |
1 | Заголовок, вертикальный, вилка, 0,1 «, 1 ряд, 6-контактный | JS1109-6-R |
5 | Переключатель, кнопочный, тактильный, SPST, ВЫКЛ- (ВКЛ) | БТС-1102Б-2 |
1 | IC, MCU, ATmega328P, с загрузчиком Arduino Uno | A000048 |
10 | Гнездо для микросхем, 28 контактов | 6000-28NDW |
10 | Транзистор, 2N4401TA, NPN | 2N4401TA |
10 | Светодиод, оранжево-красный, рассеянный красный, T1, 635 нм | MCDL-314ED |
10 | Резистор, 1/4 Вт, 2.7кОм | CF1 / 4W272JRC |
1 | ЖК-дисплей, 16×2, параллельный интерфейс | NHD-0216BZ-FL-YBW |
1 | Потенциометр, квадратный кермет 3/8 дюйма, 1/2 Вт, 10 кОм | 3386П-1-103 / 63П / 72ПР |
10 | Резистор, 1/4 Вт, 330 Ом | CF1 / 4W331JRC |
10 | Диод, 1N4148 | 1Н4148-ВИШАЙ |
1 | Заголовок, вертикальный, папа, 0.1 дюйм, 1 ряд, 10 контактов | 7000-1X10SG-R |
1 | Печатная плата | – |
1 | Инструкции | – |
Предупреждение. Этот комплект может управлять устройствами питания от сети. Электричество в сети опасно. Неисправная проводка из-за незнания может убить. Вы обязаны правильно подключить управляемые устройства или найти того, кто сможет.
Этот контроллер работает, измеряя разницу между заданной и измеренной температурами.Он выполнит три отдельных вычисления и вычислит сумму из трех, а затем применит сумму в виде процента от заданного временного окна в форме импульса к твердотельному реле (SSR).
- Пропорционально размеру ошибки
- Время интегрирования ошибки
- Производная скорость изменения значения процесса
- Считывание температуры с помощью микросхемы MAX31855
- Код алгоритма ПИД-регулирования
- Система меню для изменения желаемой температуры и других параметров
Шаг 1. Проверьте компоненты вашего комплекта
Перед началом сборки проверьте все компоненты по списку комплектов.Обязательно проверьте необходимые компоненты. Некоторые компоненты будут зависеть от вашего приложения, и их нужно будет приобретать отдельно. SSR выпускаются как с выходом переменного, так и с постоянным током, поэтому убедитесь, что вы выбрали правильный тип для приложения.- Входное напряжение должно принимать 5 В
- Для приложений с обогревом требуется переход через ноль SSR
- Номинальные значения тока и напряжения SSR должны соответствовать или превышать номинальные значения устройства, которым вы управляете
- Некоторым SSR требуется радиатор (работает близко к их максимальному току)
- Если SSR монтируется в теплой / горячей зоне, вы должны использовать SSR, который значительно превышает текущий номинальный ток контролируемого устройства
Шаг 2: Пайка микросхемы SMD
Сначала припаяйте микросхему для поверхностного монтажа, чтобы упростить пайку остальных компонентов.Микросхема монтируется контактом 1 в правом нижнем углу печатной платы. При пайке пригодятся дополнительный флюс, лупа и пинцет. Мне легче припаять небольшое пятно на контактной площадке, где будет выходить контакт 1 микросхемы, прежде чем вставлять микросхему. Когда припой остынет, добавьте немного флюса и аккуратно поместите чип пинцетом.Дважды проверьте ориентацию микросхемы, припаяйте контакт 1 и место, к которому вы добавили припой ранее. Дополнительный флюс будет способствовать растеканию припоя без добавления дополнительного припоя.Проверьте совмещение других контактов с соответствующими площадками, нанесите флюс на каждый контакт и контактную площадку, затем аккуратно припаяйте каждый.
Пайка микросхем для поверхностного монтажаШаг 3. Построение и тестирование
Разместите компоненты для источника питания + 5V на печатной плате. Эти компоненты будут установлены на левой стороне печатной платы. Компоненты включают разъем постоянного тока, диод 1N4007, два электролитических конденсатора 47 мкФ, конденсатор 0,1 мкФ, резистор 2,7 кОм и регулятор напряжения LM7805.Все они будут сгруппированы на печатной плате.Убедитесь, что электролитические конденсаторы расположены с символом «-» на конденсаторе на стороне, противоположной отметке «+» на печатной плате.
Диоды LM7805 и 1N4007 расположены полосой, как показано на печатной плате. Припаяйте вышеуказанные детали и закрепите лишние провода. Когда вы закончите пайку, переверните печатную плату и установите зеленый светодиод на другую сторону платы, приподняв его примерно на 3 мм (1/8 дюйма) над платой. Плоская сторона светодиода — это вывод «-», более длинный вывод — это «+».После пайки обрежьте лишнюю длину вывода на другой стороне платы.
Построить и протестироватьПодключите блок питания от бородавок (центральный плюс 2,1 мм) с напряжением от 9 В до 12 В постоянного тока. Светодиод должен загореться. Если это не сработает, вернитесь и проверьте все свои паяльные соединения и расположение компонентов.
Шаг 4. Компоненты блока питания 3,3 В
Компоненты блока питания 3,3 В находятся в нижней правой части печатной платы рядом с микросхемой MAX31855 .Эти компоненты представляют собой три сигнальных диода 1N4148, два электролитических конденсатора 10 мкФ и один резистор 10 кОм.Расположите и припаяйте три сигнальных диода 1N4148, как показано, в правом нижнем углу печатной платы. Полосы на диодах (отрицательная сторона) должны совпадать с полосками на печатной плате. Диоды , а не , смотрят одинаково. Перед пайкой дважды проверьте полярность!
Установите и припаяйте два электролитических конденсатора 10 мкФ, а затем установите резистор 10 кОм и припаяйте на место.Включите его с помощью мультиметра и убедитесь, что у вас есть примерно 3,3 В (3,1–3,3 В) на левой стороне резистора 10 кОм.
Также можно прижать выводы красного светодиода к контактам 1 (GND, отрицательная сторона светодиода) и 4 (3,3 В постоянного тока, положительная сторона светодиода) микросхемы MAX31855. Если нет напряжения или светодиод не горит, возможно, диоды расположены неправильно.
Шаг 5: Пайка последних компонентов
Пайка компонентов с самым низким профилем и переход к более крупным компонентам упростят вашу работу.Припаиваем остальные компоненты.Расположите LCD большей частью компонентов (кроме переключателей и светодиодов) вниз. Перед пайкой убедитесь, что метки контакта 1 и 16 на ЖК-дисплее совпадают с метками контактов 1 и 16 на печатной плате соответственно.
Если вы хотите изменить форм-фактор ПИД-регулятора Arduino , вы можете использовать прямой контактный разъем. В этом форм-факторе монтажные отверстия на печатной плате совпадают с монтажными отверстиями на ЖК-дисплее.
Окончательная сборка компонентов / ЖК-дисплейШаг 6: ATmega328 и финальное тестирование
Проверьте выемку, отмеченную на микросхеме ATmega328, и совместите ее с выемкой на сокете. Осторожно вставьте микросхему в гнездо.Загрузите и установите программное обеспечение Arduino IDE V1.0.
Сначала подключите кабель USB к компьютеру, затем подключите другой конец к печатной плате, убедившись, что черный провод кабеля совпадает с контактом, обозначенным «GND». Если вы подключите его неправильно, вы повредите микросхему ATmega328 .Откройте программное обеспечение Arduino, нажмите Инструменты> Плата и выберите Arduino Uno. Щелкните Инструменты> Последовательный порт и выберите COM-порт, к которому подключена плата.
ATmega328Чтобы проверить микросхему ATmega, щелкните Файл> Примеры> Основы> Blink. Это откроет новое окно IDE с некоторым кодом в нем. Перейдите к строке 13 (номер строки находится в нижнем левом углу окна Arduino IDE), где читается: «pinMode (13, OUTPUT)». Теперь измените 13 на 7. Также перейдите к строкам 15 и 17 и измените 13 на 7.
Нажмите кнопку «Подтвердить» после компиляции, затем нажмите кнопку «Загрузить». Если он не компилируется, вы допустили синтаксическую ошибку. Немедленно нажмите и удерживайте кнопку сброса на ПИД-контроллере Arduino, когда вы увидите текст «Размер двоичного эскиза: хххх байтов (максимум 30720 байт)» появится в нижней части окна Arduino IDE, и выпустит сброс кнопка.
Если вы получили сообщение об ошибке avrdude, это означает, что вы не отпустили кнопку достаточно быстро или в меню «Инструменты» выбрана неправильная плата Arduino.Убедитесь, что в разделе «Инструменты» выбрана правильная плата, и попробуйте выполнить загрузку еще раз и в нужное время отпустите кнопку «Сброс».
При правильной загрузке вы увидите, что красный светодиод начнет мигать. Это указывает на то, что Arduino работает правильно, и теперь вы готовы загрузить PID-код.
Шаг 7: Программирование ПИД-регулятора
Загрузите этот файл для контроллера с именем Espresso с наивысшим номером версии 2.0 или выше. Скопируйте содержимое извлеченной папки библиотек (, а не саму папку библиотек) в папку библиотек Arduino.Скопируйте эскиз Arduino_PID_Controller в папку Arduino Sketchbook. Закройте все окна Arduino IDE и перезапустите IDE.
Щелкните File> Sketchbook> Arduino_PID_for_Espresso_v2.0. Нажмите кнопку «Подтвердить», и когда компиляция будет завершена, загрузите код в ПИД-контроллер Arduino — не забудьте кнопку «Сброс»! После успешной загрузки отсоедините кабель программирования и питание от ПИД-регулятора. ЖК-экран должен выключиться. Подключите выходные контакты ПИД-регулятора («-» находится на нижней стороне, а «+» — на верхней стороне) к входным контактам приобретенного вами SSR.Убедитесь, что вывод «+» выхода идет к контакту «+» SSR, а выходной контакт «-» идет к «-» входу SSR.
Предупреждение. Прежде чем переходить к следующему шагу, убедитесь, что устройство, которым вы собираетесь управлять, отключено от розетки.
Подключите выходную сторону SSR к устройству, которым вы управляете. Подключите заземление (вход «-») стороны входа SSR к земле управляемого устройства. Это поможет предотвратить образование емкостных контуров заземления, которые могут привести к ошибочным показаниям температуры.
Подключите термопару к входному клеммному разъему термопары. Если вы использовали K-тип, желтый провод — «+», а красный провод — «-». Если вы использовали термопару Т-типа, синий провод — «+», а красный провод — «-». Сторона «+» клеммной колодки термопары находится на верхней стороне, а «-» — на нижней стороне.
Подключите настенную розетку к разъему постоянного тока на печатной плате. Контроллер Arduino PID загрузится, и на ЖК-дисплее появится сообщение «Arduino PID for Espresso».Через три секунды он начнет отображать температуру. Поскольку код содержит массив для сглаживания показаний температуры, отображаемая температура будет быстро увеличиваться в течение первых нескольких секунд перед стабилизацией.
Возьмитесь за конец руки, который определяет температуру, и вы увидите, как температура на ЖК-дисплее увеличивается из-за тепла вашего тела. Если оно уменьшается, значит, вы подключили термопару в обратном направлении.
Подсоедините термопару к измеряемому устройству. Если вы используете термопару с шайбой и место, где вы устанавливаете термопару, заземлено, вы можете обнаружить, что показания температуры немного колеблются.Если это произойдет, вам нужно будет Изолируйте термопару от измеряемого устройства с помощью слюдяных шайб и немного тефлоновой ленты вокруг винта / болта. Используйте термопасту, чтобы сохранить хорошую теплопроводность.
Шаг 8: Настройка контроллера
Функция Autotune регулирует выходной сигнал и наблюдает за изменениями на входе для расчета параметров для диапазонов пропорциональности, интеграла и производной.Загрузите и установите этот файл, а также загрузите и установите библиотеку ControlIP5.
Там, где вы извлекли архив Arduino PID ZIP, найдите папку «Autotune Front and Backend». Скопируйте папку в папку Arduino и откройте IDE Arduino. Откройте папку Autotune Front and Backend> AutotuneMAX31855Backend> AutotuneMAX31855. Дважды щелкните AutotuneMAX31855, чтобы открыть бэкэнд кода автонастройки в Arduino IDE. Удерживая клавиши CTRL и F, введите «// EDIT» (без кавычек) и нажмите Enter, чтобы найти параметры, которые может изменить пользователь.Если вы меняете параметры, сохраните код под другим именем.
Загрузите код в ПИД-контроллер Arduino (убедитесь, что кабель для программирования ориентирован правильно и время нажатия кнопки сброса правильное). По окончании программирования оставьте кабель подключенным (он будет использоваться обработчиком FrontEnd) и закройте Arduino IDE.
Откройте среду Processing IDE и нажмите «Файл»> «Открыть». Найдите Autotune Front и Backend, ОбработкаFrontend, PID_FrontEnd_v0_3. Выберите файл с именем PID_FrontEnd_v0_3.Это откроет код в новом окне обработки.
Удерживая клавиши CTRL и F, введите «// EDIT» (без кавычек) и нажмите Enter. Это займет ваши параметры, которые могут быть изменены конечным пользователем перед запуском интерфейса настройки.
Нажмите «Выполнить» (выглядит как кнопка «Воспроизвести»). Это откроет окно, в котором вы можете вручную или автоматически настроить контроллер. Новичкам гораздо проще использовать автонастройку.
Убедитесь, что кабель для программирования все еще подключен.Значения справа от кнопок в окне обработки — это текущие используемые значения. Значения слева или ниже кнопок можно изменить на то, что вам нужно.
Эти значения будут сдвинуты при нажатии кнопки SEND_TO_ARDUINO. Установите кнопку TOGGLE_AM в ручной режим, установите кнопку Setpoint на требуемое заданное значение, проверьте, что TOGGLE_DR установлен в положение direct, проверьте, что TOGGLE_TUNING выключено.
Теперь нажмите кнопку SEND_TO_ARDUINO.Это переводит контроллер в ручной режим. Начните с малого и медленно увеличивайте кнопку вывода (0–1000) каждый раз, когда вы ее меняете, нажмите кнопку SEND_TO_ARDUINO (переключите кнопку TOGGLE_AM в автоматический режим, затем вернитесь в ручной режим, прежде чем нажимать SEND_TO_ARDUINO). Продолжайте медленно увеличивать мощность, пока ваша система не придет в равновесие с желаемой температурой. Это может занять некоторое время, особенно для медленных температурных петель, так что наберитесь терпения!
Когда ваша система находится в равновесии с желаемой уставкой, включите переключатель «Toggle Tuning» и нажмите «Отправить в Arduino».Значение справа от кнопки Toggle Tuning должно измениться на on. Это означает, что теперь выполняется автонастройка контура.
Если вы посмотрите выходной график, вы увидите функцию автонастройки «Шаг выходного сигнала» несколько раз. Когда значение рядом с Toggle Tuning изменится с «on» на «off», это значит, что процесс завершен. Значения, которые вы теперь видите рядом с P, I и D, являются значениями автонастройки. Запишите эти значения.
Значения автонастройки — хорошее место для начала ручной точной настройки, чтобы получить лучшие параметры настройки.Существует множество руководств по ручной настройке контуров ПИД. Я обнаружил, что сначала запуск Autotune, а затем постепенная настройка значений дает вполне приличные результаты.
Теперь вы можете потратить больше времени на точную настройку цикла вручную или загрузить эскиз Arduino_PID_for_Espresso в ПИД-регулятор (вставив отмеченные вами параметры в строки со 120 по 122 эскиза ПИД-контроллера Arduino).
Структура системы меню:
МЕНЮ
|
ПОДАЧА ЭСПРЕССО — Это изменит заданное значение на заданное значение приготовления
|
ПАРОВОЕ МОЛОКО — Это изменит уставку на уставку пара
|
ТЕМП. ПРИГОТОВЛЕНИЯ — УСТАНОВКА ТОЧКИ ПРИГОТОВЛЕНИЯ — Нажмите клавиши L и R, чтобы изменить заданное значение заваривания
|
ТЕМП. ПАРА — УСТАНОВКА ТОЧКИ ПАРА — Нажмите клавиши L и R, чтобы изменить заданное значение пара
|
СМЕЩЕНИЕ — УСТАНОВКА СМЕЩЕНИЯ — Нажмите клавиши L и R, чтобы изменить смещение (используется для отображения темпа «в группе» для кофемашин эспрессо)
|
МАСШТАБ — в настоящее время не используется, будет реализован в обновлении программного обеспечения, доступном через GitHub.
Простой припой MK936 SMD.Паяльная станция на SMD-компонентах своими руками / Sudo Null IT News
В этой статье мы хотим познакомить вас с проектом паяльной станции, которую каждый может собрать своими руками.Представляет собой паяльник с блоком установки и регулировки температуры. В статье вы найдете схемы, платы, прошивки для микроконтроллера, а также рекомендации по сборке и настройке.
Собрав его, вы получите опыт работы с компонентами поверхностного монтажа (SMD) и, конечно же, полезным устройством.
Описание
Паяльная станция отличается от простого сетевого паяльника тем, что имеет температурную стабилизацию. И это очень важно при работе с разными мелочами. Сетевой паяльник всегда рассеивает одинаковую мощность. То есть, если он лежит на месте, он может даже нагреваться до 500 градусов, а когда начинаешь паять, резко остывает.
С другой стороны, если в паяльник встроена термопара, то можно организовать обратную связь.Это позволяет регулировать мощность нагревателя для поддержания стабильной температуры.
Нашей целью было разработать паяльную станцию на основе обычного и дешевого паяльника с термопарой. Он имеет следующие характеристики:
- Питание от источника постоянного напряжения 12-24В
- Потребляемая мощность, при напряжении 24В: 50Вт
- Сопротивление паяльника: 12Ω
- Время выхода в рабочий режим: 1-2 минут в зависимости от напряжения подачи
- Максимальное отклонение температуры в режиме стабилизации, не более 5 градусов
- Регулировка алгоритма: PID
- Отображение температуры на семисегментном индикаторе
- Тип нагревателя: нихром
- Тип температуры датчик: термопара
- Возможность калибровки температуры
- Установка температуры с помощью энкодера
- Светодиод для отображения состояния паяльника (нагрев / работа)
Печатная плата
Доска двусторонняя, но адаптирована для изготовления в домашних условиях.В конце статьи вы найдете ссылку на файл для SprintLayout.
Если вас интересует схема устройства, то вы можете найти ее здесь. На нем различаются только условные обозначения элементов и номера выводов микроконтроллера. По сути, все сделано на микроконтроллере Atmega8, к которому подключены семисегментный индикатор, энкодер, нагреватель через переключатель и сигнал с термопары, усиленный операционным усилителем.
Список компонентов
Для сборки печатной платы и корпуса требуются следующие компоненты и материалы:
- BQ1. Кодировщик EC12E24204A8
- C5. Конденсатор танталовый 35 В, 10 мкФ, размер C
- C1-C4, C7-C9. Конденсаторы керамические 0,1 мкФ в корпусе 0805
- C6. Конденсатор танталовый 16 В, 22 мкФ, размер C
- DD1. Микроконтроллер ATmega8A-AU в корпусе TQFP32
- DA1. Стабилизатор L7805ACD2T-TR на 5В в пакете D2PAK
- DA2.Операционный усилитель LM358ADT в корпусе SO8
- HG1. Семисегментный трехразрядный индикатор с общим катодом BC56-12GWA. Также на плате предусмотрено место для дешевого аналога.
- HL1. Любой индикаторный светодиод на ток 20мА с шагом выводов 2,54 мм
- R1, R6. Резисторы 300 Ом, корпус 0805 — 2шт
- R4, R7-R20. Резисторы 1кОм, корпус 0805 — 15шт
- R3. Резистор 100кОм, корпус 0805
- R5. Резистор 1Ω, корпус 0805
- R2.Подстроечный резистор 3296Вт 100кОм
- VT1. Транзистор полевой ИРФ3205СПБФ в корпусе Д2ПАК
- VT2-VT4. Транзисторы BC547BTA в упаковке SOT323 — 3шт
- XS2. Двухконтактный зажим с шагом выводов 5,08 мм
- Xs1. Двухконтактный зажим с шагом выводов 3,81 мм
- XS3. Трехконтактный зажим с шагом выводов 3,81 мм
- XS4. Разъем для программирования PLS-06
- Разъем для паяльника
- Power Switch SWR-45 BW (13-KN1-1)
- Паяльник.Об этом напишем позже
- Детали из оргстекла для корпуса (ссылки на файлы для резки оргстекла в конце статьи)
- Ручка энкодера. Вы можете купить его, а можете распечатать на 3D-принтере. Файл для скачивания модели в конце статьи Стойки
- . На них тоже можно напечатать, но можно использовать обычные рукава с отверстием 3 мм и высотой 10 мм.
- Винт M3x60 — 4шт
- Гайка M3 — 8шт
- Шайба M3 — 4шт
- Шайба M3 увеличенная — 8 штук
- Шайба горизонтальная M3 — 8шт
- Также требуется для сборки монтажных проводов, стяжек и термоусадочной трубки
Вот набор всех деталей:
Монтаж на плату
При сборке удобно использовать сборочные чертежи:
необходимо начать с установки SMD компонентов.Установите элементы на плату согласно перечню элементов. При установке элементов важно соблюдать ориентацию танталовых конденсаторов и операционного усилителя. Первый вывод DA2 определяется скосом на корпусе.
Если все собрано правильно, плата должна выглядеть так.
Обратите внимание, что мы использовали резисторы на 1кОм без маркировки.
Далее необходимо установить элементы вывода на плату в соответствии с перечнем элементов.Длинный светодиодный выход — это плюс. Семисегментный индикатор выставлен «точками» вниз.
Вот лицевая сторона печатной платы в сборе:
Сборка корпуса и объемная установка
Подключение питания и паяльника производится следующим образом:
Перед сборкой корпуса необходимо подготовить переключатель и разъем. Выключатель необходимо подключить к обрыву красного провода так, чтобы на одном контакте выключателя был короткий отрезок красного толстого провода, а на втором — длинный.
К первому и пятому контактам разъема паяльника нужно подключить короткие красные провода, а остальные черные.
Термоусадочную трубку нужно надеть на выключатель и разъем и залудить все свободные концы проводов, чтобы потом было удобнее вкручивать их в клеммы.
Далее необходимо установить переключатель и разъем паяльника на лицевую панель. Обратите внимание, что переключатель может быть установлен плотно и может потребоваться доработка разъема для него с помощью напильника.
Затем следует подключить первый контакт разъема к первому контакту платы, второй — ко второму и так далее. в соответствии с приведенным выше рисунком. К блоку питания на плате необходимо подключить красный короткий провод от переключателя, а минусовой провод — черный провод.
Прошивка микроконтроллера и первый запуск
В левом верхнем углу платы находится стандартный ISP-разъем для прошивки микроконтроллеров AVR.
Вы можете прошить микроконтроллер любым программатором, который у вас есть, например USBasp.Если программатор обеспечивает питание самими источниками 5В, то подключать внешние не требуется. Вы также можете найти файл прошивки в конце статьи.
Конфигурационные биты! Вы должны включить CKSEL0, CKSEL2, CKSEL3, SUT0, BOOTSZ0, BOOTSZ1 и SPIEN! То есть изменение настроек по умолчанию требуется для запуска контроллера на тактовой частоте 2 МГц.
Теперь можно подключить паяльник и подать входное напряжение питания (от 12 до 24В). После включения паяльник должен начать нагреваться, а показание температуры на индикаторе должно возрасти.При вращении вала энкодера значение требуемой температуры должно измениться.
Завершение сборки
Теперь можно прикрутить плату к лицевой панели. Допускается использование обычных стоек высотой 10 мм, но мы подготовили специальные стойки, обеспечивающие лучшую фиксацию доски. Модель для 3D-печати также можно найти в конце статьи.
Боковые стенки устанавливаются без каких-либо креплений. Теперь осталось только вставить заднюю крышку в пазы, затянуть гайки, протянуть через отверстие провода питания и закрепить их хомутами. Помните, что детали из оргстекла довольно хрупкие и не перетягивают крепеж!
Калибровка
Триммер используется для точной настройки температуры. На передней панели есть специальное отверстие для доступа к нему.
При калибровке в первую очередь необходимо довести жало до температуры плавления припоя. Вы можете просто сразу установить очень высокую температуру с помощью энкодера. Затем, собрав шарик припоя на жало, требуется прогреть термопару.Для таких целей есть специальные измерительные приборы, но подойдет и обычный мультиметр с термопарой. Затем, вращая подстроечный вал, убедитесь, что измеренное значение паяльной станции совпадает с показаниями внешней термопары.
Во время калибровки помните, что чем больше времени вы дадите паяльнику для стабилизации температуры, тем точнее вы сможете ее отрегулировать. Также обратите внимание, что триммер многопетлевой, и один оборот очень незначительно изменяет температуру.То есть крутить нужно смело и много.
Видео
Также мы подготовили видеоинструкцию:
Ссылки
Прямые ссылки на все необходимые для скачивания файлы можно найти на главной странице проекта.
Это устройство также имеет версию на односторонней плате, использующую только штыревые компоненты.