Защитное заземление и зануление: Назначение заземления, отличие заземления от зануления

Содержание

Назначение заземления, отличие заземления от зануления

Покупая любое электрооборудование, будь то стиральная машина или холодильник он не рассчитан на пожизненный срок службы и в процессе работы как любое другое оборудование может сломаться. Чтобы защитить электрооборудование от ненормальных режимах работы (перегрузка или короткое замыкание) применяются различные защитные аппараты (автоматы, пробки и т.д.)

Но бывают ситуации, когда защитные устройства не реагируют на возникшие повреждения. Одним из таких случаев является повреждение внутренней изоляции и возникновении на металлическом корпусе оборудования высокого напряжения.

В этом случае защита необходима самому человеку, который попадет под напряжение прикоснувшись к поврежденному оборудованию. Для защиты от таких повреждений и было придумано заземление, основное назначение которого — снизить величину этого напряжения.

То есть, основное назначение заземления — снизить напряжение прикосновения до безопасной величины.

Предположим, что у вас дома имеется потолочный светильник, корпус которого не подключен к заземлению. В следствии повреждения изоляции металлическая часть светильника оказалась под напряжением. В тот момент когда вы попытаетесь поменять лампочку вас ударит током, так как прикоснувшись к корпусу вы становитесь проводником и электрический ток будет протекать через ваше тело в землю.

Если же светильник будет заземлен, большая часть тока будет стекать в землю по заземляющему проводу и в момент касания, напряжение на корпусе, будет намного меньше, а соответственно и величина тока проходящий через вас будет также меньше.

Заземлением — называется соединение металлических нетоковедущих частей электроустановки с землей (контуром заземления) которые в нормально состоянии не находятся под напряжением, но могут оказаться из-за повреждения изоляции.

Также, заземление необходимо для функциональности таких аппаратов как УЗО. Если корпуса электроустановок не будут соединены с землей, то ток утечки протекать не будет, а значит УЗО, не среагирует на неисправность.

Отличие заземления от зануления

Наряду с заземлением вам наверняка приходилось слышать такой термин как зануление.

Занулением — называется соединение металлических нетоковедущих частей электроустановки с нулем (нулевым проводником сети).

По своему назначению заземление и зануление выполняют одну и туже задачу – защищают человека от поражения электрическим током. Однако обеспечивают они эту защиту немного разными способами. В сетях с занулением происходит отключение от сети электрооборудования, корпус которого из-за пробоя изоляции оказался под напряжением.

Рассмотрим пример, в котором обеспечивается защита электроустановки с помощью зануления.

Как видно из рисунка при пробое фазы на соединенный с нулем корпус возникает замкнутый контур между фазой и нулем, то есть однофазное короткое замыкание. На возникшее короткое замыкание реагируют защитные устройства, такие как автоматы или предохранители, в результате происходит отключение поврежденной электроустановки от источника питания.

Рассмотренные выше примеры дают возможность сделать вывод что:

— заземление осуществляется защиту снижением напряжения прикосновения.
— зануление осуществляется защиту отключением электроустановки от сети.

Наверняка у вас возникал вопрос в каких случаях выполняют защиту заземлением, а в каких занулением. Применение в разных случаях заземления и зануления вызвано разными системами заземления электроустановок. В электроустановках напряжением до 1000 В применяются пять систем заземления: TN-C, TN-S, TN-C-S, TT, IT.

Зануление используют в качестве защиты в таких системах, в которых присутствует PEN, PE или N проводник. Это сети с глухо заземленной нейтралью, TN-C, TN-S и TN-C-S.

Заземление применяют в электроустановках с системами заземления TT и IT.

Рассмотренные выше способы заземления и зануления больше подходят для применения в промышленных электроустановках на производстве. Более детально рассмотреть подключение и монтаж заземления для бытовых электроустановок можно здесь: заземление в квартире и заземление в частном доме.

Понравилась статья — поделись с друзьями!

 

Чем отличается зануление от защитного заземления

Что такое заземление

Заземление – способ защиты пользователя от удара током при подаче напряжения на корпус прибора в результате аварии. Суть заземления заключается в соединении корпуса электроустановки или прибора с землей.

Заземление выполняется с помощью заземляющего устройства. Оно состоит из заземлителя и заземляющего электрода. Заземлитель находится непосредственно в земле. Заземляющий электрод соединяет его с любой точкой электроустановки или сети.

Схема заземления

На иллюстрации заземляющий проводник (PE) соединен с землей и рабочим нулем (N).

Есть несколько систем заземления:

  • Система TN с описанными выше схемами TN-C, TN-S и TN-CS. В этих системах нейтральный проводник глухо заземлен.
  • Система TT. Токопроводящие части электроустановок и нейтральный проводник заземляются независимо друг от друга.
  • Система IT. Токопроводящие части электроустановок заземлены, нейтральный проводник не заземлен.

При аварии и подаче электричества на корпус благодаря заземлению срабатывают автоматы-предохранители. Если предохранители не срабатывают, большая часть электричества уходит в землю. Это защищает человека от опасного для жизни и здоровья удара током.

Заземление применяется в промышленности и в быту.

Главное отличие

Самое главное, что нужно запомнить: схемы зануления и заземления имеют различное защитное действие. Ноль гарантирует быструю реакцию на изменение потенциалов или утечку тока для обеспечивающих защиту установок. Соответственно, при высоком напряжении обеспечивается отключение всех потребителей энергии: осветительных приборов, компьютера и других машин (в том числе, станков, трансформаторов).

Фото — отличие зануления и заземления

Заземлением же обеспечивается выравнивание потенциалов и защита от поражения током. Земля чаще применяется в домашних условиях, её монтаж можно легко сделать своими руками. Но здесь нет гарантии, что предохранители быстро отреагируют на утечку. Оптимальным вариантом для повышения гарантии безопасности является совместное применение зануления и заземления сетей и открытых частей машин.

Перед установкой любого из этих вариантов защиты, нужно обязательно получить разрешение на проведение работ. Также дополнительно проводится расчет защитного проводника, подведение к каждому потребителю в жилище земли и установка защитного оборудования.

{SOURCE}

Для чего необходимо заземление

Заземление

Из нормативной документации ГОСТа № 12.01.009-76 следует, что защитное заземление – это создание единого контура с землей и металлическими токоведущими частями, которые в процессе эксплуатации электротехнических приборов могут оказаться под напряжением, например, корпус микроволновой печи или стиральной машины.

Заземление требуется, чтобы при образовании напряжения в тех местах, где его быть не должно, электричество уходило в землю. Это позволяет предотвратить поражение током жителей квартиры или дома. Как правило, подобные явления наблюдаются при нарушении целостности изоляционного слоя и касания токоведущей жилы корпуса.

Типы заземления в бытовых условиях

В бытовых условиях правильно реализованная система заземления гарантирует бесперебойную работу всех электрических приборов. Во времена существования Советского Союза в домах не было большого скопления электроустановок, следовательно, такая мера безопасности практически не использовалась.

В то время широкое распространение получила эксплуатация системы TN-C, в которой заземляющий провод РЕ коммутировался с рабочим нулем в единую токопроводящую жилу РЕN, а к квартире подключался двухжильный провод. Эта система устарела, на замену пришла новая – TN-C-S. Ее особенность заключается в разъединении в распределительном щитке провода PEN на РЕ и N.

Все современные здания или строения, подлежащие модернизации, обслуживаются по трех- или пятипроводной схеме. В помещение подается три линии:

  • земля;
  • рабочий ноль;
  • фаза.

Если здание устаревшее и не оснащено системой заземления, а проводка двухпроводная, все современные трехпроводные электротехнические приборы утрачивают свои качества. Например, сетевой фильтр становится обычной переноской. В этом случае установка зануления в квартире согласно нормативному документу ПУЭ 1.7.132 запрещена.

Это интересно: Тахометр: что это такое и как работает

Требования к защитному заземлению

Защитное заземление – это наиболее жесткое устройство, чем зануление цепи. Здесь предусмотрена прокладка отдельной шины, довольно небольшого уровня сопротивления, которая идет к системе заземлителей, забитых в землю в виде треугольника.

Расчет защитного заземления, требует знания множества формул и наличия множества исходных данных. Поэтому принято для жилого фонда применять типовые проекты контура заземления для каждого региона.

Установка зануления предусматривает прокладку шины нейтрали или любого другого способа отвода тока в однофазной цепи. При этом, значения сопротивлений каждого проводника зануления до подстанции или питающего трансформатора, складываясь, образуют значение сопротивления защитного устройства.

Эта величина может изменяться, но требования к защитному заземлению и занулению, предусматриваю общее значение максимально возможного уровня сопротивления цепи.

Бытовое заземление

Как правило, системы электроснабжения, должны иметь сопротивление защитного заземления, должно быть от 4 Ом, до 30 Ом. Для обустройства, как правило, применяют стальные уголки и полоса шириной 40 мм. Предусматривают использование медной шины, достаточного сечения, согласно ГОСТу. Это обязательное требование.

При использовании защитного проводника с медным проводом 0,5 мм2 нам не хватит и 100 метров провода для достижения критического значения. Наиболее строгие требования предъявляются при обслуживании участков:

  1. Установки, с напряжением цепи до 1000. В, оснащаются устройством, сопротивление которого, не должно превышать 0,5 Ома. Значение заземленного контура измеряют при помощи специального измерительного прибора – измерителем сопротивления. Это измерение проводится двумя дополнительными заземлителями. Разведя их на определенное расстояние, выполняем замер, затем сдвигая электрод, проводим несколько замеров. Самый худший результат принимается за номинальное значение.
  2. Для обслуживания цепи трансформатора, других источников питания, при величинах напряжения от 220 В до 660 В – величина сопротивления заземления должна быть от 2 Ом до 8 Ом.

Производственное защитное заземление

Использование дополнительных мер для выравнивания величин потенциала – это основная «обязанность» применения защитного обустройства производственных мощностей. Для достижения надежной защиты, все металлические детали конструкций и устройств, а коммуникационные трубопроводы подсоединяются на заземляющий проводник.

В жилых помещениях, так следует оборудовать ванные комнаты и стальной водопровод, канализацию, и трубы отопления. В наше время пускай и редко, но они встречаются. На промышленных объектах заземляют:

  • приводы электрических машин;
  • корпуса каждой электроустановки, находящейся в помещении;
  • коммуникации металлических труб, металлоконструкции;
  • защитные оплетки электрокабелей , с напряжением постоянного тока до 120 В;
  • электрощитовые, различные корпуса системы электропроводки.

Детали, не требующие защиты:

  • металлические корпуса приборов и оборудования, установленных на стальной платформе, главное – обеспечение надежного контакта между ними;
  • разнообразные участки с металлической арматурой, установленная на деревянных конструкциях, исключение составляют объекты, где защита распространяется и на эти объекты;
  • корпуса электрооборудования, имеющие 2, 3 классы безопасности;
  • при вводе в здание электропроводки, с напряжением не выше 25 В, и прохода их сквозь стену из диэлектриков.

В заключение необходимо отметить.

После монтажа каждого из видов защиты, необходимо выполнить проверку величины сопротивления защиты. После этого составляется акт проверки. Замеры, проводят летом и зимой, в это время грунт имеет наибольшее сопротивление.

Проверку жилого фонда рекомендуется проводить раз в год. Помните о необходимости оснащения щитовой автоматами размыкателями цепи и защитным устройством от утечек тока.

Заземление и зануление в цепях переменного тока

По сути, ноль – провод синего цвета, промаркированный N. Зануление – это преднамеренное соединение либо средней точки в обмотке 3-х фазного генератора, либо соединение в нагрузке к рабочему нолю. Основных функций у зануления две: 1 – рабочая функция и 2 — защитная функция. Рабочая функция ярче всего проявляется в схеме распределения электроэнергии в многоквартирном доме. Изначально ввод электричества выполняется только с помощью трехфазного тока, который равномерно распределяется по квартире. В качестве примера допустим, что в одном конкретном подъезде имеется 36 квартир. Следовательно, распределение нагрузки должно быть произведено максимально сбалансированно и равномерно: на фазу A подключаем 12 квартир, на фазу В 12 квартир, а на фазу С, естественно, оставшиеся 12 квартир. Как бы не старались проектировщики сбалансировать схему потребления, практика однозначно говорит о том, что достичь баланса и равномерность нагрузки никогда на 100% не удается – кто-то тратит электричества больше, а кто-то меньше. Поэтому и была придумана линия N – рабочий ноль. Основная цель рабочего ноля – восстановить баланс напряжений по фазам, то есть не дать возникнуть перекосу напряжений. К слову, именно внезапное отключение нулевого проводника может привести к тому, что в некоторых квартирах возникнет молниеносный всплеск рабочего напряжения до отметки 380 В. На жаргоне электриков данное явление называют отгоранием или отвалом ноля.

Трехфазная система требует наличие заземления и зануления средней точки рабочих обмоток, соединенных по схеме звезда. Чтобы четко понимать разницу между занулением и заземлением, давайте обратимся к стандартной схеме включения нагрузки к трехфазному источнику питания по схеме Y (звезда). Если мы рассматриваем в качестве нагрузки трехфазный трансформатор, трехфазный асинхронный электродвигатель, трехфазную печь, то система будет функционировать, будучи подключенной с помощью трех проводов с фазами A, B, С и нулевого провода N. По сути, если мы рассматриваем электроустановки на производстве, то наличие четвертого проводника выполняет чисто защитные функции. При пробое изоляции обмоток трехфазного электродвигателя высокий потенциал устремляется на корпус устройства, который находится в прямой гальванической связи с проводом N, то есть рабочим нолем. Следовательно, при таком подключении произойдет короткое замыкание, что вызовет отключение трехфазного автомата защиты.

Какая система надежнее?

Для сравнения можно ознакомиться с несколькими пунктами:

Как показывает практика, нередки случаи обрыва или отгорания нулевого провода в электрощите, что делает зануляющую систему защиты не действующей. В этом случае появляется реальная угроза поражения человека электрическим током. Во избежание подобной проблемы, места коммутации нужно периодически осматривать, что создает определенные неудобства.


Подгоревший нулевой провод в распределительном щитке близок к полному обрыву

  • Заземляющая система избавлена от указанных недостатков, так как РЕ-проводник не участвует в общей работе электропроводки и задействуется только при возникновении утечки, чтобы отвести ток на землю.
  • Устройство зануления требует определенных знаний и навыков работы с электрическими цепями, что в случае их отсутствия также причиняет некоторые неудобства, связанные с необходимостью вызова электрика.

Принимая во внимание изложенное, можно сделать вывод, что система заземления более надежна и безопасна, поэтому лучше использовать ее. Однако в случае отсутствия такой возможности, можно прибегнуть к альтернативному варианту. Запрещается производить зануление непосредственно в розетке путем установки перемычки между нулевым разъемом и заземляющей скобой

Это создает угрозу для человека (поражение электротоком) и для бытовой техники. 

Назначение заземления

Покупая любое электрооборудование, будь то стиральная машина или холодильник он не рассчитан на пожизненный срок службы и в процессе работы как любое другое оборудование может сломаться. Чтобы защитить электрооборудование от ненормальных режимах работы (перегрузка или короткое замыкание) применяются различные защитные аппараты (автоматы, пробки и т.д.)

Но бывают ситуации, когда защитные устройства не реагируют на возникшие повреждения. Одним из таких случаев является повреждение внутренней изоляции и возникновении на металлическом корпусе оборудования высокого напряжения.

В этом случае защита необходима самому человеку, который попадет под напряжение прикоснувшись к поврежденному оборудованию. Для защиты от таких повреждений и было придумано заземление, основное назначение которого — снизить величину этого напряжения.

То есть, основное назначение заземления — снизить напряжение прикосновения до безопасной величины.

Предположим, что у вас дома имеется потолочный светильник, корпус которого не подключен к заземлению. В следствии повреждения изоляции металлическая часть светильника оказалась под напряжением. В тот момент когда вы попытаетесь поменять лампочку вас ударит током, так как прикоснувшись к корпусу вы становитесь проводником и электрический ток будет протекать через ваше тело в землю.

Если же светильник будет заземлен, большая часть тока будет стекать в землю по заземляющему проводу и в момент касания, напряжение на корпусе, будет намного меньше, а соответственно и величина тока проходящий через вас будет также меньше.

Заземлением — называется соединение металлических нетоковедущих частей электроустановки с землей (контуром заземления) которые в нормально состоянии не находятся под напряжением, но могут оказаться из-за повреждения изоляции.

Также, заземление необходимо для функциональности таких аппаратов как УЗО. Если корпуса электроустановок не будут соединены с землей, то ток утечки протекать не будет, а значит УЗО, не среагирует на неисправность.

Понятие заземления

Прежде чем дать ответ на вопрос, чем отличается заземление от зануления, рассмотрим каждое понятие отдельно. Заземление – это специальное соединение электроустановок с землей. Цель этого соединения является снижение резкого скачка напряжения в электрической сети. Оно используется в той цепи, где нейтраль будет изолирована. Когда будет установлено подходящее заземляющее оборудование, то избыточный ток, который поступает в сеть, будет уходить в землю по отводящим контактам. Сопротивление этой части должно быть относительно низким, чтобы ток был поглощен без остатка.

Также функция защитного заземления электроустановок позволяет увеличить объем аварийного тока замыкания, несмотря на то, что это противоречит его назначению. Заземлитель с большим сопротивлением слабый ток замыкания может не воспринять, только со специальными защитными приборами. В таком случае, когда будет аварийная ситуация, установка будет под напряжением, что может представлять большую опасность для здоровья человека в этом помещении. Назначение защитных электроустановок также рассчитано на отведение блуждающего тока в электрической сети.

Заземлитель является особым проводником, который может состоять из одного или нескольких элементов. Обычно они соединены между собой электропроводящим материалом и заключены в землю, которая поглощает проходящий заряд. В качестве заземляющих проводников может использоваться сталь и медь. По нормам ПУЭ данная мера защиты в обязательном порядке должна делаться в современных жилых домах, а также рабочих помещениях, заводах, в общественных заведениях и других зданиях различного назначения.

В большинстве домов современного образца установлены схемы заземления. Однако их может не быть в старых зданиях. В такой ситуации специалисты рекомендуют заменить проводку трехжильным кабелем с заземляющим проводом, подключив защитную электроустановку. Бывают ситуации, когда нет возможности сделать монтаж полноценного заземляющего контура. В современной электротехнике может использоваться специальное портативное оборудование – переносной заземляющий штырь (шина). Их действие соответствует стандартному заземляющему устройству жилых домов или отводов. Такое устройство имеет хорошее практическое значение, легко подвергается монтажу и переноске, починке, а также имеет широкий функционал.

Функцию заземления могут выполнять несколько самостоятельных групп защитного оборудования. Грозозащитные. Они служат для того, чтобы быстро отводить импульсный высокий заряд от молнии. Зачастую их применение необходимо в разрядниках и современных молниеотводах. Рабочие. Такая группа позволяет поддерживать в нужном режиме работу всех электроустановок при разных условиях (нормальные и аварийные).

Защитные. Данная группа оборудования нужна для предотвращения прямого контакта людей и животных с электрическим зарядом, который возникает в результате механического повреждения фазы в проводе. Они позволяют предотвратить множество несчастных случаев, которые могли бы быть, если проблемы с силовой линией не были замечены своевременно.

Заземлители условно разделены на искусственные и естественные. Искусственные электроустановки представляют собой специальные конструкции, которые делаю специально для того, чтобы увести избыточный ток сети в землю, обеспечив защиту своему дому. Их могут производить на заводе или делаться самостоятельно, используя стальные элементы. Естественными заземлителями является грунт, фундамент под зданием или же дерево возле дома.

Заземление и Зануление: в чем разница?

Как «заземление», так и «зануление» – это термины, используемые при описании электрических установок. Стоит отметить, что зануление уже устарело. Это связано с модернизацией электросетей, что, в свою очередь, влияет на то, что процесс Зануления больше не используется.

О чем это?

Зануление и заземление – это методы защиты от поражения электрическим током в электроустановках. Зануление состоит в соединении электропроводящих частей, таких как металлический корпус, с защитным проводником или защитным нейтральным проводником.

Когда система выходит из строя, она автоматически отключает питание. Зануление можно использовать в установках с максимальным напряжением 500 В в электросети. В такой системе нейтральная точка устройства питания заземлена и защищенные проводящие элементы соединены с нейтральной точкой.

Схема зануления

Заземление, с другой стороны, представляет собой проводник, выполненный из электрического проводника, и соединяет тело, электрифицированное с землей, для его нейтрализации

Заземление выполняется для обеспечения правильной, а также, что очень важно, безопасной работы всех электропроводящих устройств

Схема заземления

Заземление состоит из защитных проводников и защитно-нейтральных проводников. Существует четыре типа заземления. Это: защитное, функциональное, молниевое и вспомогательное заземление. Примером заземления является громоотвод или характерный штифт в вилке бытовых приборов.

В заключение …

  • Зануление соединяет электропроводящие части с защитным проводником
  • Заземление – это провод, соединяющий электрифицированный корпус с землей с целью его безразличия
  • Зануление – это метод, который выходит из употребления, он просто заменяет заземление

zen.yandex.ru/media/yaznal/

Вопросы, возникающие при оформлении систем защиты

Вопрос №1. Можно ли сделать контур заземления под окнами многоэтажного дома и проложить провод в квартиру?

Теоретически это возможно, но при условии, что для этого есть разрешение управляющей компании, сопротивление заземления не превышает 4 Ом, о чем свидетельствует справка из отдела стандартизации, а также подтверждение из управления метеорологии, что устройство не нарушает молниезащиту здания.

Заземлить квартиру в многоэтажке можно, но это сложно оформить документально

Вопрос №2. Можно ли использовать водяной трубопровод для временного заземления, пока не устроено основное?

Однозначно на этот вопрос не возьмется ответить никто. Лучше какое-то время не подключать прибор вовсе, пока не сделается заземление или зануление, но в качестве временной меры подвергать опасности себя и соседей не стоит.

Вопрос №3. Разрешается ли металлическую полосу заземления зарывать плинтусом или укладывать в кабель-каналы?

Можно. Это позволит скрыть неприглядный вид и задекорировать интерьер помещения.

Вопрос №4. Обязан ли электрик из обслуживающей организации по требованию жильцов производить зануление в квартирах старых домостроений, где отсутствует заземление?

Это не является его прямыми обязанностями, но если к вопросу подойти продуктивно и попробовать нанять его, как специалиста, то вряд ли кто-то откажется от дополнительного заработка.

Вопрос №5. В подъездном щитке рабочий ноль выведен из клеммника, соединенного с общим нулем, исходящим из общедомового распределительного щита. Можно ли от свободной клеммы вывести зануляющий провод?

Конечно можно. Это будет то самое расщепление, о котором говорилось в статье. Причем в данном случае оно будет сделано абсолютно верно. Нужно только сделать хороший контакт и проложить провод предельно аккуратно.

В заключение можно сделать вывод: Создать защитную систему можно в любом случае, при любых обстоятельствах. Главное, чтобы она была грамотно и надежно устроена и возложенные на нее функции эффективно выполнялись в полном объеме.

Оцените качество статьи

Нам важно ваше мнение:

Заземление и зануление: отличие друг от друга

Рис 1

Заземление и зануление нужны для отвода напряжения, только происходит это различными способами (Рис 1). В конце статьи приведены схемы подключения TN — C, TN — S, TN — C — S.

Отличие первое – способ утилизации тока

Разница состоит в том, что зануление способствует мгновенному отключению электричества при касании человеком электро шнура или прибора, отводя ток однофазного короткого замыкания на вводной щит, а заземление мгновенно отводит опасное напряжение в почву.

Отличие второе – особенности монтажа

Монтаж заземления и зануления имеет разные степени сложности.

Устройство заземления в частном строении влечет за собой определенные монтажные работы, занимающие в среднем до одного рабочего дня. Приобрести готовые комплекты модульно-штыревого (глубинного) заземления либо выполнить их самостоятельно из допустимых материалов, четко следуя указаниям производителя либо требованиям к заземлению – довольно несложно. Непосредственно заглубление заземлителя можно доверить сервисным службам, имеющим специальное оборудование либо обойтись своими силами, обладая достаточным опытом и физической силой.

Относительно зануления, то сам по себе монтаж контура зануления выглядит нетрудоемким, но не стоит обманываться: при отсутствии должной квалификации электромонтера минимальный промах и незнание могут обернуться бедой.

Отличие третье – защита человека

Согласно правилам устройства электроустановок (ПУЭ), зануление может быть применено только для промышленных установок и не является в полной мере гарантией безопасности. При попадании фазы на открытую часть электроприбора или оборудования, ток никуда не девается. Происходит контакт двух фаз и короткое замыкание. Нейтраль нужна для скорого срабатывания защитного автомата при замыкании, но не для защиты человека от электроудара. Поэтому зануление рекомендуется к использованию на производстве, где при аварии требуется незамедлительное отключение питания.

Отличие четвертое – требования к профессионализму наладчика

Когда организуется зануление, то для того, чтобы верно распознать нулевые точки и подобрать способ защиты, крайне необходимо участие профессионального электрика. А вот грамотно собрать контур заземления и погрузить его в грунт по силам большинству домашних умельцев.

К сожалению, на практике довольно часто можно столкнуться с результатами вопиющей некомпетентности в вопросах зануления и электробезопасности в целом, беря во внимание, как частных наладчиков, так и электриков сервисных служб. А вот типичные и очень опасные ошибки кустарного зануления:

А вот типичные и очень опасные ошибки кустарного зануления:

  • подключение электроприбора с занулением к незануленному щиту;
  • подсоединение заземляющего контакта розетки к «нулевому» автомату;
  • установка в розетке перемычки, соединяющей нулевой и защитный контакты;
  • выполнение зануления в двухпроводной системе и др.

Типы систем заземления

Вы замечали, что нулевой провод в трёхфазном кабеле имеет меньшее сечение, чем остальные? Это вполне объяснимо, ведь на него ложится не вся нагрузка, а только разница токов между фазами. Хотя бы один контур заземления в сети должен быть, и обычно он находится рядом с источником тока: трансформатор на подстанции. Здесь система требует обязательного зануления, но при этом нулевой проводник перестаёт быть защитным: что бывает, если в ТП «отгорел ноль», знакомо многим. По этой причине заземляющих контуров по всей протяжённости ЛЭП может быть несколько, и обычно так оно и есть.

Конечно, повторное зануление, в отличие от заземления, вовсе не обязательно, но зачастую крайне полезно. По тому, в каком месте выполняется общее и повторные зануления трехфазной сети, различают несколько типов систем.

Разница между заземлением и занулением

В системах под названием I-T или T-T защитный проводник всегда берётся независимо от источника. Для этого у потребителя устраивается собственный контур. Даже если источник имеет свою точку заземления, к которой подключен нулевой проводник, защитной функции последний не имеет. Он с защитным контуром потребителя никак не контактирует.

Системы без заземления на стороне потребителя более распространены. В них защитный проводник передаётся от источника потребителю, в том числе и посредством нулевого провода. Обозначаются такие схемы приставкой TN и одним из трёх постфиксов:

  1. TN-C: защитный и нулевой проводник совмещены, все заземляющие контакты на розетках подключаются к нулевому проводу.
  2. TN-S: защитный и нулевой проводник нигде не контактируют, но могут подключаться к одному и тому же контуру.
  3. TN-C-S: защитный проводник следует от самого источника тока, но там всё равно соединяется с нулевым проводом.

Ключевые моменты электромонтажа

Итак, чем вся эта информация может быть полезна на практике? Схемы с собственным заземлением потребителя, естественно, предпочтительны, но иногда их технически невозможно реализовать. Например, в квартирах высоток или на скальном грунте. Вы должны знать, что при совмещении нулевого и защитного проводника в одном проводе (называемом PEN) безопасность людей не ставится в приоритет. А потому оборудование, с которым контактируют люди, должно иметь дифференциальную защиту.

И здесь начинающие монтажники допускают целый ворох ошибок. Неправильно определяя тип системы заземления/зануления и, соответственно, неверно подключают УЗО. В системах с совмещённым проводником УЗО может устанавливаться в любой точке, но обязательно после места совмещения. Эта ошибка часто возникает в работе с системами TN-C и TN-C-S. А особенно часто, если в таких системах нулевой и защитный проводники не имеют соответствующей маркировки.

Разница между заземлением и занулением

Поэтому никогда не используйте жёлто-зелёные провода там, где в этом нет необходимости. Всегда заземляйте металлические шкафы и корпуса оборудования, но только не совмещённым PEN-проводником. На нём при обрыве нуля возникает опасный потенциал. Это необходимо делать защитным проводом PE, который подключается к собственному контуру.

Кстати, при наличии собственного контура на него выполнять незащищённое зануление очень и очень не рекомендуется. Если только это не контур вашей собственной подстанции или генератора. Дело в том, что при обрыве нуля вся разница асинхронной нагрузки в общегородской сети проследует в землю через ваш контур, раскаляя соединяющий провод.

   Защитное заземление. Чем опасно самостоятельное выполнение заземления?

   Принцип работы заземления для зданий по системе ТN-C, TN-S и TN-C-S.

   Заземление дома. Монтаж контура заземления!

   Контур заземления. Заземление и зануление на объектах.

Будем рады, если подпишетесь на наш Блог!

Заземление и зануление их принципиальное отличие и что лучше использовать в доме

Наверняка большинство из вас слышало про такое понятие как зануление и тем более про защитное заземление. А вы знаете, чем они отличаются и что лучше использовать в доме? Если нет, то в этой статье я вам объясню принципиальное отличие этих двух систем и поведаю что желательно использовать в вашем доме.

В чем же различие

Защитное заземление предназначено для предотвращения попадания человека под опасные значения тока при возникновении утечки. Проще говоря, если на корпусе электрического прибора появится ток, то он будет сразу уходить на землю и человек, прикоснувшийся к такому прибору, не будет поражен током.

Причем реализовать заземление можно собственноручно и без серьезных финансовых затрат. Ведь достаточно взять сварочный аппарат, лопату, несколько арматур, полосу металла и медный провод. И ваш контур будет готов. После этого соединяем его с трех проводной сетью вашего дома и все, защита обеспечена.

А зануление представляет собой соединение земли с рабочим нулем. В случае такого же пробоя изоляции вызывает короткое замыкание и вследствие этого отключение защитных автоматов.

А выполнить зануление в доме без вызова специалиста, оный просчитает и выберет специальную точку, просто невозможно.

Для наглядности внимательно рассмотрите схему, на оной показано отличие зануления и заземления в простой форме.

Что выбрать для дома

Здесь я скажу и обозначу свою позицию: я категорически против использования зануления, так как этот метод – это потенциально отложенная опасность. Ведь если вы даже будете очень тщательно и регулярно проверять целостность нуля, все равно есть вероятность, что в результате непредвиденных обстоятельств будет поменяна фазировка и ноль окажется фазой. В таком случае абсолютно все электроприборы, воткнутые в сеть, окажутся под напряжением, а это может привезти к очень плачевным последствиям.

Так же может произойти обрыв нуля, и в этом случае система окажется недееспособна, вновь вы будете под угрозой поражения электрическим током.

Защитное заземление в этом плане на несколько порядков надежнее и будет достаточно проводить ревизию болтового соединения не чаще одного раза в год. И на долгие годы вы будете обеспечены надежной защитой.

zen.yandex.ru/media/energofiksik/

Заземление и зануление, в чем разница?

Заземление. Контур монтируется отдельно, вне зависимости от способа подключения рабочего энергоснабжения. На противоположном конце (от электроустановки) подключается заземляющее устройство. От него должен быть проложен проводник с надежным контактом. Этот проводник соединяется с корпусом электроустановки.

Как правило, в домашних условиях отдельного контакта на корпусе электроустановки не предусмотрено. Сетевой кабель имеет три жилы: фаза, ноль и «земля». Рабочее заземление подключено к соответствующей контактной группе в электрической розетке. При подключении электроприбора, происходит одновременное соединение с питающими контактами и «землей».

Важно! Такой способ подключения является единственно возможным с точки зрения безопасности. Зануление

Система электропитания имеет фазные и нулевые проводники. В случае однофазного питания (традиционные 220 вольт в нашей розетке), это нулевой провод от ближайшей трансформаторной подстанции. Он имеет непосредственный контакт с реальной «землей», в непосредственной близости от трансформатора. Такой вывод называется глухозаземленным

Зануление. Система электропитания имеет фазные и нулевые проводники. В случае однофазного питания (традиционные 220 вольт в нашей розетке), это нулевой провод от ближайшей трансформаторной подстанции. Он имеет непосредственный контакт с реальной «землей», в непосредственной близости от трансформатора. Такой вывод называется глухозаземленным.

При организации трехфазного питания – нулем будет являться нейтральный вывод трансформатора. Принцип подключения такой же. Нейтраль имеет непосредственный контакт с «землей» в пределах трансформаторной подстанции.

Заключение по теме

Подводя итог всему вышесказанному, можно отметить, что заземление и зануление отличаются друг от друга принципом работы и применяемыми дополнительными защитными устройствами, которые приходится настраивать под определенные условия эксплуатации. То есть, в чем их разница, стало понятным. Как показывает практика, заземление в чистом виде – идеальный вариант в современных условиях. Конечно, приходится дополнительно выделять деньги на приобретение УЗО или дифференциальных автоматов, но это стоит того. Безопасность еще никто не отменял, тем более гарантированную безопасность.

Зануление это просто, что такое защитное зануление

Не все понимают разницу между такими понятиями, как зануление и заземление, хотя, в принципе, это одно и то же. Защитное зануление – это соединение нейтрали трансформатора с металлическим корпусом бытового прибора. А так как система электроснабжения с глухозаземленной нейтралью – основная схема подачи электричества в дома, соответственно схема зануления присутствует в каждом доме.

При всей непонятности названия: глухозаземленная нейтраль – в реалии все достаточно просто. Электроснабжение домов производится от электрической подстанции, в которой установлен трансформатор. Фазные обмотки трансформатора соединены в одной точке, данная схема называется звездой. Разность потенциалов в данной точке равна нулю, то есть, напряжение здесь отсутствует. Именно эта точка соединяется с заземляющим контуром, который расположен внутри подстанции. И от этой точки в дома проводится провод, который называется нулевым. То есть, в каждую квартиру или дом входит два проводника: фазный и нулевой, которые и подают напряжение в 220 вольт.

Теперь, что такое зануление? Современные бытовые приборы в процессе производства комплектуются заземляющим проводом, который соединяет их металлический корпус с вилкой. В последней установлена третья клемма заземления. Соответственно современные розетки также снабжены третьим заземляющим контактом. При установке вилки в розетку происходит замыкание заземляющих контактов, то есть, бытовой прибор подключается к заземляющему контуру, расположенному в подстанции, через нулевой провод. И хотя эта одна из разновидностей заземления, название она получила от нулевого проводника.

Как работает система

Принцип действия зануления очень простой. Он основан на правилах устройства электроустановок (ПУЭ). В них регламентированы нормативы, в которых обозначено, что при появлении короткого замыкания в сети защитное устройство (автомат) должно среагировать за 0,4 секунды. За этот небольшой промежуток времени человек останется в живых, если он коснулся корпуса прибора, который находится под напряжением в виду пробивки изоляции внутри электроустановки.

Есть два тонких момента, которые определяют принцип действия защитного зануления.

  1. При ее использовании значительно уменьшается сопротивление петли «фаза-ноль».
  2. Увеличивается значение тока короткого замыкания, которое становится причиной срабатывания защитного автоматического выключателя.
По второму пункту необходимо дать пояснения. У каждого автомата есть свой определенный предел реагирования на величину тока. Он обычно обозначается на корпусе прибора, к примеру, 16 А. То есть, автомат будет реагировать на силу тока, равную или выше 16 ампер. Все величины ниже данного значения автомат пропускает, то есть, на них он не реагирует, а значит, и не отключает подачу электричества в помещения. Поэтому зануление дома — это защита, которая повышает значение тока короткого замыкания, чтобы автоматы в распределительном щитке срабатывали в независимости от реального пониженного значения.

Внимание! Есть одно требование, которое зафиксировано в ПУЭ. Нельзя изготавливать своими руками отдельный заземляющий контур на улице и подключать к нему заземляющий провод, если в доме используется сеть с глухозаземленной нейтралью. Все дело в том, что самодельный контур может иметь более значительное сопротивление, чем зануляющая система через нейтраль. А это снижение силы тока короткого замыкания, на который не отреагируют защитные автоматы в распределительном щитке.

Это же самое касается создания заземляющего контура через отопление или водопроводные металлические трубы.

Область применения зануления обширна. К ней на промышленных объектах подключаются все электроустановки: электродвигатели, генераторы, трансформаторы, конструкции распределительных устройств и прочие. В быту к ней подключаются бытовые приборы, электрические инструменты и станки, светильники, распределительные щиты.

Назначение защитного зануления – это безопасная эксплуатация электроустановок. Но насколько оно эффективнее настоящей заземляющей сети. Во-первых, необходимо отметить, что отдельно устанавливаемый заземляющий контур – это провод, который проложен от распределительного щитка в доме к трансформатору и подключен к заземляющей сети внутри подстанции.

Во-вторых, могут возникнуть ситуации, когда нулевой проводник по каким-то причинам отгорит. То есть, при коротком замыкании внутри бытового прибора весь потенциал будет направлен на его корпус. А так как при занулении нулевой провод соединен с заземляющим, то последний также не будет задействован в системе безопасности. Последствия при соприкосновении с корпусом прибора – удар током. В заземлении такого не произойдет, потому что оба проводника: ноль и земля – это два отдельно проведенных контура.

Обобщение по теме

Требования ПУЭ точно определяют нормативы, при которых питающая электрическая цепь должна сработать на отключение при возникновении короткого замыкания. Для этого сила тока короткого замыкания должна быть в три раза больше, чем номинальный, обозначенный на автоматическом выключателе. Это касается жилых домов и офисных зданий, где установлены автоматические выключатели с плавкими вставками. Для защитных устройств с электромагнитными расцепителями повышающий коэффициент равен 1,4. Для взрывоопасных помещений используется коэффициент 4-6.

Чтобы ток такой силы мог спокойно растекаться по зануляющей сети, необходимо, чтобы ее сопротивление при 220 вольт было 8 Ом, при 380 вольтах – 4 Ома. Это может обеспечить медный провод сечением 4 мм², не меньше. Этот размер применяется в бытовых сетях, где используется напряжение 220 В.

Обобщая информацию, можно дать окончательное определение зануляющей системе. Итак, занулением называется соединение нетоковедущих металлических частей электроустановок (бытовых приборов) с нейтралью трансформатора. Последняя соединяется с заземлением. Добавим, что заземляющие и зануляющие провода имеют один окрас – желто-зеленый. Это делается для облегчения монтажа и для легкости определения проводников в процессе проводимого ремонта.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

зачем нужно устройство защитного заземления

Система защитного заземления в электросети является одним из важнейших элементов безопасности дома. Что необходимо знать о ней?

На фото:

По Правилам устройства электроустановок (ПУЭ) в доме должна быть система защитного заземления. И это отнюдь не бюрократические излишества.

Любой электрический ток является следствием возникновения напряжения, то есть разности потенциалов. К примеру, в бытовой электросети фазовый провод обладает потенциалом 220 В, а нулевой рабочий проводник, как понятно из его названия, – 0 В. Таким образом, напряжение (разность потенциалов) составляет 220 – 0 = 220 В.При подключении электроприбора возникает электрический ток, который протекает от большего потенциала к меньшему, стремясь уровнять разницу в их значениях. Для наглядности представим себе два сосуда с разным количеством воды, соединенных трубой. Жидкость будет перетекать из одной емкости в другую до тех пор, пока в обеих ее уровень не станет одинаковым.

На фото: Чтобы понять принцип движения тока достаточно представить сообщающиеся сосуды.

Возникновение тока утечки

Зачем в доме защитное заземление? Представим, что некая цепь электропитания в доме защищена при помощи устройства защитного отключения (УЗО). В результате повреждения изоляции фазового проводника внутри одного из бытовых электроприборов, подключенных к этой цепи, деталь его корпуса оказалась под напряжением 220 В. Но для срабатывания УЗО этого недостаточно: нужно, чтобы появился ток утечки (известный также как разностный или дифференциальный.

Однако ток утечки возникнет лишь в том случае, если прибор будет физически соединен с какой-либо точкой, обладающей иным потенциалом. Собственно, в этом и состоит суть работы системы защитного заземления, которую называют также системой уравнивания потенциалов: корпус электроприбора при помощи специального провода соединяется с землей – средой, обладающей крайне высоким электрическим сопротивлением. Ее потенциал равен нулю или близок к этому значению.

Таким образом, если внешние заземленные части неисправного устройства окажутся под воздействием напряжения, в заземляющем проводе возникнет электрический ток. Он приведет к нарушению баланса силы тока в подающем (фазовом) и обратном (нулевом) проводниках, что вызовет мгновенное срабатывание УЗО.

На фото:

Огнетушитель рядом с элетрощитком может уберечь от многих неприятностей.

Если система УЗО отсутствует? Следует понимать, что заземление или зануление не отменяют необходимость установки УЗО. В случае его отсутствия может произойти следующее: корпус неисправного прибора будет оставаться под напряжением, пока к нему кто-нибудь не прикоснется. Этот человек и выступит в роли заземляющего проводника, а ток утечки пройдет на землю через его тело.

Эта неприятная ситуация может стать опасной, если УЗО по каким-либо причинам сработает с задержкой, пусть даже в несколько секунд. Изначально довольно высокое электрическое сопротивление организма человека значительно – до десятков раз – снижается при болезнях, нарушении кожного покрова, алкогольном опьянении, в условиях повышенной влажности и т.д. И в таком случае ток, протекающий через тело даже на протяжении нескольких секунд, может причинить серьезный ущерб здоровью.

Структура системы защитного заземления

Провод к дому. В идеале защитное заземление и зануление должны быть организованы централизованно. То есть прямо от трансформаторной будки к жилым зданиям прокладываются три или пять проводов – при однофазном или трехфазном питании соответственно.

На фото:

Узнать «ноль» легко — провод маркируется желто-зелеными полосами.

Такая система называется TN-S (система с глухозаземленной нейтралью) и состоит из одного или трех фазовых проводников (L), а также рабочего нулевого (N) и защитного нулевого провода (PE). Последний легко узнать по цвету: согласно действующим стандартам он маркируется продольными желтыми и зелеными полосами.

Провода внутри дома. Разводка внутри здания выполняется по трехпроводной схеме L-N-PE. Таким образом, защитное заземление будут обеспечено для всех розеток и выключателей в доме.

На фото:

При разводке проводов по дому абсолютно все розетки должны иметь «ноль».

Другой распространенный вариант – это система TN-C-S. От TN-S она отличается только тем, что нулевой рабочий (N) и нулевой защитный (PE) провода, идущие от трансформатора, объединены между собой в так называемый PEN-проводник. Разделяются они в распределительном щитке на вводе электроэнергии в здание.

Прочие системы электроснабжения загородных домов, такие как TN или TN-C, не предусматривают наличие централизованного защитного заземления. В таких случаях домовладельцы вынуждены организовывать устройство защитного заземления самостоятельно.


В статье использованы изображения 360.ru


Зануление защитное — Справочник химика 21

    Прикосновение к нетоковедущим частям электрооборудования, нормально не находящимся под напряжением, но которые могут оказаться под ним при замыкании тока на корпус, представляет такую же опасность, как й прикосновение к токоведущей части сети. Для обеспечения безопасности в случае прикосновения к нетоковедущим частям оборудования применяют следующие меры защиты защитное заземление, зануление, защитное отключение  [c.44]
    Для предотвращения поражений, вызванных прикосновением к нетоковедущим частям, применяют различные защитные меры заземление, зануление, защитное отключение. [c.168]

    Защитное заземление, зануление, защитное отключение оборудования, приборов, средств сигнализации и блокировки выполняются в соответствии с требованиями стандартов и правил. [c.29]

    Наряду с общими мерами безопасности для защиты людей от поражения током в сетях и электроустановках необходимо применять по крайней мере одну из следующих мер защитное заземление, зануление, защитное отключение, малые напряжения (до 42 В), разделяющие трансформаторы. [c.334]

    К средствам защиты от поражения электрическим током относятся оградительные устройства изолирующие устройства и покрытия устройства защитного заземления и зануления молниеотводы и разрядники знаки безопасности. [c.111]

    Защитное зануление заключается в присоединении к неоднократно заземленному нулевому проводу питающей сети корпусов и других конструктивных металлических частей, электрооборудования, которые нормально не находятся под напряжением, но вследствие повреждения изоляции могут оказаться под напряжением. Принципиальная схема зан ления показана на рис. 12.6. [c.162]

    Занулению подлежат те же металлические конструктивные нетоковедущие части электрооборудования, которые подлежат защитному заземлению корпуса машин и аппаратов, баки трансформаторов и др. [c.164]

    Все устройства электрического освещения взрывоопасных объектов должны иметь защитное заземление и зануление в соответствии с Правилами устройства электроустановок (ПУЭ) . [c.151]

    Защитное зануление — это преднамеренное соединение всех металлических частей электроустановок с глухозаземленной нулевой точкой (нейтралью) вторичной обмотки силового трансформатора. Такое соединение выполняется зануляющим проводником или нулевым защитным проводником. Защитное зануление применяется в сетях с глухозаземленной нейтралью для автоматического отключения поврежденного участка» сети в возможно короткое время. [c.153]

    Зануление, заземление и защитное отключение на электроустановках служат не только для защиты персонала от поражения [c.153]

    Зануление в схемах с глухим заземлением нейтрали (защитное отключение) [c.52]

    В нулевом проводе, используемом для зануления, не должно быть плавких предохранителей и выключателей, так как в этом случае разрывается цепь петля — фаза — нуль и при замыкании на корпус сила тока не достигает значения, необходимого для защитного отключения. [c.53]


    Для защиты от прикосновения могут быть применены все мероприятия, допущенные энергоснабжающим предприятием, например заземление, зануление, применение защитных схем с контролем тока утечки или аварийного потенциала. Для защиты от случайного прикосновения к [c.216]

    Аппаратура, имеющая дополнительную защиту от поражения электрическим током с помощью защитного заземления (или зануления), относится к классам [c.105]

    Недопустимый термин защитное зануление [c.318]

    Если в установке, где имеется зануление, какая-либо часть будет иметь защитное заземление, то от поврежденного объекта через нулевой провод опасное напряжение перейдет по защитному заземлению на неповрежденное оборудование. Поэтому одновременное устройство заземления и зануления недопустимо. В случае обрыва нулевого провода запуленные объекты оказываются под большим напряжением, которое может сохраняться долгое время, до тех пор, пока не будет устранен обрыв провода. Рекомендуется заземлять нулевой провод не только у трансформатора, но также и в местах разветвления проводки протяжением более 100 м и обязательно в конечном пункте цепи. [c.242]

    Зануление — преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под [c.45]

    Изолирующие устройства и покрытия устройства защитного заземления, зануления и защитного отключения  [c.47]

    Основными мерами предотвращения электротравм в лабораториях являются защита от прикосновения к находящимся под напряжением частям электрооборудования и применение защитного заземления или зануления. Прочие меры защиты от поражения электрическим током — защитное отключение, применение малых напрял[c.60]

    Аппаратура, имеющая дополнительную защиту о» поражения электрическим током с помощью защитного заземления (или зануления), относится к классу 01 или I. Изделия класса 01 имеют двухжильный сетевой шнур, а заземление корпуса или других доступных для прикосновения металлических частей осуществляется независимо от подключения к питающей сети. Электроприборы снабжены специальными зажимами для присоединения заземляющего провода, что необходимо сделать до включения прибора в сеть. [c.61]

    Электротравматизм в зависимости от условий прикосновения (контакта) к электроопасным элементам распределяется следующим образом 20% травм происходит вследствие прямого контакта человека с таковеду-щимн частями оборудования и электричеоких сетей, находящимися под напряжением около 10% травм связано с появлением напряжения на нетоковедущих частях оборудования вследствие несовершенства устройств безопасности (заземление, зануление, защитное отключение) или отсутствия их. Значительную часть электро-травм составляют ожоги и поражения электрической дугой, которые связаны с приближением к открытым токоведущим частям на недопустимое расстояние, неиспользованием защитных средств и применением инструмента, не отвечающего требованиям безопасности. [c.206]

    Для обеспечения электробезопасности применяют отдельно или в сочетании один с другим следующие технические способы и средства защитное заземление, зануление, защитное отключение, выравнивание потенциалов, малое напряжение, изоляция токоведущих частей электрическое разделение сетей оградительные устройства блокировка, предупредительная сигнализация, знаки безопасности предупредительные плакаты электрозащитпые средства. [c.254]

    Защитное зануление. Защитным за-нулением называется присоединение металлического корпуса электрических машин, трансформаторов и других нетоковедущих частей электрообо- [c.177]

    При пробое фазы на заземлителе или запуленном корпусе вначале проявится защитное свойство заземления (или зануления) и напряжение корпуса снизнт.я до некоторого предела Vk- Затем, если i/k окажется выше заранее установленного предельно допустимого напряжения срабатывает за- [c.165]

    ГОСТ 12.1—030—81. ССБТ. Электробезопасность. Защитные заземление, зануление. [c.582]

    Защитное отключение — это автоматическое отключение поврежденного участка сети быстродействующим аппаратом. Оно применяется в сетях с изолированной нейтралью — при снижении уровня изоляции ниже допустимой величины в сетях с /лухоза-земленной нейтралью — при однофазных замыканиях на корпус оборудования. Защитное отключение используется в тех случаях, когда безопасность персонала не может быть обеспечена устройствами зануления или заземления, [c.153]

    Занулению или заземлению подлежат корпуса электродвигателей, аппаратов, светильников, каркасы расределительных щитов, кабельные конструкции, стальные трубы электропроводки, металлические оболочки кабелей и проводов, лотки, коробы, металлоконструкции распределительных устройств и другие электроконструкции. Защитная система, состоящая из заземлителей (электродов заземления) и соединенных с ними заземляющих или зануляющих проводников, называется заземляющим устройством. Согласно Правилам устройства электроустановок (ПУЭ) , величина сопротивления заземляющего устройства, к которому присоединены нейтрали генераторов и трансформаторов (в сетях до 1000 В), должна быть 2 Ом для напряжения 660/380 В 4 Ом для напряжения 380/220 В 8 Ом для напряжения 220/127 В. [c.154]


    Здания и сооружения второй категории защищаются от прямых ударов молнии отдельно стоящими или устанавливаемыми на самих зданиях и сооружениях неизолированными молниеприемни-ками (стержневыми, тросовыми или сетчатыми). Импульсное сопротивление каждого заземлителя не должно превышать 10 Ом. Допускается объединять заземлители молниеприемников с заземляющими устройствами защиты от вторичных воздействий молнии и защитного заземления или зануления электрооборудования. При толщине металла сооружений или емкостей с горючими жидкостями и газами более 4 мм (наружные взрывоопасные установки класса В-1г) не требуется устанавливать молниеприемники и токо-отведы, а достаточно присоединить металлический корпус емкости или другого защищаемого сооружения второй категории к зазем-лителям. Для наружных установок класса В-1г импульсное сопротивление заземлителей не должно превышать 50 Ом. [c.155]

    На практике, независимо от системы электроснабже- ия, в качестве дополнительной меры защиты или при «невозможности выполнить защитное заземление или зануление применяют различные релейные схемы защитного отключения. [c.56]

    Защитное заземление, зануление, заиштное отключение оборудования, [c.222]

    Продолжительность нескольких одновременных замыканий на зем-ЛЮ должна быть надежно ограничена до минимума. Если заземление какого-либо проводника или какой-либо части установки, относящихся к цепи рабочего тока, необходимо по эксплуатационным соображениям или для предотвращения слишком высоких напряжений прикосновения, то установку следует заземлять только в одном месте. Поэтому в сетях постоянного тока зануление как защитное мероприятие по VDE0100, 10 N [7] не может быть применено. [c.315]

    ГОСТ 12,1.030-81. ССБТ. ЭЛЕКТРОБЕЗОПАСНОСТЬ, ЗАЩИТНОЕ ЗАЗЕМЛЕНИЕ. ЗАНУЛЕНИЕ, [c.55]

    Все крупные электроприборы в металлических корпусах (муфельные печи, термостаты, злектродвигате ли и т. д.) необходимо снабжать защитным заземлением или занулением (присоединение корпуса прибора к заземленному нейтральному проводу). Провод для заземления (зануления) должен выдерживать ток, [c.15]

    Зануление — преднамеренное электрическое соединение с нуле вым защитным проводником металлических нетоковедущиж частей которые могут оказаться под наприжемнем [c.318]

    При защите занулением металлические нетоковедущие части электроустановок, которые могут случайно оказаться под напря жением, присоединяют к неоднократно заземленному нулевому проводу. Зануление применяют вместо защитного заземления в электроустановках напряжением до 1000 В с глухрзаземленной нейтралью, а также в трехпроводных сетях постоянного тока с глухозаземленной средней точкой. [c.197]

    Защитное ог/слючение — быстродействующая защита, обеспечивающая автоматическое. отключение электроустановки при возникновении в ней опасности поражения током. Эту меру защиты применяют в особо опасных помещениях по опасности поражения электрическим током, когда такие меры, как защитное заземление и зануление, не обеспечивают полной безопасности. Системы защитного отключения могут реагировать на появление или повышение напряжения относительно земли на корпусе, на увеличение силы тока, снижение сопротивления изоляции и т. д. [c.46]

в чем разница по уровню безопасности — Рамблер/новости

В предназначении и монтаже этих способов защиты от поражения электрическим током путаются даже профессиональные электрики. Речь идет не о всех, но прецеденты есть. А ведь элементарное понятие терминов иногда спасает десятки жизней. Даже если говорить не о поражении током, а о сдаче в эксплуатацию нового частного дома. Если выполнить защиту неправильно, контролирующая организация не разрешит подачу напряжения на вводной щит. И правильно сделает, никому не хочется брать на себя ответственность за жизни людей. Сегодня разберемся, что означают термины заземление и зануление, в чем разница между ними, и когда возможно использование того или иного способа защиты.

Правильно выполненное заземление – залог долговечности бытовых приборов и безопасности человека.

Содержание статьи

1 Требования электробезопасности: выдержки из ГОСТ

2 Что такое заземление: как устроено, принцип работы и преимущества такой защиты

3 Что такое зануление электроприборов: возможности применения

4 Зануление и заземление: в чем разница

4.1 Чем отличается заземление от зануления: обобщение

5 Что такое зануление и как его правильно устроить

6 Лучший вариант защиты это заземляющее устройство?

7 Преимущества и недостатки квартирного зануления

Требования электробезопасности: выдержки из ГОСТ

В соответствии с ГОСТ 12.1.009–76:

защитное заземление – это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением;

зануление – это преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.

В ГОСТ Р 50571.2– 94 «Электроустановки зданий. Часть 3. Основные характеристики» приводится классификация систем заземления электрических сетей: IT, TT, TN–С, TN–C–S, TN–S.

Однако иногда возможности заземлить устройства, нет. Тогда делается защитное зануление

Согласно ПУЭ заземление выполняется (при наличии контура или возможности его монтажа) в обязательном порядке. Заземленными должны быт все металлические корпуса электроприборов, которые гипотетически могут попасть под напряжение. Если возможность заземления отсутствует, производится защитное зануление с обязательной установкой устройств защитного отключения (УЗО) и автоматических выключателей в вводном электрическом щите.

Конечно, язык, которым написаны ПУЭ и ГОСТ бывает сложен для человека без электротехнического образования, а значит стоит разобрать подробно, что такое заземление и зануление на обычном языке, понятном простому обывателю.

Все металлические шкафы и корпуса приборов должны быть заземлены или занулены

Что такое заземление: как устроено, принцип работы и преимущества такой защиты

Принцип работы заземления в том, чтобы не допустить прохождения электрического тока через тело человека, если в силу каких-либо обстоятельств корпус электроприбора окажется под напряжением. Такое может случиться при повреждении изоляции жил кабеля. Рассмотрим пример. Жила с поврежденной изоляцией соприкасается с металлическим корпусом микроволновой печи. Хозяйка, готовя пищу на кухне, прикасается к электроприбору, который не заземлен. Это приводит к тому, что ток устремляется к земле, используя человеческое тело, как проводник. Итог может быть самым плачевным, вплоть до летального исхода.

Неисправная электропроводка приводит к возникновению напряжения на корпусе бытовых приборов

Теперь разберем для чего нужно заземление, как оно работает. Тот же пример, но уже с использованием защиты. Требования к заземлению применяются самые жесткие. При замерах сопротивление контура должно практически отсутствовать, что позволяет току беспрепятственно уходить в землю по шине. Законы физики не дают напряжению протекать через человеческое тело, которое имеет свое сопротивление. У одних оно больше, у других меньше, но наличие его не оспаривается. Получается, что ток утекает по пути наименьшего сопротивления, через заземлитель. Если при этом в схему включено УЗО, оно определит утечку и отключит подачу электроэнергии на прибор.

Устройство защитного отключения (УЗО) срабатывает при малейшей утечке тока

Что такое зануление электроприборов: возможности применения

Защитное зануление электроприборов используется, если смонтировать заземление невозможно. Такая ситуация может возникнуть в случае, если многоквартирный дом построен в советские времена. Своего контура у таких домов нет, а самостоятельно его устроить не получится.

Защитное зануление – это система, выполняющая отличную от заземления работу. Если второе призвано увести напряжение в землю, исключая возможность поражения электрическим током, то первое выполняется с целью создания (при пробое изоляции и попадания напряжения на корпус) короткого замыкания. В этом случае срабатывает автоматика и электричество отключается.

Источником опасности может стать любой незаземленный электроприбор

Важная информация! В многоквартирных домах современной постройки и частных секторах в наши дни монтаж зануления запрещен. Это продиктовано целями безопасности проживающих. Автоматика может подвести, что приведет к непоправимым последствиям.

Защитное зануление требует правильного монтажа. Не стоит думать, что достаточно бросить перемычку с нулевого контакта внутри розетки на заземляющий. Это категорически запрещено. Рассмотрим ситуацию, когда уже «подгоревший» ноль подвергается нагрузке короткого замыкания, а автомат еще не успевает сработать. Ноль отгорает, исключив замыкание, но прибор остается под напряжением. Человек, надеясь на отсутствие электричества (света ведь нет, ноль отгорел) на ощупь продвигается к выходу и облокачивается на корпус бытового прибора, находящегося под напряжением. Исход ясен, не так ли?

Правильно выполненное заземление вкупе с защитной автоматикой – залог спокойствия проживающих в доме или квартире

Зануление и заземление: в чем разница

Разница этих систем в методе осуществления защиты. При устройстве защитного заземления роль отсекателя напряжения при возникновении аварийной ситуации берет на себя УЗО, а в случае монтажа зануления УЗО становится бессильно, сработать может только автомат. Почему так происходит? Устройство защитного отключения реагирует только на токовые утечки, совершенно игнорируя любые перегрузки, включая короткое замыкание. В случае монтажа зануления и включения в схему УЗО без автомата, при коротком замыкании УЗО не срабатывает, а попросту сгорает, не отключив напряжение с линии.

Вот к чему может привести неправильный монтаж защитного зануления

Чем отличается заземление от зануления: обобщение

Заземление отличается от зануления способом защиты и монтажом. Такие системы противоречат друг другу, а значит монтаж схемы с включением обоих вариантов, неприемлем. Зануление устраивается только в многоквартирных домах, не оборудованных собственным контуром. В иных случаях такой монтаж запрещен. О способах его устройства сейчас поговорим подробнее.

Что такое зануление и как его правильно устроить

Схема монтажа выглядит следующим образом. Пришедшая к вводному автомату нейтраль раздваивается, каждая из жил идет на отдельную шину. Одна из шин становится нулевой, а вторая заземляющей. От шины нейтрали жилы идут через автоматику и дальше на все нулевые контакты потребителей квартиры. Заземляющая соединяется с корпусом вводного щита, провод желто-зеленого цвета от нее идет на соответствующие контакты розеток и осветительные приборы, которые этого требуют. Соприкосновение заземляющего провода с нулевым после защитной автоматики запрещено.

Вывод заземления из-под земли. Ниже, на определенном расстоянии находится контур

Важная информация! Неправильный монтаж защитного зануления приводит к отгоранию жил кабелей, пожару. Так же возможно поражение электрическим током вплоть до летального исхода.

Лучший вариант защиты это заземляющее устройство?

Единственно правильный ответ на этот вопрос – да. Это действительно так. Контур заземления, смонтированный по всем правилам, защитит человека намного лучше предыдущего варианта. Улучшить защиту можно при помощи дополнительных устройств – автоматических выключателей, УЗО или дифавтоматов. Ведь что такое защитное заземление? По своей сути это система отвода электрического тока в случае аварии туда, где он не может навредить человеку.

Так должен выглядеть готовый контур заземления частного дома

Касаемо заземляющего устройства можно сказать, что оно может быть различным – контур заземления по периметру здания, «треугольник» во дворе или естественный заземлитель. Все правила и способы его монтажа мы обязательно рассмотрим в одной из ближайших тем. Но для общей информации имеет смысл понять определение, что является естественным заземлителем.

Полезно знать! В качестве естественного заземлителя можно использовать любые металлические конструкции, находящиеся под землей, за исключением трубопроводов ГСМ, канализации и предметов, покрытых антикоррозийными составами. Водопроводные трубы для этой цели могут использоваться.

В таких домах заземление не предусмотрено – придется довольствоваться занулением

Преимущества и недостатки квартирного зануления

О недостатках такой защиты говорилось сегодня много. Попробуем обобщить информацию. При таком способе нельзя быть уверенным на 100% в своей защите. Особенно, если монтаж выполнен неправильно. Еще одним минусом является то, что при слабом контакте или поврежденном кабеле, автомат просто не успеет сработать. В результате провод отгорит, что потребует ремонта.

Положительным в такой защите является возможность ее монтажа в многоквартирном доме старой постройки, где контур заземления отсутствует. Хоть и плохая, но все же защита. Сразу вспоминается поговорка, «с паршивой овцы хоть шерсти клок» или «на безрыбье и рак – рыба». Предлагаем посмотреть несколько фото примеров щитов с выполненным в них занулением.

Несмотря на то, что монтаж защитного зануления в жилых помещениях не рекомендуется, бывают ситуации, когда без него не обойтись. Тогда уже не до выбора, и человек применяет те средства защиты, которые ему доступны. Главное – это развести схему электропроводки квартиры и сделать правильно все расключения в вводном распределительном щите. Помните, что от этого зависит сохранность имущества, здоровье, а иногда и жизнь. Ведь напряжение в домашней сети опасно – оно может нанести серьезный ущерб организму.

Очень надеемся, что изложенная сегодня информация была полезна читателям. Если возникли вопросы, мы всегда рады на них ответить. Задать их можно в обсуждении ниже. Там же можно и поделиться своим опытом или оставить комментарий к статье.

А напоследок интересный и познавательный ролик по теме нашего сегодняшнего разговора:

Заземление и зануление в чем разница и как отличить проводники


Очень часто даже сами электрики путают два таких понятия как заземление и зануление. Как же их отличить рядовому потребителю? По определению заземление — это принудительное соединение металлических частей оборудования с землей. Главное его назначение — понизить до минимума напряжение, которое может возникнуть на корпусе аппарата, если произойдет пробой изоляции.

Зануление — это соединение металлических частей эл.оборудования с нулевым проводом. Если произойдет пробой изоляции и фаза попадет на зануленный корпус — получится однофазное короткое замыкание. Оно то и вызовет отключение напряжение через защитный автомат. Зануление и заземление выполняют по сути одну задачу, но немного разными способами.

Как на практике отличить проводник заземления от нулевого провода? Допустим у вас не завершен до конца ремонт и из подрозетника торчит кабель с тремя жилами. Определить какая из них фазная не так сложно. Для этого нужно воспользоваться индикаторной отверткой или тестером.

Только поняв какой из проводников является фазным, можно приступать с методам поиска земли и нуля.

Заземление

Заземление представляет собой один проводник или составленную из них группу, находящуюся в соприкосновении с землей. С его помощью выполняется сброс поступающего на металлический корпус агрегатов напряжения по пути нулевого сопротивления, т.е. к земле.

Такое электрическое заземление и зануление электрооборудования в промышленности актуально и для бытовых приборов со стальными наружными частями. Прикосновение человека к корпусу холодильника или стиральной машины, оказавшегося под напряжением, не вызовет поражения электрическим током. С этой целью используются специальные розетки с заземляющим контактом.

Источники помех на шине Земля

Все помехи, воздействующие на кабели, датчики, исполнительные механизмы, контроллеры и металлические шкафы автоматики, в большинстве случаев протекают и по заземляющим проводникам, создавая паразитное электромагнитное поле вокруг них и падение напряжения помехи на проводниках.

Источниками и причинами помех могут быть молния, статическое электричество, электромагнитное излучение, «шумящее» оборудование, сеть питания 220 В с частотой 50 Гц, переключаемые сетевые нагрузки, трибоэлектричество, гальванические пары, термоэлектрический эффект, электролитические процессы, движение проводника в магнитном поле и др. В промышленности встречается много помех, связанных с неисправностями или применением не сертифицированной аппаратуры. В России уровень помех регулируются нормативами — ГОСТ Р 51318.14.1, ГОСТ Р 51318.14.2, ГОСТ Р 51317.3.2, ГОСТ Р 51317.3.3, ГОСТ Р 51317.4.2, ГОСТ 51317.4.4, ГОСТ Р 51317.4.11, ГОСТ Р 51522, ГОСТ Р 50648. На этапе проектирования промышленного оборудования, чтобы снизить уровень помех, применяют маломощную элементную базу с минимальным быстродействием и стараются уменьшить длину проводников и экранирование.

Принцип работы УЗО

Для безопасной работы промышленного и бытового оборудования применяют устройства защитного отключения (УЗО), используют приборы автоматических дифференциальных выключателей. Их работа основана на сравнении входящего по фазному проводу электрического тока и выходящего из квартиры по нулевому проводнику.

Нормальный режим работы электрической цепи показывает одинаковые значения тока в названых участках, потоки направлены в противоположных направлениях. Для того чтобы они и далее уравновешивали свои действия, обеспечивали сбалансированную работу приборов, выполняют устройство и монтаж заземления и зануления.

Пробой в любом участке изоляции приводит к протеканию тока, направляющегося к земле, через поврежденное место с обходом рабочего нулевого проводника. В УЗО показывается дисбаланс силы тока, прибор автоматически выключает контакты и напряжение исчезает во всей рабочей схеме.

Для каждого отдельного эксплуатационного условия предусмотрены различные установки для отключения УЗО, обычно диапазон наладки составляет от 10 до 300 миллиампер. Устройство срабатывает быстро, время отключения составляет секунды.

Основные понятия.

Сила тока— скалярная физическая величина, равная отношению заряда, прошедшего через проводник, ко времени, за которое этот заряд прошел.

где
I— сила тока,qвеличина заряда (количество электричества),t— время прохождения заряда.
Плотность тока— векторная физическая величина, равная отношению силы тока к площади поперечного сечения проводника.

где
j

плотность тока
,
S

площадь сечения проводника.
Направление вектора плотности тока совпадает с направлением движения положительно заряженных частиц.

Напряжение


скалярная физическая величина, равная отношению полной работе кулоновских и сторонних сил при перемещении положительного заряда на участке к значению этого заряда.
гдеAполная работа сторонних и кулоновских сил,q— электрический заряд.

Электрическое сопротивление— физическая величина, характеризующая электрические свойства участка цепи.

гдеρ— удельное сопротивление проводника,lдлина участка проводника,Sплощадь поперечного сечения проводника.

Проводимостьюназывается величина, обратная сопротивлению

где Gпроводимость.

Работа заземляющего устройства

Чтобы присоединить заземляющее устройство к корпусу бытового или промышленного оборудования применяется РЕ-проводник, который из щитка выводится по отдельной линии со специальным выходом. Конструкция обеспечивает соединение корпуса с землей, в чем и заключается назначение заземления. Отличие заземления от зануления состоит в том, что в начальный момент при подсоединении вилки к розетке рабочий ноль и фаза не коммутированы в оборудовании. Взаимодействие исчезает в последнюю минуту, когда размыкается контакт. Таким образом, заземление корпуса имеет надежное и постоянное действие.

Практические советы

При полной или частичной замене, модернизации или ремонте проводки в квартире или загородном доме важно не пренебрегать правилами личной безопасности. Несколько практических советов:

  • Если установлена двухпроводная электрическая сеть, при установке трехпроводной розетки нельзя соединять заземляющий контур и рабочий ноль. Это нарушение одного из основных правил безопасности. Если пренебречь им, корпус бытового прибора, подключенного к сети, всегда будет под напряжением, что отрицательно сказывается на производительности и эксплуатационном сроке, а также несет опасность жизни и здоровью человека и домашних питомцев.
  • Во время строительства дачи или загородного дома установка заземления – обязательное условие эксплуатации электричества. Недорогая, имеющая простую конструкцию заземляющая система сбережет здоровье людей и целостность всей дорогостоящей бытовой техники, электротехнических приборов.
  • Для обеспечения электроэнергией мощных бытовых приборов, например, стиральной или посудомоечной машины, бойлера, в помещении рекомендуется проводить отдельную магистраль электропроводки. Обусловлено это тем, что при одновременном запуске этих приборов датчики УЗО (устройства защитного отключения) и предохранительные датчики будут часто срабатывать, отключая полностью подачу ресурса на квартиру или дом.

Предохранительный автомат и УЗО – это два абсолютно разных электротехнических прибора. Каждый из них имеет свои конструктивные особенности и выполняет определенные функции.

Устройство защитного отключения – это защита человека и домашних питомцев, прибор быстрого срабатывания. Автомат – это электротехнический прибор, который улавливает изменение параметров электрической сети, в частности ее перегрузку. Его основной недостаток – может сработать не сразу, а по истечении определенного времени. Чтобы совместить возможности двух защитных приборов и нивелировать их недостатки, был разработан гибридный прибор – дифавтомат.

{SOURCE}

Два пути устройства заземления

Системы защиты и отвода напряжения подразделяют на:

  • искусственные:
  • естественные.

Искусственные заземления предназначены непосредственно для защиты оборудования и человека. Для их устройства требуются горизонтальные и вертикальные стальные металлические продольные элементы (часто применяют трубы с диаметром до 5 см или уголки № 40 или № 60 длиной от 2,5 до 5 м). Тем самым отличается зануление и заземление. Разница состоит в том, что для выполнения качественного зануления требуется специалист.

Естественные заземлители используются в случае их ближайшего расположения рядом с объектом или жилым домом. В качестве защиты служат находящиеся в грунте трубопроводы, выполненные из металла. Нельзя использовать для защитной цели магистрали с горючими газами, жидкостями и тех трубопроводов, наружные стенки которых обработаны антикоррозионным покрытием.

Естественные объекты служат не только защите электроприборов, но и выполняют свое основное предназначение. К недостаткам такого подключения относится доступ к трубопроводам достаточного широкого круга лиц из соседних служб и ведомств, что создает опасность нарушения целостности соединения.

Ошибки, допускаемые при монтаже

Наиболее распространенными ошибками при устройстве систем защиты бывают следующие:

  1. Недостаточный контакт жилы, соединяющей корпус электроприбора с заземляющей шиной. В этом случае эффективность защиты уменьшается. Запрещается осуществлять контакт с шиной заземления через скрутку. Соединение должно быть только болтовым
  2. Использование в качестве заземлителя трубопроводов отопительной или водопроводной системы. Утечки тока могут проявляться путем поражения через воду или прикосновение к трубам. Кроме того от этого могут пострадать соседи.
  3. В случае отсутствия специального образования или навыков работы с электроприборами, лучше доверить устройство защитных систем опытным специалистам.
  4. Применение в качестве жилы между потребителем и заземляющей шиной алюминиевого провода. Может произойти окисление и контакт будет утрачен.
  5. Неправильная коммутация зануляющего провода при расщеплении с рабочим нулем (фиксация под один зажим). Возможно отгорание проводника и выход из строя защитыУстройство зануления непосредственно в розетке или в распределительной коробке. При нарушении целостности или отключении рабочего нуля (вышел из строя автомат, отгорел контакт), прибор может оказаться под опасным напряжением.

Практически каждый из нас слышал о том, что большинство бытовых приборов нужно заземлять, но мало кто может сказать, для чего, и как оно вообще работает. Еще меньше людей знают, что такое зануление, и совсем немногие могут ответить на вопрос о том, чем отличается ноль от земли. Тем не менее от правильного заземления или зануления зависит человеческая жизнь, поэтому приведенную в этой статье информацию без преувеличения можно назвать жизненно важной.

Зануление

Помимо заземления, в некоторых случаях используют зануление, нужно различать, в чем разница. Заземление и зануление отводят напряжение, только делают это разными способами. Второй метод является электрическим соединением корпуса, в нормальном состоянии не под напряжением, и выводом однофазного источника электричества, нулевым проводом генератора или трансформатора, источником постоянного тока в его средней точке. При занулении напряжение с корпуса сбрасывается на специальный распределительный щиток или трансформаторную будку.

Зануление используется в случаях непредвиденных скачков напряжения или пробоя изоляции корпуса промышленных или бытовых приборов. Происходит короткое замыкание, ведущее к перегоранию предохранителей и мгновенному автоматическому выключению, в этом заключается разница между заземлением и занулением.

Устройство зануления

Чем отличается заземление от зануления, видно и на примере подключения. Корпус отдельным проводом соединяется с нулем на распределительном щитке. Для этого в розетке соединяют третью жилу электрического кабеля с предусмотренной для этого клеммой в розетке. У этого метода есть недостаток, который заключается в том, что для автоматического отключения нужен ток, по размеру больший, чем заданные установки. Если в нормальном режиме отключающее устройство обеспечивает работу прибора с силой тока в 16 Ампер, то малые пробои тока продолжают утекать без отключения.

После этого становится понятно, какая разница между заземлением и занулением. Человеческое тело при воздействии силы тока в 50 миллиампер может не выдержать и наступит остановка сердца. Зануление от таких показателей тока может не защитить, так как его функция заключается в создании нагрузок, достаточных для отключения контактов.

Нулевой проводник

Нулевой проводник или, как его еще называют, нейтраль выполняет простую, но важную функцию. Он выравнивает нагрузки в сети, на выходе обеспечивая напряжение в 220 Вольт. Избавляет фазы от скачков и перекосов, нейтрализуя их. Не удивительно, что его символом является буква n – образован от английского слова Neutral. А сочетание обозначений n, l в электрике всегда идут рядом.

В распределительном щитке все кабели данной расцветки группируются на одной, нулевой шине с соответствующей буквенной аббревиатурой. В розетках также есть необходимая маркировка.

Поэтому мастер никогда не спутает, куда крепить специальный нулевой контакт.

Такая маркировка, принцип работы применимы как к однофазной, так и к трехфазной сети.

Заземление и зануление, в чем разница?

Между этими двумя способами существуют отличия:

  • при заземлении избыточный ток и возникшее на корпусе напряжение отводятся непосредственно в землю, а при занулении сбрасываются на ноль в щитке;
  • заземление является более эффективным способам в вопросе защиты человека от поражения электрическим током;
  • при использовании заземления безопасность получается за счет резкого уменьшения напряжения, а применение зануления обеспечивает выключение участка линии, в которой случился пробой на корпус;
  • при выполнении зануления, чтобы правильно определить нулевые точки и выбрать метод защиты потребуется помощь специалиста электрика, а сделать заземление, собрать контур и углубить его в землю может любой домашний мастер-умелец.

Заземление является системой отвода напряжения через находящийся в земле треугольник из металлического профиля, сваренного в местах соединения. Правильно устроенный контур дает надежную защиту, но при этом должны соблюдаться все правила. В зависимости от требующегося эффекта выбирается заземление и зануление электроустановок. Отличие зануления в том, что все элементы прибора, которые в нормальном режиме не находятся под током, подсоединяются к нулевому проводу. Случайное касание фазы к зануленным деталям прибора приводит к резкому скачку тока и отключению оборудования.

Сопротивление нейтрального нулевого провода в любом случае меньше этого же показателя контура в земле, поэтому при занулении возникает короткое замыкание, которое в принципе невозможно при использовании земляного треугольника. После сравнения работы двух систем становится понятно, в чем разница. Заземление и зануление отличаются по способу защиты, так как велика вероятность отгорания со временем нейтрального провода, за чем нужно постоянно следить. Зануление применяется очень часто в многоэтажных домах, так как не всегда есть возможность устроить надежное и полноценное заземление.

Заземление не зависит от фазности приборов, тогда как для устройства зануления необходимы определенные условия подключения. В большинстве случаев первый способ превалирует на предприятиях, где по требованиям техники безопасности предусматривается повышенная безопасность. Но и в быту в последнее время часто устраивается контур для сброса возникающего излишнего напряжения непосредственно в землю, это является более безопасным методом.

Защита при заземлении касается непосредственно электрической цепи, после пробоя изоляции за счет перетекания тока в землю значительно снижается напряжение, но сеть продолжает действовать. При занулении полностью отключается участок линии.

Заземление в большинстве случаев используют в линиях с устроенной изолированной нейтралью в системах IT и ТТ в трехфазных сетях с напряжением до 1 тыс. вольт или свыше этого показателя для систем с нейтралью в любом режиме. Применение зануления рекомендовано для линий с заземленным глухо нейтральным проводом в сетях TN-C-S, TN-C, TN-S с имеющимися в наличии N, PE, PEN проводниками, это показывает в чем разница. Заземление и зануление, несмотря на отличия, являются системами защиты человека и приборов.

Откуда появился ноль, и каким он бывает

Если рассматривать планету Земля с точки зрения электротехники, то она является сферическим конденсатором. В нем три элемента:

  1. Земная твердь, имеющая отрицательный потенциал.
  2. Ионосфера – слой атмосферы, воспринимающий и частично рассеивающий излучения Солнца. Она имеет положительный потенциал.
  3. Газовая атмосфера, имеющая диэлектрические свойства и играющая роль обкладки.

Разница потенциалов между обкладками этого глобального конденсатора равна 300 тыс. вольт. Она уменьшается по мере приближения к поверхности. Так, на высоте 100 метров ее значение 10 тыс. вольт.

Почему мы считаем потенциал Земли равным нулю, ведь на самом деле он имеет вполне материальное значение, хотя и c отрицательным знаком? Этот вопрос стоит задать ученым XVIII или XIX веков, заложивших основы электротехники.

Например, английскому физику Майклу Фарадею. Так им было удобнее измерять напряженность электромагнитного поля – принять за точку отсчета (ноль) Землю. Этот прием используется во многих отраслях науки. Например, в термодинамике. В ней за абсолютный ноль принята температура, при которой прекращается движение электронов в атомной структуре любого вещества.

Это так называемая шкала Кельвина, которая отличается от другой системы измерения температур – она предложена Андерсом Цельсием – на 273 градуса со знаком минус.

Итак, электрический ноль – это условное понятие, которое применяют в отношении любого предмета с отрицательным потенциалом. Его можно получить тремя способами:

  1. Присоединившись к земной тверди, отчего и произошло понятие «заземление».
  2. Кристаллическая решетка всех металлов имеет отрицательный заряд разной величины, что определяет степень их электрохимической активности. Поэтому достаточно присоединиться к металлическому предмету большой массы и объема. Два последних условия являются обязательными, поскольку тело должно иметь электрическую емкость, сравнимую с Земной. Это называется рабочим заземлением.
  3. Соединив проводники с текущим по ним переменным током так, чтобы в общей точке сумма их векторного сложения была равна нулю (так называемая схема звезда), из-за чего ее назвали нейтралью. Это основа приема, называемого в электротехнике занулением.

Полезные термины электротехники

Для понимания некоторых принципов, по которым выполняются защитные зануление, заземление и отключение следует знать определения:

Глухозаземленная нейтраль представляет собой нулевой провод от генератора или трансформатора, непосредственно подключенный к заземляющему контуру.

Ею может служить вывод от источника переменного тока в однофазной сети или полюсная точка источника постоянного тока в двухфазных магистралях, как и средний выход в трехфазных сетях постоянного напряжения.

Изолированная нейтраль представляет собой нулевой провод генератора или трансформатора, не соединенный с заземляющим контуром или контактирующий с ним через сильное поле сопротивления от сигнализационных устройств, защитных приборов, измерительных реле и других приспособлений.

Дополнительные сведения о нахождении земли, фазы, нулевого провода

Добавим другой способ — промышленностью запрещен. Лампочка в патроне с двумя оголенными проводами. При помощи инструмента находят фазу, можно жилу замыкать на заземление. Нельзя использовать водопроводные, газовые, канализационные трубы, прочие инженерные конструкции. По правилам, оплетка кабельной антенны снабжена занулением (заземлением). Относительно нее можно тестером (запрещенной стандартами лампочкой в патроне) находить фазу.

Для решительных людей порекомендуем пожарные лестницы, стальные шины громоотводов. Нужно зачистить металл до блеска, звонить на участок фазу

Обратите внимание, далеко не все пожарные лестницы заземлены (хотя обязаны быть), шины громоотводов 100%. Если обнаружите столь вопиющий произвол, можно обратиться в управляющие организации, при отсутствии реакции – стучите (россияне именуют правозащитников стукачами) государственным инстанциям

Указывайте нарушение правил защитного зануления зданий.

Принятые обозначения заземляющих устройств в сети

Все электрические установки с присутствующими в них проводниками заземления и нулевыми проводами в обязательном порядке подлежат маркировке. Обозначения наносятся на шины в виде буквенного обозначения РЕ с переменно чередующимися поперечными или продольными одинаковыми полосками зеленого или желтого цвета. Нейтральные нулевые проводники маркируются голубой литерой N, так обозначается заземление и зануление. Описание для защитного и рабочего нуля заключается в проставлении буквенного обозначения PEN и окрашивании в голубой тон по всей протяженности с зелено-желтыми наконечниками.

Буквенные обозначения

Первые литеры в пояснении к системе обозначают выбранный характер заземляющего устройства:

  • Т – соединение источника питания непосредственно с землей;
  • I – все токоведущие детали изолированы от земли.

Вторая буква служит для описания токопроводящих частей относительно подсоединения к земле:

  • Т говорит об обязательном заземлении всех открытых деталей под напряжением, независимо от вида связи с грунтом;
  • N – обозначает, что защита открытых частей под током осуществляется через глухозаземленную нейтраль от источника питания непосредственно.

Буквы, стоящие через тире от N, сообщают о характере этой связи, определяют метод обустройства нулевого защитного и рабочего проводников:

  • S – защита РЕ нулевого и N-рабочего проводников выполнена раздельными проводами;
  • С – для защитного и рабочего нуля применяется один провод.

Виды защитных систем

Классификация систем является основной характеристикой, по которой устраивается защитное заземление и зануление. Общие технические сведения описаны в третьей части ГОСТ Р 50571.2-94. В соответствии с ней заземление выполняется по схемам IT, TN-C-S, TN-C, TN-S.

Система TN-C разработана в Германии в начале 20 века. В ней предусмотрено объединение в одном кабеле рабочего нулевого провода и РЕ-проводника. Недостатком является то, что при отгорании нуля или возникшем другом нарушении соединения на корпусах оборудования появляется напряжение. Несмотря на это система применяется в некоторых электрических установках до нашего времени.

Системы TN-C-S и TN-S разработаны взамен неудачной схемы заземления TN-C. Во второй схеме защиты два вида нулевых провода разделялись прямо от щитка, а контур являлся сложной металлической конструкцией. Эта схема получилась удачной, так как при отсоединении нулевого провода на кожухе электроустановки не появлялось линейное напряжение.

Система TN-C-S отличается тем, что разделение нулевых проводов выполняется не сразу от трансформатора, а примерно на середине магистрали. Это не было удачным решением, так как если обрыв нуля случится до точки разделения, то электрический ток на корпусе будет представлять угрозу для жизни.

Схема подсоединения по системе ТТ обеспечивает непосредственную связь деталей под напряжением с землей, при этом все открытые части электроустановки с присутствием тока связаны с грунтовым контуром через заземлитель, который не зависит от нейтрального провода генератора или трансформатора.

По системе IT выполняется защита агрегата, устраивается заземление и зануление. В чем разница такого подсоединения от предыдущей схемы? В этом случае передача излишнего напряжения с корпуса и открытых деталей происходит в землю, а нейтраль источника, изолированая от грунта, заземляется посредством приборов с большим сопротивлением. Эта схема устраивается в специальном электрическом оборудовании, в котором должна быть повышенная безопасность и стабильность, например, в лечебных учреждениях.

Виды систем зануления

Система зануления PNG является простой в конструкции, в ней нулевой и защитный проводники совмещаются на всей протяженности. Именно для совмещенного провода применяется указанная аббревиатура. К недостаткам относят повышенные требования к слаженному взаимодействию потенциалов и проводникового сечения. Система успешно используется для зануления трехфазных сетей асинхронных агрегатов.

Не разрешается выполнять защиту по такой схеме в групповых однофазных и распределительных сетях. Запрещается совмещение и замена функций нулевого и защитного кабелей в однофазной цепи постоянного тока. В них применяется дополнительный нулевой провод с маркировкой ПУЭ-7.

Есть более совершенная система зануления для электроустановок, питающихся от однофазной сети. В ней совмещенный общий проводник PEN присоединяется к глухозаземленной нейтрали в источнике тока. Разделение на N и РЕ проводники происходит в месте разветвления магистрали на однофазных потребителей, например, в подъездном щите многоквартирного жилища.

В заключение следует отметить, что защита потребителей от поражения током и порчи электрических бытовых приборов при скачках напряжения является главной задачей энергообеспечения. Чем отличается заземление от зануления, объясняется просто, понятие не требует специальных знаний. Но в любом случае меры по поддержанию безопасности бытовых электроприборов или промышленного оборудования должны осуществляться постоянно и на должном уровне.

Защита от статического электричества посредством соединения и заземления

Сегодня во многих электрических установках некоторые потребности в защите выходят за рамки требований Кодекса к установке. Статическое электричество и накопление статических зарядов являются серьезной проблемой во многих установках, таких как центры обработки данных, полупроводниковые предприятия и многие опасные (классифицированные) места. В мире информационных технологий (ИТ) минимизация статического электричества и циркулирующих токов является проблемой для защиты чувствительного электронного оборудования и событий, ведущих к потере данных.С другой стороны, в опасных (классифицированных) местах электрическая проводка, включая цепи заземления и соединения, чрезвычайно важна для безопасности людей и имущества. Поскольку во взрывоопасных средах первоочередное внимание уделяется источникам возгорания, часто необходимо обеспечить более усиленную систему защиты от статического электричества во взрывоопасных зонах. Поэтому многие инженерные решения в этих типах электроустановок включают систему защиты от статического электричества.В этой статье рассматриваются некоторые из этих проблем, некоторые основы статического электричества и некоторые методы защиты, которые можно использовать для обеспечения дополнительной защиты от статического электричества.

Фото 1. Оборудование статического заземления в работе при перекачке топлива

Влажность и ее влияние

Заземление оборудования не обязательно является решением статических проблем. Каждая проблема требует своего изучения и решения, хотя влажность играет важную роль в степени беспокойства.Чем выше влажность, тем меньше вероятность возникновения статического разряда. В некоторых отраслях промышленности повышение влажности в зоне статического разряда было признано эффективным для рассеивания заряда. Один из примеров — полиграфическая промышленность.

Хотя увлажнение действительно увеличивает поверхностную проводимость материала, заряд рассеивается только при наличии проводящего пути к земле. Поверхностное сопротивление многих материалов можно контролировать с помощью влажности окружающей среды.При влажности 65% и выше

Фото 2. Подключение оборудования статического разряда и заземления к подвижному танкеру в процессе погрузки

Поверхность

большинства материалов будет адсорбировать достаточно влаги, чтобы обеспечить поверхностную проводимость, достаточную для предотвращения накопления статического электричества. Когда влажность падает ниже 30 процентов, эти же материалы могут стать хорошими изоляторами, и в этом случае накопление заряда увеличится. Следует еще раз подчеркнуть, что увлажнение не является решением всех возникающих проблем статического электричества, потому что некоторые изоляционные материалы не адсорбируют влагу из воздуха, а высокая влажность не приведет к заметному снижению их поверхностного сопротивления.Примерами таких изоляционных материалов являются незагрязненные поверхности некоторых полимерных материалов, таких как пластиковые трубы, емкости и поверхность большинства жидкостей нефти [NFPA 77 6.4.2.3].

Источник зажигания статическим электричеством

Следует четко понимать, что основной целью обеспечения статической защиты является устранение источника возгорания в виде треугольника огня. Необходимая степень дополнительной защиты зависит от каждого встречающегося состояния. Не существует обязательных требований электротехнического кодекса для обеспечения такой защиты; однако опасности все же существуют, и их следует учитывать в целях безопасности.Как правило, тип установки, тип взрывоопасной или воспламеняющейся атмосферы (пыль или газы) и окружающая среда — все это факторы, влияющие на степень или степень статического электричества как источника воспламенения. Чтобы разряд статического электричества стал источником возгорания, должны одновременно существовать следующие четыре условия:

1. Должны присутствовать эффективные средства разделения заряда.

2. Должны быть доступны средства для накопления разделенных зарядов и поддержания разности электрических потенциалов.

3. Должен произойти разряд статического электричества достаточной энергии.

4. Разряд должен происходить в горючей смеси [NFPA 77 — 4.3.1].

Искры от незаземленных заряженных проводников, включая тело человека, являются причиной большинства пожаров и взрывов, вызванных статическим электричеством. Искры обычно представляют собой интенсивные емкостные разряды, возникающие в зазоре между двумя заряженными проводящими телами, обычно металлическими. Способность разрядной искры вызывать воспламенение или взрыв напрямую зависит от ее энергии, которая составляет некоторую долю от общей энергии, запасенной в проводящем объекте.

Помимо NEC

NEC посредством мелкого шрифта ссылается на Рекомендуемую практику по статическому электричеству, NFPA 77-2000. Важно подчеркнуть, что эти методы защиты от статического электричества и источников статического возгорания должны перекрывать требования Кодекса и никогда не предназначены для замены этих требований.

Определения

Статический электрический разряд . Выделение статического электричества в виде искры, коронного разряда, щеточного разряда или распространяющегося щеточного разряда, которое может вызвать возгорание при определенных обстоятельствах [NFPA 77 3.1.16].

Статическое электричество . Электрический заряд, который имеет значение только для эффектов его составляющей электрического поля и не проявляет значимой составляющей магнитного поля [NFPA 77 3.1.17].

Основы статического электричества

Рис. 1. Две металлические пластины (проводники), каждая с одноименными зарядами

Все вещества, жидкие или твердые, состоят из атомов различного типа. Атомы состоят из положительно заряженных протонов и нейтронов без заряда, которые вместе образуют ядро ​​или ядро ​​атома; отрицательно заряженные электроны окружают ядро.В нормальном состоянии атомы считаются электрически нейтральными; в основном это означает, что присутствуют равные количества положительного и отрицательного заряда. Атомы могут стать так называемыми «заряженными», когда существует избыток или недостаток электронов относительно нейтрального состояния (см. Рисунки 1 и 2).

Рисунок 2. Две металлические пластины (проводники) с разноименными зарядами

В электропроводящих материалах, таких как металлы черных и цветных металлов, электроны перемещаются свободно.В материалах, состоящих из изоляционных материалов, таких как пластик, стекло, моторное масло и т. Д., Электроны более плотно связаны с ядром атома и не могут двигаться. Некоторыми примерами электропроводящих материалов являются провода, металлические корпуса, шины и т. Д., В то время как изоляционные материалы включают такие предметы, как стекло, нефтепродукты, бумага, резина и т. Д.

В изоляционных материалах в виде жидкостей электрон может отделяться от одного атома и свободно перемещаться или присоединяться к другому атому, образуя отрицательный ион.Атом, теряющий электрон, становится положительным ионом. Ионы — это заряженные атомы и молекулы.

Рис. 3. Человек, держащий статический заряд

Удаление или разделение заряда, как правило, невозможно полностью предотвратить, поскольку источник заряда находится на границе раздела материалов. Когда материалы соприкасаются, некоторые электроны перемещаются от одного материала к другому до тех пор, пока не будет достигнут баланс (состояние равновесия) по энергии. Это разделение зарядов наиболее заметно в жидкостях, которые контактируют с твердыми поверхностями, и в твердых телах, контактирующих с другими твердыми телами.Поток чистого газа по твердой поверхности вызывает незначительный заряд [NFPA 77- 4.1.8]. Это основная причина появления предупреждений об опасности при выдаче бензина на ТРК. Важно соблюдать и соблюдать все предупреждения и указания, касающиеся переливания бензина в автомобиль или переносной контейнер. При заправке всегда ставьте переносные контейнеры с бензином на землю, в противном случае зарядные токи позволяют статическим зарядам накапливаться без пути для их рассеивания.Вероятность воспламенения или взрыва паров бензина во время этих операций увеличивается, если не соблюдаются все соответствующие процедуры безопасности. Устранение разницы потенциалов (напряжений) между объектами снижает эти опасности.

Статический разряд и разделение

Рис. 4. Заряженный человек разряжается на объект с другим потенциалом. В данном случае это заземленный объект

.

Конденсатор описывается в основном как два проводника, разделенных изоляционным материалом.В статических электрических явлениях заряд обычно разделяется резистивным барьером, таким как воздушный зазор или форма изоляции между проводниками, или изолирующими свойствами материалов, с которыми обращаются или обрабатываются. Во многих приложениях, особенно в тех, где обрабатываемые материалы являются непроводящими (заряженные изоляторы), измерение разности потенциалов, мягко говоря, является сложной задачей.

Один, вероятно, наиболее знаком с обычным статическим зарядом, возникающим при ходьбе или трении ногами о волокна ковра.Люди являются проводниками электричества и поэтому способны удерживать статический заряд. Сброс таких статических зарядов также знаком большинству людей. Когда это явление впервые осознается, детей часто забавляют и развлекают. Электрический статический заряд возникает в результате трения материалов друг о друга и известен как трибоэлектрический заряд. Это результат воздействия на поверхностные электроны различных энергий в прилегающем материале, так что, вероятно, произойдет разделение заряда (разряд).Распад жидкости из-за разбрызгивания и запотевания или даже потока в некоторых случаях приводит к аналогичному высвобождению заряда. Необходимо всего лишь перенести около одного электрона на каждые 500 000 атомов, чтобы создать состояние, которое может привести к статическому электрическому разряду. Загрязнения на поверхности в очень низких концентрациях могут играть значительную роль в разделении зарядов на границе раздела материалов.

Электропроводящие материалы могут заряжаться, когда они находятся рядом с другой сильно заряженной поверхностью.Электроны в проводящем материале либо притягиваются, либо отталкиваются от области наибольшего сближения с заряженной поверхностью, в зависимости от природы заряда на этой поверхности. Подобные обвинения будут отталкивать, а непохожие — притягивать. Если электрически проводящий материал, который заряжен, подключен к земле или связан с другим объектом, дополнительные электроны могут проходить к земле или объекту или от них. Если затем контакт прерывается и проводящий материал и заряженная поверхность разделены, заряд на изолированном проводящем объекте изменяется.Передаваемый чистый заряд называется индуцированным зарядом.

Основная цель при работе с опасностями и опасностями статического электричества и паразитных напряжений состоит в том, чтобы попытаться устранить или, по крайней мере, минимизировать любые различия потенциалов между электропроводящими объектами и другими объектами и землей. Потенциальная разница, то есть напряжение, между любыми двумя точками — это работа на единицу заряда, которая должна быть сделана для перемещения зарядов из одной точки в другую.Необходимо провести работу по разделению зарядов, и существует тенденция возврата зарядов к нейтральному (незаряженному) состоянию. Разделение электрического заряда само по себе не может быть потенциальной опасностью пожара или взрыва. Должен произойти разряд или внезапная рекомбинация разделенных зарядов, чтобы создать дугу и создать опасность воспламенения. Один из лучших методов защиты от статического электрического разряда — это создание электропроводящего или полупроводящего пути, который позволит осуществлять контролируемую рекомбинацию зарядов и рассеивание зарядов (обычно на землю).Два термина, которые чаще всего используются при обеспечении защиты от статического электричества и молнии, — это заземление или одно из его производных и соединение или одно из его производных.

Фото 3. Оборудование для защиты от статического электричества (ручного типа), используемое для установления связующего соединения между резервуаром для хранения топливной добавки и мобильными судами или переносными контейнерами во время процесса транспортировки

Определения заземления и соединения

Согласно NFPA 70
Заземлен. Подключен к земле или к некоторому проводящему телу, который служит вместо земли [NFPA 70 Статья 100].

Склеивание (скрепленное). Постоянное соединение металлических частей для образования электропроводящего пути, обеспечивающего непрерывность электрического тока и способность безопасно проводить любой ток, который может возникнуть [NFPA 70, статья 100].

Согласно NFPA 77
Заземление. Процесс соединения одного или нескольких проводящих объектов с землей, так что все объекты имеют нулевой (0) электрический потенциал; также называется «заземлением» [NFPA 77 — 3.1.10]. Имейте в виду, что термин «заземление» в настоящее время не является определенным термином.

Склеивание. Процесс соединения двух или более проводящих объектов вместе с помощью проводника так, чтобы у них был одинаковый электрический потенциал, но не обязательно такой же, как у земли [NFPA 77 — 3.1.2].

Применение Условий

Таким образом, для всех практических целей, когда используется термин «заземление», его следует рассматривать как включающее соединение или путь к земле, чтобы подвести электропроводящие материалы к тому же потенциалу, что и земля.Когда используется термин «связывание», его следует рассматривать как соединение электропроводящих материалов вместе, чтобы устранить разницу потенциалов между ними и сформировать одну проводящую массу. Обратите внимание, что соединение обычно включает путь к земле, но земля не упоминается в определении. См. Рисунки 5, 6 и 7, которые графически демонстрируют различия между двумя концепциями, а также показывают, что они работают вместе для обеспечения желаемой защиты. Можно сделать вывод, что соединение проводящих частей вместе минимизирует разность потенциалов между ними, даже если полученная система не заземлена.Заземление, с другой стороны, выравнивает разность потенциалов между объектами и землей. Взаимосвязь между соединением и заземлением показана на рисунках 5, 6 и 7.

Рисунок 5. Автомобиль, заземленный (заземленный)

Рис. 6. Два автомобиля, соединенные вместе (скрепленные)

Рис. 7. Два автомобиля соединены вместе (соединены), и одно транспортное средство также соединено с землей (заземлено)

Контроль опасностей возгорания статическим электричеством

Опасность воспламенения от статического электричества можно контролировать следующими методами:

1.Удаление горючей смеси из зоны, где статическое электричество может вызвать воспламеняющийся разряд

2. Уменьшение генерирования заряда, накопления заряда или того и другого посредством модификации процесса или продукта

3. Обезвреживание обвинений

Заземление изолированных проводов и ионизация воздуха являются основными методами нейтрализации зарядов.

Сопротивление на пути к земле

Рис. 8. Барабанные контейнеры с продуктами на масляной основе в складском помещении со статической системой заземления и скрепления, применяемой в этом месте

Чтобы предотвратить накопление статического электричества в проводящем оборудовании, общее сопротивление пути к земле (пути заземления) должно быть минимальным, чтобы рассеивать заряды, которые в противном случае могли бы присутствовать.Основная цель здесь — создать путь рассеяния, который не будет подвергаться отрицательным эффектам нагнетания электронов под давлением. Обычно достаточным считается сопротивление 1 МОм (106 Ом) или меньше. Если система соединения / заземления полностью металлическая, сопротивление в непрерывных путях заземления обычно будет менее 10 Ом. Такие системы обычно включают многокомпонентные системы. Повышенное сопротивление обычно указывает на то, что металлический путь не является непрерывным, обычно из-за ослабленных соединений или последствий коррозии.Система заземления, приемлемая для силовых цепей или молниезащиты, более чем подходит для системы заземления статического электричества.

NEC устанавливает правила определения размеров заземляющих и соединительных проводов. Таблицы 250.66 и 250.122 предназначены для этой цели. Размеры заземляющих и соединяющих проводов для защиты от статического электричества различаются, потому что их основное назначение различается. Если электрические проводники проволочного типа используются для защиты от статического электричества, минимальный размер соединительного или заземляющего провода определяется механической прочностью, а не его допустимой нагрузкой по току.Для соединения проводов, которые будут часто подключаться и отключаться, следует использовать многожильные или плетеные провода [NFPA 77

Рис. 9. Типичная перекачка нефтепродуктов из бестарного хранилища

6.4.1.3]. Заземляющие проводники могут быть изолированными (например, кабель в оболочке или с пластиковым покрытием) или неизолированными (например, неизолированные проводники). Рекомендуются неизолированные электрические проводники (провода), потому что в них легче обнаружить дефекты.

Жидкости, протекающие по трубам

Разделение заряда происходит, когда жидкость течет по трубам, шлангам и фильтрам; когда при перегрузочных операциях происходит разбрызгивание; или когда жидкости перемешиваются или взбалтываются.Чем больше площадь поверхности раздела между жидкостью и поверхностями и чем выше скорость потока, тем выше скорость зарядки. Заряды смешиваются с жидкостью и попадают в приемные емкости, где могут накапливаться. Заряд часто характеризуется объемной плотностью заряда и потоком, текущим в сосуд. Примерами такой ситуации являются случаи, когда топливо перекачивается с более крупного мобильного или стационарного судна на судно меньшего размера, или когда бензин перекачивается из заправочной колонки в пассажирское транспортное средство.

В бестарных хранилищах топлива, где количество перекачиваемого продукта велико, усиливаются опасения по поводу надлежащего уровня защиты от статического электричества. Системы и оборудование статического заземления и заземления изготавливаются специально для обеспечения этого типа защиты. Эти системы часто связаны с насосными операциями, чтобы не допустить потока топлива или масла в системы трубопроводов до тех пор, пока они не будут подключены. Другие типы защиты включают только механическое соединение между резервуаром для хранения насыпных грузов и меньшим судном без системы электрической блокировки (см. Фото 1 и 2).Подобные операции также часто наблюдаются в аэропорту, где воздушные суда заправляются мобильными автомобилями.

Заземляющие резервуары для хранения непроводящих жидкостей

Резервуары для хранения непроводящих жидкостей должны быть правильно заземлены. Резервуары для хранения на фундаменте, построенном на земле, считаются заземленными по своей природе независимо от типа фундамента (например, бетон, песок или асфальт). Для резервуаров на возвышенных фундаментах или опорах сопротивление заземления может достигать 100 Ом и при этом считаться достаточно заземленным для целей рассеивания статических электрических зарядов, но сопротивление должно быть проверено в этих случаях для уверенности в том, что адекватный путь к земля достигнута.Добавление заземляющих стержней и аналогичных систем заземления не снизит опасность, связанную со статическими электрическими зарядами, обнаруживаемыми в жидкости [NFPA 77 7.5.2.2].

Основные проблемы статического электричества с горючей пылью

Горючая пыль определяется как любой мелкодисперсный твердый материал диаметром 420 мкм или меньше (т.е. материал, который проходит через стандартное сито США № 40), который может представлять опасность возгорания или дефлаграции. Чтобы статический электрический разряд воспламенил горючую пыль, должны быть выполнены четыре условия, перечисленные в четвертом параграфе.

Должно присутствовать достаточное количество пыли, взвешенной в воздухе, для обеспечения устойчивого горения при воспламенении. Это минимальное количество называется минимальной подверженной воздействию концентрацией (MEC). Это наименьшая концентрация, выраженная в массе на единицу объема, для данного размера частиц, которая будет поддерживать горение при равномерном взвешивании в воздухе.

По историческим причинам способность твердого тела передавать электрические заряды характеризуется его объемным удельным сопротивлением.Для жидкостей эта способность характеризуется ее проводимостью.

Порошки

делятся на следующие три группы:

(а) Порошки с низким удельным сопротивлением и объемным удельным сопротивлением в массе до 108 Ом-м. Примеры включают металлы, угольную пыль и технический углерод.

(b) Порошки со средним удельным сопротивлением и объемным удельным сопротивлением от 108 до 1010 Ом-м. Примеры включают множество органических порошков и сельскохозяйственных продуктов.

(c) Порошки с высоким удельным сопротивлением и объемным удельным сопротивлением более 1010 Ом-м.Примеры включают органические порошки, синтетические полимеры и кварц [NFPA 77 8.4.2.1].

Порошки с более низким удельным сопротивлением склонны к действию статических зарядов и могут заряжаться во время потока. Заряд быстро рассеивается, когда порошок переносится в заземленное устройство хранения или контейнер. Однако при попадании в непроводящий контейнер накопленный заряд может вызвать искру, поскольку заряд в пыли и мощности пытается уравновесить разность потенциалов во время этого процесса.

Сведение к минимуму эффектов зарядки и разницы потенциалов имеет решающее значение для защиты от пожаров и взрывов, связанных с этими типами операций. В Кодексе рассматривается соединение систем металлических воздуховодов только посредством ссылки из примечания мелким шрифтом [см. Раздел 250.104 (B) FPN]. Хотя ясно, что этот тип соединения не является требованием NEC в соответствии с 90.5 (C), он вполне может быть требованием, содержащимся в других стандартах NFPA, применимых к конкретным установкам или особым помещениям.Даже если этот тип защиты является только рекомендуемой практикой, опыт показал, что это лучшие и наиболее распространенные методы, которые обычно применяются.

Сводка

Эта статья не предназначалась для того, чтобы полностью охватить все проблемы и методы защиты от статического электричества, а только для того, чтобы повысить уровень осведомленности об опасностях и о том, где можно получить информацию для помощи во внедрении соответствующих систем защиты. NEC предоставляет ссылку в примечании мелким шрифтом (FPN) к Рекомендуемой практике по статическому электричеству, NFPA 77-2000.Американский институт нефти (API) также выпустил документ под названием «Защита от возгорания, возникающего в результате статических молний и блуждающих токов» API RP 2003–1998. В разделах 3.2 и 3.3 Зеленой книги IEEE также есть отличная информация о статическом электричестве и мерах защиты, которые можно предпринять.

Нейтрализация — Блог Ground Zero Electrostatics

6 мая 1937 года немецкий пассажирский дирижабль LZ 129 Hindenburg загорелся и был уничтожен, в результате чего 36 человек погибли на глазах у камер национальных новостей и фактически положили конец летному эксперименту Zeppelin.

«Гинденбург» был больше, чем 4 дирижабля «Гудиер» , вместе взятых, или около 2/3 высоты Эмпайр-стейт-билдинг.

В тот день был дождливый день, и швартовные тросы волочились по земле, когда дирижабль заходил в пристань в Манчестер-Тауншип. Преобладающая теория состоит в том, что влажные волочащиеся веревки генерируют статический заряд, который перемещается по ним на корабль.

Там загорелся заряд Водородного топлива и… штанги .Когда-то считавшиеся будущим воздушных путешествий, летающие дирижабли не использовались ни в коммерческих, ни в военных целях до конца Второй мировой войны.

Все вызвано единственной искрой.

Как и катастрофа Hindenburg , программа вашей компании по контролю электростатического разряда (ESD) может быть отменена несколькими небольшими ошибками, которые перерастают в более крупные проблемы, если они не учтены и не спланированы должным образом.

Итак, сегодня давайте посмотрим на 5 распространенных причин, по которым ваши программы статического контроля могут дать сбой .

Конечно! У нас есть протоколы ESD, верно?

Большинство компаний, которые имеют дело с чувствительной электроникой и печатными платами, также требуют, чтобы их продавцы, сторонние поставщики и субподрядчики имели программу ESD. Часто еще до подписания контракта к нам направляют инженера для аудита практики ESD. И время от времени они будут проводить выборочные проверки, чтобы убедиться, что эти методы все еще применяются.

Некоторые компании, пытаясь удержать контракт или сократить расходы, просто составят программу-минимум, которую можно будет проверить.Это делается с минимальными затратами и часто не имеет настоящих протоколов — обучение, профилактическое обслуживание и обеспечение соблюдения требований остаются на второй план.

Ты бы никогда этого не сделал, правда? Ну кроме…

Сколько это будет стоить?

Высшее руководство всегда ищет способы работать более экономично. К сожалению, если они не будут должным образом проинформированы о важности надлежащих протоколов защиты от электростатического разряда, они могут посчитать многие аспекты программы ESD дорогими и, возможно, ненужными.

Это не их вина, им просто нужно получить лучшее образование. Что может быть вашей работой. Дело в том, что затраты на хорошие, хорошо разработанные протоколы защиты от электростатического разряда ничтожны по сравнению с затратами на замену или ремонт нефункционирующих компонентов, не говоря уже о репутации компании.

Превосходные компании в области ESD возглавляются сверху вниз, при этом руководство компании не только демонстрирует финансовую поддержку программ профилактики ESD, но и находит время для участия в тренингах, хвалит людей и отделы с наилучшей реализацией и выделяет время и средства на постоянное обучение и улучшение существующих программ.

В противном случае вы можете оказаться в затруднительном положении…

Вот пластырь для этой отрубленной конечности!

Возможно, вы слышали старую пилу: «Если нет времени сделать это правильно с первого раза, как вы собираетесь найти время, чтобы исправить это позже?»

К сожалению, многие компании, похоже, следуют другому принципу — всегда будет время сделать это заново.

Как и наша последняя причина, проблема часто бывает финансовой. Мгновенные решения, которые можно быстро применить для решения отдельных проблем, становятся нормой, несмотря на то, что долгосрочные расходы намного выше.

Лучшие и наиболее экономичные решения применяются с первого раза и «решают» множество проблем, потому что они предотвращают возникновение многих из них. Тогда вы не попадете в ситуацию, когда вы тратите намного больше, чтобы исправить то, что можно было бы легко избежать незначительной проблемы, но теперь она является критически важной.

Но это не поможет, если…

Обучение? Нам не нужно дурное обучение!

Надлежащее предотвращение электростатического разряда — это коллективная работа, но многие компании недооценивают размер этой команды.Как упоминалось ранее, высшее руководство должно проявлять интерес к обучению, и, по сути, каждому сотруднику следует дать хотя бы элементарный урок или видео о том, как следовать практике компании.

Недостаточно обучить инженеров, что вы не проинформировали обслуживающий персонал, который очищает свои чувствительные рабочие зоны после того, как они уйдут на рабочий день, как это правильно делать.

Секретари, стажеры, продавцы — каждый, кто может войти в Зону электростатической защиты (EPA) или повлиять на нее, должен знать, как правильно вести себя, чтобы минимизировать риск.

И наконец…

Мы используем только лучшее — лучшее, что мы можем себе позволить.

Да, в цене все возвращается. Но цена не должна быть единственным фактором при принятии решения, у кого покупать комплектующие для электростатических разрядов. Не все компании созданы одинаково. Не все продукты ESD соответствуют высочайшим стандартам.

Вы хотите найти поставщика, который может удовлетворить ваши потребности в области защиты от электростатических разрядов, который может гарантировать, что все его продукты должным образом протестированы, соответствуют или превосходят отраслевые стандарты и имеют сертификаты, подтверждающие это.

Всегда проверяйте выбранных поставщиков должным образом, чтобы убедиться, что они соответствуют этим требованиям, и будьте готовы спросить клиентов, с которыми вы можете поговорить, и рекомендации, которые вы можете проверить. Если у них хорошая репутация, они будут более чем готовы, чтобы вы проверили их вместе с их довольными клиентами.

Предотвращение электростатического разряда — задача не случайная. Возможно, ваша компания не рискует убить 36 человек, но внедрение передовых методов, безусловно, может спасти рабочие места, компьютеры и ваших клиентов.

Мы хотели бы быть экспертами, на которых вы можете рассчитывать в предоставлении комплексных услуг и комплексных решений для защиты от электростатических разрядов. Для получения дополнительной информации или совета по вашим конкретным потребностям в предотвращении электростатического разряда — или по любым другим вопросам, связанным с электростатическим разрядом, свяжитесь с нами сегодня.

Статическое электричество | Ганноверская страховая группа

Разряд статического электричества (например, электростатический разряд) может вызвать возгорание и взрывы, часто приводящие к большим потерям. На этой странице кратко описаны свойства статического электричества и меры противопожарной защиты, связанные с электростатическим разрядом.

Введение

Статическое электричество непреднамеренно генерируется во время многих промышленных операций. Такие операции могут включать перенос жидкостей между контейнерами; смешивание и смешивание жидкостей; или дробление, измельчение или просеивание порошков. Хотя возникновение статического заряда вызывает беспокойство, повреждение вызывает электростатический разряд (ESD). ESD — это быстрое высвобождение или перенос электронов от одного объекта к другому, что приводит к нейтрализации заряда на обоих материалах.

Для возникновения электростатического разряда требуются три условия: должен быть процесс, который генерирует статический заряд, заряд должен накапливаться, и накопление заряда должно быть достаточно большим, чтобы вызвать электрический пробой окружающей атмосферы. Тип разряда и количество выделяемой энергии будут зависеть от физических и химических свойств системы.

ESD могут вызвать возгорание и взрывы. Чтобы это произошло, разряд должен происходить в воспламеняющейся или взрывоопасной атмосфере, и разряд должен быть достаточно сильным, чтобы воспламенить атмосферу.Если смесь находится за пределами диапазона воспламенения или статический разряд не обладает достаточной энергией, воспламенения не произойдет. Контроль любого из условий, необходимых для электростатического разряда, может снизить опасность статического электричества. Одним из распространенных методов борьбы с опасностями статического электричества является использование соединения и заземления, например, при перекачке легковоспламеняющихся жидкостей. Связывание и заземление уменьшают количество генерации / накопления заряда и нейтрализуют заряд.

Этот отчет представляет собой введение в статическое электричество и контроль электростатического разряда.В нем описаны различные проблемы пожара, которые могут быть вызваны статическим электричеством, а также кратко описаны физика, природа, возникновение и методы борьбы.

Статическое электричество

Ядро атома содержит протоны с положительным зарядом и нейтроны без заряда. Поле электронов с отрицательным зарядом вращается вокруг ядра. Основываясь на этой фундаментальной структуре атомов, поверхности всех материалов будут обладать электронами. Когда материалы с различной концентрацией слабо связанных поверхностных электронов приводят в контакт друг с другом, поверхностные электроны пытаются уравновесить, позволяя атому стать электрически нейтральным.Пока два материала находятся в контакте, поверхностные электроны свободно обмениваются. Эта «связь» наиболее распространена, когда материалы состоят из материалов с большим количеством свободных электронов во внешней оболочке атома.

Когда материалы разделены, перенос электронов прекращается, и на поверхности обоих материалов может оставаться электрический заряд. Когда объект теряет электроны (например, становится положительно заряженным) или приобретает электроны (например, становится отрицательно заряженным), он развивает статический заряд.

Оставленный в статическом режиме, этот заряд может увеличиваться в размерах до тех пор, пока не перейдет в другой материал с противоположным зарядом. Типичный пример этого статического заряда — натирание хлопка (например, носков) по полиэстеру (например, ковру). Человек, соприкасающийся (т. Е. Связанный) с хлопком, разовьет заряд. Когда этот человек касается другого предмета (например, дверной ручки) с меньшим зарядом, заряд переносится (то есть нейтрализуется). Если заряд имеет высокий потенциал, заряд может перекрывать воздушное пространство для рассеивания, что называется электростатическим разрядом.

Генерация статического заряда

Различные материалы и процессы могут приводить к образованию статического заряда, включая движение жидкостей по трубам и шлангам, распыление жидкостей и перемещение мелкодисперсных твердых частиц. Генерация статического заряда происходит в точке контакта материалов, которую часто называют относительной границей раздела. Генерация заряда обычно происходит, когда контакт включает движение, например, жидкость по шлангу. Это относительное движение позволяет увеличивать потенциал статического заряда.

Статический заряд часто возникает, когда материалы, которые обычно являются изоляторами, например бумага, контактируют с неизолирующими материалами, такими как сталь. Этот тип генерации заряда часто называют трибоэлектрическим или трением. Движение бумаги по ролику из нержавеющей стали позволяет передать бумагу свободные выборы на поверхности ролика. Это вызывает появление на бумаге отрицательного заряда, который может сохраняться в течение длительного времени (например, нескольких часов). Доказательства этого типа зарядки можно ясно продемонстрировать, потерев полиэтиленовый лист (т.е.е., сэндвич-пленка) поверх куска нержавеющей стали. Статический заряд на полиэтилене позволит ему прикрепляться к материалам с более низким потенциалом, таким как стены, что приводит к «статическому сцеплению».

Общие промышленные условия, при которых может возникать статическое электричество, включают:

  • Поток жидкости по трубам и фильтрам.
  • Заливка жидкости между двумя отдельными емкостями.
  • Распыление проводящих жидкостей.
  • Трение поверхности изоляционного материала.
  • Прохождение конвейеров по роликам.
  • Дробление, измельчение и просеивание.
  • Выгрузка порошка из пакетов.

Люди могут также накапливать статические заряды, ходя по изоляционным полам или коврам или снимая синтетическую одежду. Независимо от используемых материалов, процесс генерации заряда требует, чтобы разнородные поверхности контактировали друг с другом и передавали свободные электроны. В результате разделения один из материалов сохраняет заряд.

Электростатический разряд

Статические заряды со временем постепенно рассеиваются из-за естественного отталкивания одноименно заряженных атомов и молекул. Скорость рассеяния заряда будет зависеть от характеристик материала и наличия проводящего пути к материалу с другим электрическим состоянием. Если скорость генерации заряда больше, чем скорость рассеивания заряда, или объект изолирован от проводящего пути, так что заряд не может выравниваться, статический заряд будет накапливаться на объекте.

Этот разряд энергии происходит, когда накопленный заряд достигает достаточно высокого потенциала, чтобы перекрыть воздушное пространство другому материалу. Существует несколько типов электростатических разрядов, включая искры, тлеющие коронки, щеточные разряды и объемные поверхностные разряды. По сути, тип разряда зависит от используемых материалов и формы области, где возникает перемычка между поверхностями. Электростатический разряд является важным источником воспламенения легковоспламеняющихся жидкостей, газов и некоторых видов пыли.

Легковоспламеняющиеся жидкости

Статический заряд возникает, когда жидкости движутся в контакте с другими материалами (например, с жидкостью, протекающей по трубе). Статический заряд также возникает во время смешивания, заливки, перекачивания, фильтрации или перемешивания жидкостей. Эта накопленная энергия представляет собой потенциальный источник воспламенения. Когда накопленный заряд рассеивается, возникающая энергия может воспламенить воспламеняющуюся паровоздушную смесь. Эта опасность наиболее велика, когда жидкости переносятся между контейнерами, могут стоять в открытых контейнерах или наноситься на поверхности, поскольку могут образовываться как статический заряд, так и воспламеняющаяся топливно-воздушная смесь.

Горючие газы

Как и в случае с легковоспламеняющимися жидкостями, статический разряд может привести к воспламенению горючих газов. Процесс, посредством которого это может происходить, в основном такой же, как и для жидкостей, за исключением того, что газы легче воспламеняются. Газы, не загрязненные твердыми или жидкими частицами, не генерируют значительного статического электричества. Однако статический заряд может возникнуть, если протекающий газ загрязнен пылью, оксидами металлов, частицами накипи, частицами жидкости или аэрозолями.

Пыль

Пыль, смещенная с поверхности, на которой она лежит, может генерировать значительный заряд. Общий развиваемый заряд зависит от химического состава материала, размера частиц и степени контакта с поверхностью. Генерация заряда возникает редко, если и пыль, и поверхность, на которой она лежит, являются проводниками. Однако это может произойти, если один материал является проводником, а другой — непроводником.

Когда горючая пыль взвешивается в воздухе и подвергается статическому разряду, может произойти взрыв.См. Дополнительную информацию по этой теме в разделе «Взрывы пыли».

Контроль электростатических разрядов

Для предотвращения воспламенения горючих смесей от электростатического разряда можно использовать три основных метода. Они контролируют воспламеняющуюся смесь, контролируют накопление статического электричества и нейтрализуют заряд.

Контроль горючей смеси

Инерцирование воспламеняющихся смесей, вентиляция помещения или перемещение оборудования, генерирующего статическое электричество, может предотвратить возгорание горючих смесей, вызванное статическим электричеством.

Инертинг

Процесс инертизации легковоспламеняющейся смеси для предотвращения воспламенения достигается устранением или уменьшением содержания кислорода до точки, при которой смесь не может воспламениться. Наиболее эффективный метод инертизации смеси — введение в газовую смесь инертного газа, такого как азот, в результате чего создается среда с дефицитом кислорода.

Вентиляция

Механическая вентиляция может использоваться аналогично инертизации. За счет использования механической вентиляции смесь может быть разбавлена ​​до уровня ниже ее воспламеняемости, в результате чего смесь будет слишком бедной для возгорания.Этот процесс также можно использовать для отвода горючей пыли от источников возгорания.

Переезд

Перемещение оборудования, производящего статическое электричество, является очень эффективным решением для контроля за воспламеняющейся средой. Этот метод желателен, поскольку он устраняет источник возгорания и не полагается на другие методы управления, которые могут дать сбой.

Управление генерацией статического электричества

Контроль статического электричества основан на контроле того, как эти материалы объединяются и разделяются.Тип материала, скорость контакта и продолжительность контакта — все это играет ключевую роль в генерации заряда. Контроль статического электричества зависит от материалов, контактирующих друг с другом.

Антистатические покрытия, добавки и спреи — все это снижает способность материала генерировать статический заряд за счет снижения поверхностного сопротивления материала, что позволяет статическому заряду течь на землю. Снижение поверхностного сопротивления материала позволяет электронам быстро рассеиваться, предотвращая высвобождение большого накопленного отрицательного заряда.

Углеводородное топливо содержит следовые количества материалов, которые могут диссоциировать на ионы. Во время потока топлива разделение заряда происходит на границе раздела между топливом и любым несмешивающимся материалом, например стенкой трубы. Эта статическая зарядка углеводородного топлива во время перекачки уже давно признана потенциальной опасностью взрыва. Опасность может быть уменьшена путем введения ограничений по расходу топлива во время перекачки продукта. Эта уменьшенная скорость потока позволяет электронному заряду рассеиваться быстрее, чем он может накапливаться на поверхности контейнера, тем самым предотвращая накопление статического электричества.

Нейтрализация заряда

Нейтрализация заряда — это процесс, при котором накопленные статические заряды одного электрического потенциала становятся нейтральными. Путем устранения (например, нейтрализации) заряда исключается возможность неконтролируемого рассеивания заряда и, как следствие, воспламенения. Методы нейтрализации заряда включают увлажнение, заземление и склеивание, ионизацию и статические гребни.

Увлажнение

Увлажнение — это процесс увеличения относительной влажности в рабочей зоне для предотвращения накопления статических зарядов на непроводящих материалах.Увлажнение наиболее эффективно для борьбы с накоплением статического электричества там, где в технологических процессах используются изоляционные материалы, такие как бумага, дерево и текстиль. Поскольку эти материалы обычно являются изоляторами, они могут накапливать статические заряды в результате обработки и повседневного обращения. При увеличении относительной влажности поверхности материалов становятся влажными. Эта влага увеличивает поверхностную проводимость, позволяя статическому заряду свободно рассеиваться. Чтобы быть эффективным, уровень влажности должен быть повышен как минимум до 60 процентов или выше.Увлажнение неэффективно для контроля статического электричества на материалах с высоким содержанием углеводородов из-за неспособности углеводородов поглощать воду.

Заземление (заземление) и соединение

Заземление и перемычка являются одними из наиболее распространенных методов рассеивания заряда. «Соединение» — это метод соединения двух или более проводящих объектов вместе с помощью проводящих проводов или кабелей. «Заземление» или «Заземление» — это метод соединения двух или более проводящих объектов с землей и особая форма соединения.Некоторые объекты по своей природе связаны с землей (например, подземные трубопроводы или подземные или надземные резервуары для хранения). Связывание сводит к минимуму потенциальные различия между проводящими объектами. Заземление устраняет или сводит к минимуму разность потенциалов между проводящими объектами и землей.

Жидкости с температурой воспламенения¹ ниже 100 ° F (37,8 ° C) нельзя переносить между контейнерами, если оба контейнера не соединены или не заземлены. Правильное соединение или заземление необходимо для предотвращения накопления статического электричества, возникающего при переносе жидкостей.Положения для подключения или заземления включают:

  • Электрическое соединение (т. Е. Скрепление) контейнеров друг с другом перед переносом жидкости.
  • Электрическое соединение обоих контейнеров с заземлением перед перекачкой жидкости.

Дополнительное руководство по контролю статического электричества можно найти в NFPA 77, Рекомендуемая практика по статическому электричеству , опубликованном Национальной ассоциацией противопожарной защиты (NFPA). Приложение A к NFPA 77 содержит подробные чертежи различных методов соединения и заземления.Эти чертежи можно использовать в качестве руководства по типам методов заземления и соединения, которые могут применяться в различных процессах дозирования.

Склеивающие соединения могут выполняться с помощью зажимов под давлением, пайки или сварки. Зажимы аккумуляторного типа или магнитные зажимы могут использоваться для обеспечения контакта металла с металлом, в зависимости от типа используемых металлов.

Заземление также может быть выполнено с помощью «статической гребенки». Статическая расческа — это просто металлический стержень с рядом острых игл.Если заземленную статическую гребенку поднести близко к изолированному заряженному телу (или заряженной изолирующей поверхности), ионизация воздуха в точках обеспечит достаточную проводимость, чтобы заряд мог быстро рассеяться. Статические гребни обычно используются для рассеивания энергии в процессе, в котором используются изоляционные материалы, такие как бумага и текстиль. Гребень изготовлен из проводящего материала, такого как сталь или медь, который электрически соединен с землей (нейтралью). Поддерживая постоянный контакт с продуктом, поверхностные заряды, улавливаемые изолятором, рассеиваются через гребенку на землю, тем самым устраняя накопление статического электричества.Этот метод очень эффективен и используется как в производстве, так и в обычных устройствах, таких как компьютерный принтер.

Ионизация

Статический заряд проводящего объекта может свободно течь по поверхности объекта. На проводящем сферическом объекте заряд равномерно распределяется по поверхности. На проводящем несферическом объекте самоотталкивание заряда заставит его накапливаться на поверхности с наименьшим радиусом кривизны.

Если проводящее тело окружено воздухом (или другим газом) и на проводящем объекте есть острые иглы, заряд будет концентрироваться на них и производить ионизацию воздуха, делая его проводящим.Острое острие иглы позволяет проводнику достигать лишь небольшого напряжения до того, как скорость утечки или скорость рассеивания заряда сравняется со скоростью генерации заряда. Следовательно, на таком объекте не будет накапливаться статический заряд.

Сводка

Когда разнородные материалы соприкасаются друг с другом, могут возникать статические заряды. Эти заряды могут представлять собой незначительные неудобства или значительный источник энергии воспламенения в определенных условиях. Контроль образования, накопления и разряда статического электричества требует целенаправленного анализа задействованных процессов и реализации мер контроля.

Список литературы

  1. Eckhoff, R.K. Взрывы пыли в обрабатывающих производствах . 2-е изд. Оксфорд, Великобритания: Elsevier, 1997.
  2. .
  3. Международный совет кодов (ICC). Международный кодекс пожарной безопасности . Фоллс-Черч, Вирджиния: ICC, 2015.
  4. Luttgens, G., and N. Wilson. Электростатическая опасность . 1-е изд. Оксфорд, Великобритания: Linacre House, 1997.
  5. Национальная ассоциация противопожарной защиты (NFPA). Справочник по противопожарной защите . 20-е изд.Куинси, Массачусетс: NFPA, 2008.
  6. Рекомендуемая практика по статическому электричеству . NFPA 77. Куинси, Массачусетс: NFPA, 2014.

¹ Точка воспламенения . Точка воспламенения — это минимальная температура, при которой из жидкости выделяется достаточное количество пара для образования горючей смеси с воздухом.


АВТОРСКИЕ ПРАВА © 2016, ISO Services, Inc.

Рекомендации, советы и содержание этого материала предназначены только для информационных целей и не предназначены для рассмотрения всех возможных юридических обязательств, опасностей, нарушений кодекса, потенциальных убытков или исключений из надлежащей практики.Ганноверская страховая компания и ее филиалы и дочерние компании («Ганновер») прямо отказываются от каких-либо гарантий или заявлений о том, что принятие любых рекомендаций или советов, содержащихся в данном документе, сделает любые помещения, имущество или работу безопасными или в соответствии с любым законом или постановлением. Ни при каких обстоятельствах этот материал или ваше согласие с любыми рекомендациями или советами, содержащимися в нем, не должны истолковываться как устанавливающие наличие или доступность какого-либо страхового покрытия в The Hanover.Предоставляя вам эту информацию, The Hanover не берет на себя (и, в частности, отказывается от каких-либо обязательств) перед вами никаких обязательств или ответственности. Решение о принятии или выполнении любых рекомендаций или советов, содержащихся в этом материале, должно приниматься вами.

LC ДЕК 2018 2015-152
171-1199 (18.04)

eTool: Производство, передача и распределение электроэнергии — Контроль опасной энергии — Защитное заземление и соединение

На размещение проводов защитного заземления будут влиять такие факторы, как условия рабочей площадки, тип строительства и характер работ, которые необходимо выполнить. быть сделано.Система защитного заземления, которая включает в себя заземление проводов и заземление рабочих, должна быть спроектирована так, чтобы защищать рабочих от опасного напряжения, которое может возникнуть в результате повторного включения линии, молнии или индуцированного напряжения.

Если несколько бригад работают независимо на одной и той же обесточенной линии или цепи, у каждой бригады должно быть установлено защитное заземление для создания эквипотенциальной зоны на каждом рабочем месте. Типы используемых методов заземления описаны ниже.

Одноточечное заземление
Одноточечное заземление — предпочтительный метод, потому что он обычно дает наименьшую разность потенциалов в рабочей зоне и потому, что обычно требует меньше оборудования заземления и усилий для установки.Одноточечное заземление включает в себя установку одного набора заземлений в рабочем месте между проводниками, нейтралью системы (если таковая существует) и землей (которая может быть заземлением опоры или опоры) для создания связанной рабочей зоны, которая останется на месте. почти идентичное состояние электрического потенциала — отсюда и термин «эквипотенциальная зона».

Заземление с помощью кронштейна
Альтернатива одноточечного заземления, заземление с помощью кронштейна, включает установку заземления в двух местах, по одному с каждой стороны рабочего места, обычно на некотором расстоянии друг от друга и вдали от рабочего места.При заземлении с помощью кронштейнов заземления устанавливаются в пределах одной или двух секций от места работы (например, на ближайшей опоре или вышке), что позволяет рабочим «работать между площадками» или «ограничиваться площадками». При неправильно установленном заземлении кронштейна возможно, что потенциал у рабочего, работающего внутри кронштейна, может подняться до опасного уровня напряжения на рабочем месте, если линия будет под напряжением. Чтобы заземление кронштейнов было эффективным, необходим подробный инженерный анализ.При анализе следует учитывать конструктивные параметры схемы и системы и другие инженерные факторы, включая наличие статических линий или воздушных проводов заземления, полное сопротивление цепи (включая сопротивление заземлению на опорах и опорах и любой заземляющей сети), а также потенциальное воздействие на экипаж. члены для шага и касания потенциалов в условиях неисправности.

Решение об использовании кронштейна или одноточечного заземления должно основываться на оценке потенциальных опасностей для рабочих, условий рабочей площадки, типа конструкции и характера выполняемых работ.

Эквипотенциальная зона
Заземление для защиты сотрудников
Переносное заземляющее оборудование

Как заземлить грозозащитный фильтр?

По данным Национальной метеорологической службы, различные части США подвергаются ударам молнии примерно 25 миллионов раз в год [1], что делает их крупнейшим предвестником повреждений электрического и электронного оборудования, установленного в коммерческих, жилых и промышленных зданиях. единицы. Ваш усилитель сигнала — одно из таких устройств.

Наш лучший совет для вас — оставаться в помещении при ударах молнии, но мы не можем сказать то же самое о вашей системе усиления сигнала, для которой требуется внешняя антенна для захвата сигналов, которые затем усиливаются усилителем сигнала в вашем доме или здании. Проблема возникает, когда кончик антенны загорается из-за освещения. Затем этот мощный электрический заряд проходит по тропинке в дом или здание. Он может попасть в усилитель сигнала и другую электронику в здании, пытаясь заземлить и нейтрализовать заряд.В процессе он может поджарить или повредить все на своем пути к земле для рассеивания. По этой причине может оказаться полезным комплект заземления .

Что такое устройство защиты от грозовых перенапряжений?

Устройство защиты от перенапряжения — это устройство, которое защитит ваш усилитель сигнала от повреждений в случае удара молнии.

Устанавливается между внешней антенной и усилителем-усилителем, он заземляет молнию и рассеивает всплеск энергии в этой точке, спасая ваше оборудование от перегрева и в конечном итоге экономя сотни, если не тысячи долларов.

Почему это важный аксессуар для усилителя сигнала?

Внешняя (донорская) антенна вашего бустера возвышается над вашим зданием, чтобы улавливать сигналы от ближайшей вышки сотовой связи. Сделанная из металлических частей внешняя антенна также имеет столь же мощную тенденцию к улавливанию ударов молнии, которые затем стекают в усиливающую антенну, повреждая ее и любое другое подключенное к ней оборудование.

Установка устройства защиты от грозовых перенапряжений между внешней антенной и усилителем-усилителем гарантирует, что энергия молнии будет заземлена на устройстве защиты от перенапряжений, тем самым спасая все остальное подключенное к нему оборудование от повреждений.

Устройство защиты от грозовых перенапряжений хорошего качества — это инвестиция , которая защищает другое электронное оборудование, помимо спасения жизни и имущества, от разрушительных воздействий ударов молнии.

1. Обеспечивает долговечность вашего устройства. Иногда повреждения, вызванные освещением, могут быть очевидны не сразу, но вызванные им скачки напряжения влияют на чувствительные части вашего оборудования и соединительные провода, сокращая его срок службы на значительное количество дней, месяцев и, возможно, лет.Установка грозозащитного устройства защиты от перенапряжения спасает ваше оборудование от всех видов мелких и крупных повреждений и увеличивает ожидаемый срок их службы.

2. Это значительно экономит время и деньги. Представьте, что вы бегаете за мастером по ремонту (или, что еще хуже, заменой) устройств после удара грома у вас дома. С устройством защиты от грозовых перенапряжений вы можете спокойно спать, не беспокоясь о своем оборудовании, даже в ненастную погоду.

Как установить защиту от грозовых перенапряжений.

Полная установка устройства защиты от перенапряжения представляет собой двухэтапный процесс, который включает присоединение устройства защиты от перенапряжения к блоку повышения напряжения и последующее заземление этой конструкции.

1. Установка сетевого фильтра .

Национальный электротехнический кодекс (NEC) предписывает устанавливать устройства защиты от перенапряжения рядом с местом, где кабель внешней антенны входит в дом, но не рядом с горючими материалами. Мы рекомендуем устанавливать его рядом с местом, где кабель от донорной антенны входит в здание снаружи, чтобы не допускать попадания горючих материалов на крышу или чердак.

Если вы посмотрите на него, грозозащитный фильтр представляет собой небольшое устройство с двумя выходами по бокам. Используйте небольшой коаксиальный кабель, чтобы прикрепить один конец сетевого фильтра к внешней антенне. Для подключения другой стороны к усилителю усилителя потребуется более длинный кабель. Здесь важно отметить, что сетевые фильтры являются двунаправленными устройствами, то есть вы можете подключить любую розетку к внешней антенне или к усилителю, не влияя на работу вашего LSP.

Однако одним фактором, который действительно влияет на общее функционирование вашего бустерного устройства после его установки, является сопротивление устройства защиты от перенапряжения. Этот рейтинг импеданса вашего сетевого фильтра должен соответствовать номинальному входному сопротивлению усилителя . Большинство комплектов усилителей сигнала имеют одинаковое входное и выходное сопротивление, но некоторые из них этого не делают, поэтому вам нужно быть осторожным, какой импедансный грозозащитный фильтр вы покупаете для этой цели.

Устройства защиты от грозовых перенапряжений доступны с импедансом 75 Ом и 50 Ом.

Устройство защиты от перенапряжения на 75 Ом совместимо с усилителями на 75 Ом, имеющими разъемы F-типа. Типичные кабели RG-6 или RG-11, используемые в жилых домах, подходят к этим установкам.

Устройство защиты от перенапряжения на 50 Ом совместимо с усилителем с разъемом N-типа или SMA с номинальным сопротивлением 50 Ом. Для таких установок подходят более толстые и длинные кабели Wilson400 или LMR400, используемые в коммерческих зданиях и промышленных объектах.

Мы рекомендуем соблюдать осторожность при покупке устройств защиты от перенапряжения или любых других аксессуаров для повышения напряжения, поскольку несовместимые устройства могут ухудшить даже нормальную работу вашего устройства.Выбирайте только качественные, проверенные и проверенные аксессуары от сертифицированных продавцов.

2. Настройка заземления .

Заземление защитной установки является такой же важной ее частью, как и сама установка. Фактически, NEC требует заземления всех электрических устройств.

Для заземления устройства защиты от перенапряжений возьмите медный провод 10 или 12 калибра (чем толще провод, тем лучше), прикрепите его к заземляющему разъему (выход на заднем конце устройства защиты от перенапряжения) и плотно закрепите.Правильно закрепите другой конец и прикрепите его к точке заземления в вашем здании или жилом доме. Убедитесь, что используемый медный кабель не имеет резких изгибов.

Вместо того, чтобы подключать заземление к сетевому фильтру, вы также можете заземлить свою внешнюю антенную мачту напрямую, прикрепив один конец медного провода к оголенной антенне без покрытия, а другой конец — к точке заземления.

Металлический стержень заземления, установленный снаружи большинства домов специально для заземления электрических устройств, является лучшей точкой заземления для вашего устройства защиты от перенапряжения.Если вы не можете найти или подтвердить местонахождение любого такого стержня поблизости от вас, узнайте у местных жилищных или строительных властей правила и варианты заземления.

Когда ударяет молния.

При ударе молнии в сетевой фильтр открутите небольшую ручку наверху, извлеките картридж, вставьте новый картридж и снова закрутите ручку на место. Картридж является относительно недорогим электронным аксессуаром, поэтому его замена каждый раз при ударе молнии не составит для вас хлопот.

Заключение.

Правильно установленный грозозащитный фильтр может спасти жизнь тем, кто в значительной степени полагается на систему усиления сигнала для удовлетворения своих потребностей в беспроводной связи дома или в офисе. Мы могли бы пойти дальше и назвать это необходимой частью самой установки, а не просто аксессуаром, если вам случится проживать в районе, где часто бывают ураганы и удары молний. Выберите подходящий сетевой фильтр для вашего усилителя и установите его или попросите электрика, чтобы получить удовольствие от повышения уровня сотовой связи без присущих ему рисков.

Примечание:

Устройства защиты от импульсных перенапряжений

доступны только для зданий, но не для транспортных средств, поскольку их шины сами по себе действуют как изоляция и автоматически предотвращают заземление молнии в целом, которая может поразить транспортное средство или дополнительную антенну, установленную на его внешней стороне.

Статистика:

[1] https://www.weather.gov/safety/lightning

Посмотрите видео, показывающее, как установить грозозащитный фильтр:

Статическое соединение и заземление при обращении с легковоспламеняющимся и горючим топливом

% PDF-1.6 % 37 0 объект > эндобдж 38 0 объект > поток application / pdf

  • Tour, Jim
  • Брэдшоу, сунниты
  • 5100 7100 6700
  • Статическое соединение и заземление при обращении с легковоспламеняющимися и горючими видами топлива
  • дозирующий
  • электричество
  • взрывов
  • 1996-05-31T14: 01ZAdobe PageMaker 6.02010-07-19T13: 00: 20-06: 002010-07-19T13: 00: 20-06: 00отдача, электричество, взрывы Acrobat Distiller 2.1 для Macintoshuuid: 30e49d21-bf4f-478f-829c-bf84974104eeuuid: c70948e5-84ca-4a60-bcc2-8e573bcef044 конечный поток эндобдж 14 0 объект > эндобдж 5 0 obj > эндобдж 18 0 объект > эндобдж 23 0 объект > эндобдж 27 0 объект > эндобдж 28 0 объект > поток yf `h0D!) * A6 3EAIP «xh

    Когда заземления недостаточно для статического контроля…

    Высокотехнологичные отрасли давно страдают от невидимого врага.От полупроводников до медицинских устройств производители вынуждены соглашаться с высоким уровнем брака продукции из-за загрязнения частицами или критических дефектов. Часто проблемы загрязнения и повреждения продукции в этих отраслях могут быть связаны с неконтролируемым статическим электричеством. Когда статическому электричеству позволяют накапливаться, это становится двойной угрозой для чистого помещения, увеличивая вероятность заражения, вызванного ESA, и повреждения электростатическим разрядом (ESD).

    Загрязнение ESA в чистых помещениях

    Электростатическое притяжение (ESA) — это явление, которое заставляет пыль прилипать к стеклянному экрану старого вакуумного телевизора.Когда частицы становятся статически заряженными в результате трения или контакта с другим материалом, они прилипают к поверхностям, имеющим противоположный заряд. Хотя на примере телевизионного монитора это может показаться безобидным, полупроводниковая промышленность работает в микроскопическом масштабе, где крошечные частицы могут вызывать критические дефекты. Заряженные частицы, плавающие в воздухе, могут притягиваться к поверхности пластины, потенциально разрушая продукт.

    Более того, проблема загрязнения частицами больше не является изолированной для полупроводниковой промышленности.Например, стерильность медицинских устройств всегда является главным приоритетом и должна строго контролироваться в соответствии с государственными постановлениями. Когда производственные процессы вызывают накопление в устройстве статического заряда, загрязняющие частицы в воздухе и на близлежащих поверхностях будут притягиваться к устройству, что приведет к высокому уровню отклонения.

    Электростатические разряды Чувствительные к повреждениям полупроводники

    Производители полупроводников подвергаются постоянной угрозе повреждения пластинами электростатическими разрядами.Из-за изолирующей природы материалов пластины любой контакт или разделение между поверхностями способствует накоплению статического заряда.

    Существует три типа повреждений ESD, которые могут произойти:

    • Катастрофический отказ
    • Расстроенный отказ
    • Скрытый дефект

    Катастрофические отказы очевидны для производства, поскольку они легко обнаруживаются и приводят к списанию оборудования. продукт. Неисправности и скрытые дефекты трудно обнаружить на заводе при первоначальном тестировании продукта.Но когда продукт попадает к покупателю, неприятные сбои вызывают сбои в программном обеспечении и хранилище данных, а скрытый дефект сокращает срок службы продукта. Ненадежные, дефектные продукты увеличивают расходы на замену по гарантии и наносят ущерб репутации производителя.

    Типичная антистатическая программа

    Многие программы контроля статического электричества реализуют различные формы электрического заземления для предотвращения создания статического заряда персоналом и оборудованием. Заземление работает путем подключения достаточно проводящей поверхности (например, человеческого тела или нержавеющей стали) к точке заземления, которая отводит статический заряд в землю.Специально разработанный пол для защиты от электростатических разрядов в сочетании с проводящей обувью предотвратит накопление статических зарядов на персонале. Аналогичную защиту обеспечат браслеты, подключенные к точке заземления.

    Заземление не снимает статическое электричество с изолированных поверхностей!

    В условиях чистых помещений электрическое заземление имеет свои ограничения. Что касается электропроводности, существует три категории материалов: проводники, изоляторы и материалы, рассеивающие статическое электричество.Заземление работает только с проводниками и материалами, рассеивающими статическое электричество, поскольку они обладают достаточной проводимостью, чтобы передавать статическое электричество на точку заземления. Изоляционные материалы, включая стекло и большинство пластиков, чрезвычайно устойчивы к статическому переносу. Эти материалы, как правило, создают и удерживают огромные статические заряды, а также являются преобладающими материалами в современных чистых помещениях. Вафли и медицинские устройства обычно изготавливаются из изоляторов, фактически гарантирующих статический заряд, который усложняет производственные усилия.

    Если заменить все материалы в чистом помещении на рассеивающие статическое электричество пластмассы, как это обычно бывает, нецелесообразно или непомерно дорого, остается единственный эффективный вариант — ионизация.

    Устранение статического электричества посредством ионизации

    Ионизирующая штанга с датчиком статического электричества, установленная под вентилятором / фильтрующим блоком.

    Статические ионизаторы — это устройства, предназначенные для испускания положительно и отрицательно заряженных ионов, которые снижают статические заряды до безвредного уровня. Существует два типа ионизирующих технологий: системы ионизирующего излучения и системы коронного разряда.Системы ионизирующего излучения встречаются гораздо реже, поскольку в них используются радиоактивные изотопы, которые в США строго регулируются Комиссией по ядерному регулированию. Электрическая ионизация с использованием метода коронного разряда получила более широкое распространение благодаря своей доступности и простоте.

    Электрические ионизаторы бывают трех видов:

    • Штангового типа
    • Воздуходувного типа
    • Ионизация в месте использования

    Как работает ионизация? Молекулы в воздухе становятся заряженными ионами, когда электрический ток выходит из кончика электродного зонда.Когда эти ионы перемещаются по воздуху, они статически нейтрализуют любую противоположно заряженную поверхность, с которой они вступают в контакт. Этот механизм работает со всеми типами материалов, что является ключевым преимуществом перед традиционными методами статического контроля.

    Ионизирующие стержни могут устранять статическое электричество в критических условиях

    В то время как ионизатор в месте использования или с вентилятором может быть полезен для устранения статического электричества на рабочем столе или на определенном этапе производства, ионизирующий стержень — лучший выбор для 100% устранения статического электричества в чистом помещении.Хотя ионы генерируются в воздухе, окружающем электродные зонды, для достижения намеченных целей им нужна двигательная установка. Благодаря установке ионизирующих стержней под вентиляторами / фильтрами ионы рассеиваются воздушным потоком по всему чистому помещению, нейтрализуя статические заряды на частицах воздуха и рабочих поверхностях, не вызывая турбулентности.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *