- Калькулятор буронабивных свайных и столбчатых фундаментов
- Калькулятор расчета нагрузки на свайный или столбчатый фундамент
- Онлайн калькулятор свайного фундамента — рассчитать стоимость фундамента на винтовых сваях
- Свайный фундамент, расчет количества свай
- Расчет свайного фундамента. Калькулятор онлайн
- онлайн калькулятор, какое количество свай нужно, необходимая несущая способностьи подробный монтаж
- Какие параметры нужно рассчитать для правильного выбора свайного фундамента
- Расчет с помощью онлайн-калькулятора
- Как найти нагрузку на основание
- От каких факторов зависит шаг?
- Пример вычисления необходимого количества опор
- Пример расчета буронабивной основы
- Основные схемы размещения
- Как правильно рассчитать шаг
- Оптимальное расстояние
- Пример нахождения размеров ростверка
- Полезное видео
- Заключение
- Калькулятор расчета свайного фундамента — онлайн расчет столбчатого фундамента
- Разъяснение результатов расчетов
- Общая длина ростверка
- Площадь подошвы ростверка
- Площадь внешней боковой поверхности ростверка
- Объем бетона для ростверка и столбов
- Вес бетона
- Нагрузка на почву от фундамента в местах основания столбов
- Минимальный диаметр продольных стержней арматуры
- Минимальное количество рядов арматуры ростверка
- Общий вес арматуры
- Величина нахлеста арматуры
- Длина продольной арматуры
- Минимальное количество продольных стержней арматуры для столбов и свай
- Минимальный диаметр арматуры для столбов и свай
- Минимальный диаметр поперечной арматуры (хомутов)
- Максимальный шаг поперечной арматуры (хомутов)
- Общий вес хомутов
- Минимальная толщина доски при опорах через каждый метр
- Количество досок для опалубки
- Периметр опалубки
- Объем и примерный вес досок для опалубки
- Разъяснение результатов расчетов
- Калькулятор свай (трубчатый анкер и фундамент)
- Грузоподъемность свай | Программное обеспечение SkyCiv Cloud для структурного анализа
- Расчет свайного фундамента. Калькулятор онлайн
- Калькулятор грузоподъемности винтовой сваи: проект свайного фундамента
- КАК РАССЧИТАТЬ ГРУЗОПОДЪЕМНОСТЬ? (СТАТИЧЕСКИЙ АНАЛИЗ)
- Расчет несущей способности сваи для одиночных и групповых свай
- Вместимость сваи — обзор
Калькулятор буронабивных свайных и столбчатых фундаментов
Внимание! В настройках браузера отключена возможность «Использовать JavaSсript». Основной функционал сайта недоступен. Включите выполнение JavaScript в настройках вашего браузера.Информация по назначению калькулятора
Онлайн калькулятор монолитного буронабивного свайного и столбчатого ростверкого фундамента предназначен для расчетов размеров, опалубки, количества и диаметра арматуры и объема бетона, необходимого для обустройства данного типа фундамента. Для определения подходящего типа, обязательно обратитесь к специалистам.
Все расчеты выполняются в соответствии со СНиП 52-01-2003 «Бетонные и железобетонные конструкции», СНиП 3.03.01-87 и ГОСТ Р 52086-2003
Свайный либо столбчатый фундамент – тип фундамента, в котором сваи либо столбы находятся непосредственно в самом грунте, на необходимой глубине, а их вершины связаны между собой монолитной железобетонной лентой (ростверком), находящейся на определенном расстоянии от земли.
Основными условиями для выбора такого фундамента является наличие слабых, растительных и пучинистых грунтов, а так же большая глубина промерзания. В последнем случаем и при возможности забивания свай при любых погодных условиях, такой вид очень актуален в районах с суровым климатом. Так же к основным преимуществам можно отнести высокую скорость постройки и минимальное количество земляных работ, так как достаточно пробурить необходимое количество отверстий, либо вбить уже готовые сваи с использованием специальной техники.
Существует различное множество вариаций данного типа фундамента, таких как геометрическая форма свай, материалы для их изготовления, механизм действия на грунт, методы установки и виды ростверка. В каждом индивидуальном случае необходимо выбирать свой вариант с учетом характеристик грунта, расчетных нагрузок, климатических и других условий. Для этого необходимо обращаться к специалистам, которые смогут произвести все необходимые замеры и расчеты. Попытки экономии и самостроя могут привести к разрушению постройки.
При заполнении данных, обратите внимание на дополнительную информацию со знаком Дополнительная информация
Далее представлен полный список выполняемых расчетов с кратким описанием каждого пункта. Вы так же можете задать свой вопрос, воспользовавшись формой справа.
Общие сведения по результатам расчетов
- Общая длина ростверка — Периметр фундамента, с учетом длины внутренних перегородок.
- Площадь подошвы ростверка — Соответствует размерам необходимой гидроизоляции.
- Площадь внешней боковой поверхности ростверка — Соответствует площади необходимого утеплителя для внешней стороны фундамента.
- Вес бетона — Указан примерный вес бетона по средней плотности.
- Нагрузка на почву от фундамента в местах основания столбов — Нагрузка на почву от веса фундамента в местах основания столбов/свай.
- Минимальный диаметр продольных стержней арматуры — Минимальный диаметр по СНиП, с учетом относительного содержания арматуры от площади сечения ленты.
- Минимальный диаметр поперечных стержней арматуры (хомутов) — Минимальный диаметр поперечных и вертикальных стержней арматуры (хомутов) по СНиП.
- Минимальное кол-во вертикальных стержней арматуры для столбов — Количество вертикальных стержней арматуры на каждый столб/сваю.
- Минимальный диаметр арматуры столбов — Минимальный диаметр вертикальных стержней для столбов/свай.
- Шаг поперечных стержней арматуры (хомутов) для ростверка — Шаг хомутов, необходимых для предотвращения сдвигов арматурного каркаса при заливке бетона.
- Величина нахлеста арматуры — При креплении отрезков стержней внахлест.
- Общая длина арматуры — Длина всей арматуры для вязки каркаса с учетом нахлеста.
- Общий вес арматуры — Вес арматурного каркаса.
- Толщина доски опалубки — Расчетная толщина досок опалубки в соответствии с ГОСТ Р 52086-2003, для заданных параметров фундамента и при заданном шаге опор.
- Кол-во досок для опалубки
Калькулятор расчета нагрузки на свайный или столбчатый фундамент
Свайный фундамент может выручить в тех обстоятельствах, когда никакой другой тип основы под строящееся здание невозможен или же становится чрезвычайно сложным и невыгодным. Сваи, заглублённые ниже уровня промерзания грунта и достигшие плотных его слоев, способны выдержать очень серьезную нагрузку. Безусловно, это требует правильных расчётов их несущей способности и, исходя из этого и общей нагрузки – количества и схемы расстановки.
Калькулятор расчета нагрузки на свайный или столбчатый фундаментНиже будут приведены необходимые пояснения по порядку проведения расчетов.
Калькулятор расчета нагрузки на свайный или столбчатый фундаментПерейти к расчётам
Укажите запрашиваемые значения и нажмите «Рассчитать суммарную нагрузку на свайный фундамент»
СТЕНЫ ДОМА
Площадь стен указывается суммарно, при желании — можно с вычетом оконных и дверных проемов.
(Доступно введение двух вариантов, например, для несущих внешних и внутренних стен. Если вариант не используется, оставьте значение площади по умолчанию — 0)
Стены, тип №1
Материал стен
— кирпичная кладка в полкирпича (120 мм)- кирпичная кладка в 1 кирпич (250 мм)- кирпичная кладка в 1.5 кирпича (380 мм)- стены из газосиликатных блоков марки D600, толщина 300 мм- бревенчатый сруб, диаметр 240 мм- стены из бруса, толщина 150 мм- каркасные стены с утеплением, толщина 150 мм- стены из сэндвич-панелей толщиной 150 мм, с утеплением из минеральной ваты- стены из сэндвич-панелей толщиной 150 мм, с утеплением из пенополистирола или пенополиуретана
Площадь стен, м²
Стены, тип №2
Материал стен
— кирпичная кладка в полкирпича (120 мм)- стены из газосиликатных блоков марки D600, толщина 300 мм- бревенчатый сруб, диаметр 240 мм- стены из бруса, толщина 150 мм- каркасные стены с утеплением, толщина 150 мм- каркасные перегородки из гипсокартона- перегородки из сэндвич-панелей толщиной 50-80 мм, с утеплением из минеральной ваты- перегородки из сэндвич-панелей толщиной 50- 80 мм, с утеплением из пенополистирола или пенополиуретана
Площадь стен, м²
ПЕРЕКРЫТИЯ
Если в перекрытии есть проем, например, для межэтажной лестницы, то его следует исключить из общей площади
(Доступно введение двух вариантов, например, для межэтажного и чердачного перекрытия. Если вариант не используется, оставьте значение площади по умолчанию — 0)
Перекрытие, тип №1 (межэтажное)
Тип перекрытия
— перекрытие межэтажное или цокольное по деревянным балкам с утеплителем плотностью до 200 кг/м³- плита перекрытия пустотная- плита перекрытия монолитная
Площадь перекрытия, м²
Перекрытие, тип №2 (чердачное)
Тип перекрытия
— перекрытие чердачное по деревянным балкам с утеплителем плотностью до 200 кг/м³- плита перекрытия пустотная- плита перекрытия монолитная
СТРОПИЛЬНАЯ СИСТЕМА И КРОВЛЯ
При выборе типа кровли автоматически будет учитываться и средний вес стропильной системы с обрешеткой.
Одновременно к весу крыши будет добавлено ориентировочное значение снеговой нагрузки, в зависимости от региона строительства и крутизны скатов
Общая площадь кровли, м²
Тип кровли
— листовая сталь, профнастил, металлочерепица- мягкая полимер-битумная кровля в два слоя- абесто-цементный шифер- керамическая черепица
Укажите зону, в соответствии с картой-схемойIIIIIIIVVVIVII
РОСТВЕРК
Если для обвязки свай используется деревянный брус, то его можно просто учесть в площади стены — большой ошибки не будет.
Ростверк из металлопроката или железобетона лучше принять в расчет дополнительно
Длина ростверка (учитывая внешний периметр и внутренние перемычки), метров
Материал ростверка:
Пояснения по проведению расчетовБезусловно, предложенный алгоритм не претендует на профессиональную точность, но при планировании небольших домов и хозяйственных построек на загородном участке вполне может помочь оценить складывающуюся картину.
Нагрузка, выпадающая на свайный фундамент, в первую очередь включает массу самой постройки, планируемой к возведению.
В калькуляторе предусмотрено внесение площадей стен и указание материала их изготовления. При желании, чтобы получить более корректный результат, можно исключить из площади оконные и дверные проемы. Подсчет площадей стен необходимо провести отдельно, согласуюсь с имеющимся планом или хотя бы наметками на будущее строительство. Правильно рассчитать площадь поможет специальная публикация портала.
Расчет площадей – быстро и точно
Даже простейшие геометрические формулы иногда подзабываются, и это не говоря о более сложных случаях. Ничего страшного: откройте по ссылке статью, специально посвященную расчету площадей – там изложен порядок вычислений, размещены удобные калькуляторы.
Цены на винтовые сваи
винтовые сваи
Внешние стены и внутренние капитальные перегородки могут отличаться и толщиной, и материалом изготовления. Поэтому пользователю предоставляется возможность внесения двух вариантов стен. Если такой необходимости нет, то просто в поле ввода площади оставляется значение «0».
Далее, следуют поля ввода параметров перекрытий, где также предусмотрены два возможных варианта, например, для пола первого этажа и для чердачного перекрытия. В программу расчета уже внесены необходимые поправки на эксплуатационные нагрузки на перекрытия – вес мебели и других предметов обстановки, динамическое воздействие от находящихся в доме людей и т. п.
Следующий блок ввода данных – это параметры крыши. При выборе типа кровли сразу будет учтена и средняя масса стропильной системы. Кроме того, на кровлю зимой оказывается немалая нагрузка от выпавшего снега. Чтобы учесть этот фактор, необходимо указать зону своего региона по уровню снеговой нагрузки (по предложенной карте-схеме), и крутизну скатов кровли.
Карта-схема для определения своей зоны по среднестатистическому уровню снеговой нагрузки на кровлюСваи или столбы соединяются брусом обвязки либо ростверком. Если применяется деревянная обвязка, то не будет большой ошибкой просто включить ее в площадь стен. Но в том случае, когда устраивается ростверк из металла или даже железобетонной ленты – имеет смысл принять его во внимание дополнительно. При выборе этого пути расчета откроются дополнительные поля ввода данных – длины ростверка и материала его изготовления.
Итоговый результат будет выдан в килограммах и тоннах. Получив это значение и зная несущий потенциал опоры, несложно будет определиться и с количеством свай или столбов.
Как оценивается несущая способной винтовых свай?
Этот параметр зависит от особенностей грунта на предполагаемой глубине залегания винтовой части опоры и от размерных параметров самой сваи. Подсчитать несущую способность винтовой сваи поможет специальный калькулятор, к которому ведет указанная ссылка.
Онлайн калькулятор свайного фундамента — рассчитать стоимость фундамента на винтовых сваях
Минимальное количество свай для оформления заказа с монтажом 10 штук
Воспользуйтесь нашим онлайн-калькулятором для расчета свайного фундамента любого строения. Калькулятор поможет рассчитать необходимое количество свай и стоимость монтажных работ.
Обращаем ваше внимание, что данный расчет фундамента является упрощенным и не может учесть все индивидуальные особенности вашего проекта. Для их уточнения наш специалист свяжется с вами в ближайшее время.
Калькулятор не учитывает внутреннюю несущую стенку строения.
Наш сервис позволяет предварительно рассчитать винтовой фундамент, чтобы заранее прикинуть его стоимость. Если вам требуются монтажные работы, то на объект будет отправлена бригада опытных строителей, которые полностью укомплектованы необходимым оснащением, включающим, в том числе генераторы и баки с водой. После того как вы укажете место для вашего будущего свайного фундамента, строители приступят к монтажным работам. У вас есть возможность принять работу в конце дня и обсудить с бригадиром интересующие вас вопросы, касающиеся свайного фундамента. Монтаж фундамента до 25 свай длится всего 1 день. На произведенный нашими специалистами фундамент мы даем гарантию сроком на 10 лет.
Точный расчет, в процессе которого определяется стоимость винтовых свай для фундаментов домов и других конструкций, выполняется в режиме онлайн на базе введенных заказчиком параметров. Для этого предусмотрен удобный и наглядный сервис.
Чтобы рассчитать стоимость фундамента, введите необходимые данные о грунте, размерах, типе строения и его параметрах в калькулятор. Если у вас возникнут дополнительные вопросы, задайте их нашим специалистам. Они помогут вам разобраться и правильно рассчитать винтовой фундамент. Контактные телефоны указаны в верхней части страницы нашего сайта.
Прежде всего, следует рассчитать стоимость винтовых свай для фундамента. Для этого необходимо учесть ряд важных параметров:
Количество свай. Обычно расчет ведется из предположения, что расстояние между сваями не может превышать 3 метров. Таким образом, для фундамента небольшого одноэтажного дома 6х6 метров достаточно девяти свай. Однако для двухэтажного здания лучше располагать их на расстоянии 2-2,5 метра друг от друга.
Диаметр сваи. Здесь все зависит от потенциальной нагрузки фундамента. Для беседки подойдут винтовые сваи диаметром 89 мм, а для дома нужно выбирать классические 108-миллиметровые.
Тип наконечника. Наконечник сваи может быть сварным или литым. Конкретный вариант выбирается, исходя из особенностей грунта. Опорные элементы с литым наконечником обойдутся несколько дороже, но их стоимость компенсируется высокими антикоррозийными характеристиками.
Длина. На стоимости винтовых свай, разумеется, напрямую сказывается их длина. В большинстве случаев она составляет 2,5 метра, однако специалист в обязательном порядке должен провести пробное бурение, чтобы определить точные значения длин свай для конкретного фундамента.
Наличие и размер оголовков. Оголовки привариваются поверх свай и служат опорой для плиты или балки ростверка.
На следующем этапе определяется стоимость обвязки. Обвязка свай может понадобиться в случае необходимости обеспечения дополнительной их стабильности в горизонтальной плоскости. К примеру, обвязка желательна, если высота свай над уровнем земли превышает 50 см или в случае нестабильных торфяных грунтов. Однако даже в общем случае обвязка свай никогда не бывает лишней, поскольку данная операция значительно повышает конструктивную прочность фундамента.
При финальном определении стоимости работ учитываются дополнительные факторы: необходимость предоставления монтажных услуг, расстояние до объекта (расходы на горючее), наличие на объекте электричества (необходима компенсация затрат на доставку и эксплуатацию портативного дизельного генератора).
Свайный фундамент, расчет количества свай
Одной из основных задач, возникающих во время проектирования строительства будущего здания, является расчет нагрузки основной конструкции на фундамент. От полученных результатов зависит выбор типа фундамента и его конфигурация. Эта статья посвящена особенностям свайного фундамента дома и его преимуществам. Будут рассмотрены условия, при которых свайная конструкция наиболее предпочтительна, а также продемонстрированы примеры того, как рассчитать количество свай с учетом потенциальных нагрузок на фундамент и характеристик грунта.
Что такое свайный фундамент и из чего он состоит
Основой для этого типа фундамента служат полые стальные сваи, равномерно распределяемые по периметру будущих несущих стен дома. Внешняя поверхность покрывается защитным антикоррозионным слоем на основе цинка или полимерного материала, а внутренняя поверхность защищается бетоном, заливаемой в установленную сваю. Верхняя часть свай для фундамента соединяется посредством сварки с оголовком, который в свою очередь будет поддерживать ростверк – конструкцию, объединяющую отдельные сваи в единую основу. Чаще всего для изготовления ростверка используется бетон, стальные швеллеры и двутавры, реже – деревянный брус.
В отличие от ленточного или монолитного фундамента, также нагруженного по всему периметру здания, для монтажа не потребуется значительный объем земляных работ. Фундамент на сваях рекомендуется использовать в следующих случаях:
- Грунты, находящиеся под стройплощадкой, характеризуются неустойчивостью, высокой влажностью, усадкой под воздействием сезонных факторов;
- Застройка проводится на территории со сложным рельефом, на котором крайне сложно или невозможно установить обычные фундаменты;
- Климатические условия в местности, а также уровень грунтовых вод, согласно действующим правилам СНиП, вынуждают сооружать массивный бетонный фундамент, требующий значительных денежных вложений;
- При сооружении каркасного здания, как правило, используется именно свайный фундамент.
Виды свай для фундамента
Различают две основные категории, отличающиеся по способу противодействия осадкам свайных фундаментов: стоечные и висячие. Устойчивость висячей сваи обеспечивается за счет силы трения между внешней поверхностью и окружающим ее после погружения грунтом. Стоечные оснащены упором возле своих оснований, который удерживает конструкцию, основываясь на плотных слоях грунта под ним. А также упором служат лопасти винтовых свай, дополнительно трамбующие грунт во время монтажа.
Разделение свай по способу строительства:
По названию понятно, что данные сваи забиваются в грунт с помощью специальных механизмов (строительные пневмомолоты). Их особенностью является тот факт, что при забивании сила, воздействующая на нее, берется из расчета свайного фундамента. Таким образом, она погружается до глубины, на которой находится довольно прочный слой грунта, способный выдержать расчетную массу дома. Данный тип считается очень устойчивым, при забивании грунт вокруг нее и под ней дополнительно уплотняется. Монтаж забивных свай практически не используется при строительстве небольших домиков и частных коттеджей, так как требует применения сложной спецтехники.
Изделия состоят из стальной трубы и приваренных в нижней части лопастей либо это цельнолитая конструкция (что предпочтительнее в плане долговечности). Лопасти способствуют проникновению в грунт при ее закручивании, а после установки они удерживают на себе нагрузку на свайный фундамент и не дают ей проворачиваться. В верхней части изделия находятся специальные отверстия, с помощью которых свая ввинчивается в землю. При этом этот процесс вполне можно осуществить вручную, контролируя вертикальное положение во время работы. Внутренний объем заполняется бетоном для увеличения массы и защиты от коррозии.
Порядок установки буронабивных свай не предусматривает использование готовых металлоконструкций. Роль сваи в данном случае выполняет бетон, залитый в предварительно пробуренную скважину. Если грунт недостаточно плотный также потребуется опалубка. Этот способ достаточно прост в применении и подходит для индивидуального строительства. Единственный нюанс: расчетная нагрузка на сваю может оказаться слишком высокой для избранного в качестве основания слоя грунта.
В дальнейших примерах статьи, иллюстрирующих как точно рассчитать свайный фундамент, будут использоваться параметры предельной нагрузки винтовых свай. В следующей таблице вкратце перечислим наиболее распространенные марки данных изделий.
Таблица 1
Подробно о свайном фундаменте с ростверком
С одной стороны, ростверк выполняет функцию связного элемента для отдельных свай, с другой – это основа для остальной конструкции здания. Ростверк и сваи условного фундамента объединяются попарно (ленточный тип связки) либо объединяются все оголовки (плиточный тип). Ростверк для дома может изготавливаться из таких материалов:
- Армированный бетон. Бетонная лента укладывается на оголовки свай, расположенные на уровне земли. Во время проектирования также указываются места прокладывания неглубоких траншей, проходящих вглубь ростверка.
- Бетонный ростверк подвесного типа. Аналогичный способ, при котором между грунтом и ростверком оставляется зазор. Этот промежуток позволяет компенсировать возможные колебания грунта (в рамках нормы).
- Ростверк из железобетона. Основой служит двутавр и швеллер (для монтажа под несущие стены СНиП рекомендует) швеллер 30.
- Деревянные брусья. В последнее время практически не применяются.
Как рассчитать количество свай для фундамента
Правильный расчет количества используемых свай нуждается в предварительной геодезической разведке. Прежде всего, необходимо рассчитать уровень промерзания грунта в зимний период, учитывая, что данный показатель отличается в разных регионах. Для прочной установки сваи ее нижний конец должен находиться ниже этого уровня.
А также необходимо выяснить степень плотности слоев грунта. Чем выше плотность, тем меньшую глубину сваи следует закладывать на этапе проектирования. К примеру, для полускальных и крупноблочных пород она будет минимальной (но не меньше 0,5 метра), а для песчаных и глинистых грунтов придется углубляться по максимуму.
Чтобы посчитать количество и тип используемых свай необходимо учитывать множество параметров. Для упрощения задачи можно использовать специальный онлайн калькулятор, но для общего понимания процесса лучше пройтись по всем этапам расчета самостоятельно.
1. Вычисление потенциальной предельной нагрузки на сваи
Перед началом расчета количества свай для фундамента следует выяснить несущую способность отдельной сваи. Общий вид формулы выглядит следующим образом:
В этом случае W является искомой фактической несущей силой, Q – расчетное значение несущей силы, рассчитанное для отдельной сваи по материалу, размерам и характеристикам грунта; k – дополнительный «коэффициент надежности», расширяющий эксплуатационный запас фундамента.
2. Вычисление расчетной нагрузки на сваи
Далее нам необходимо найти параметр Q, без которого расчет свайного фундамента невозможен. Расчетная нагрузка определяется по формуле:
Где S равно площади поперечного сечения лопастей сваи, а Ro – это показатель грунтового сопротивления на глубине размещения лопастей. Сопротивление грунта можно брать из готовой таблицы:
Таблица 2
Что касается «коэффициента надежности» условного фундамента, его величина может варьироваться в пределах 1,2-1,7. Логично, что чем меньше коэффициент, тем ниже себестоимость фундамента на этапе проектирования, поскольку для достижения заданного значения несущей силы не потребуется использования большого количества свай. Чтобы уменьшить коэффициент следует провести качественный и достоверный анализ грунта на стройплощадке, привлекая специалистов.
А также для данных целей используется методика ввинчивания эталонной скважины. Ее применение зачастую требуется для расчета осадка свайных фундаментов на промышленных стройплощадках и при строительстве многоквартирных зданий, как того требует СНиП. Но при желании эталонная скважина может буриться и при индивидуальном строительстве.
3. Расчет нагрузки от конструкции здания
На завершающем этапе проектирования свайного фундамента проводится расчет количества свай. Для этого потребуется просуммировать все элементы конструкции здания: от капитальных стен и перекрытий, до стропильной системы и кровли. Провести точное вычисление всех компонентов довольно сложно, поэтому рекомендуем воспользоваться одним из специализированных калькуляторов. И также в калькулятор расчета вносятся эксплуатационные нагрузки, включающие предметы интерьера, мебель, бытовую технику и даже проживающих в доме людей.
4. Подсчет требуемого количества свай
Перед тем как рассчитать количество задействованных свай нам нужно получить на предыдущих этапах две величины: совокупную массу здания (M) и несущую способность сваи (W) умноженную на «коэффициент надежности». Значение несущей способности можно взять из Таблицы 1. Итак, если масса равна 58 тонн, а скорректированная несущая способность сваи СВС-108 равна 3,9 тонн, то:
Как показал пример расчета, для дома весом в 58 тонн потребуется 15 свай марки СВС-180. Следует отметить, что это значение приблизительно и не учитывает правила точного распределения свай согласно СНиП:
- Первые должны быть установлены в точках пересечения несущих конструкций;
- Остальные монтируются равномерно между обозначенными углами;
- Минимальное расстояние между отдельными сваями 3 метра;
Как правило, в процессе проектирования выясняется, что для соблюдения вышеперечисленных правил потребуется немного больше свай, чем показали расчеты.
5. Глубина установки свай и расстояние между ними
Базовое значение глубины установки сваи рассчитывается исходя из глубины промерзания грунта в конкретно регионе, плюс 25 сантиметров. И также перед тем как рассчитать свайный фундамент, необходимо выяснить:
- Уровень прочности сваи по материалу и конструкции;
- Несущую способность грунта;
- Провести расчет осадки свайного фундамента, со временем возникающей под нагрузкой здания;
- Дополнительные параметры (температурный режим в течение года, объем осадков, нагрузки от ветра и др. ).
Заключение
С помощью свайного фундамента можно достаточно быстро и за небольшие деньги соорудить прочное основание для жилой или нежилой постройки. В ряде случаев это единственный вариант, поскольку такому фундаменту не страшны осадки грунта, он легко возводится на сложном рельефе. Кроме того, по сравнению с традиционным ленточным или монолитным фундаментом, для монтажа свайной основы не потребуется большой объем земляных работ. Если провести правильный расчет свайного фундамента, он прослужит в течение десятилетий, не теряя функциональности.
Расчет свайного фундамента. Калькулятор онлайн
Расчёт свайного фундамента — это очень важный этап создания проекта будущего дома. Если допустить хотя бы малейшую ошибку срок эксплуатации строения уменьшится на двадцать лет в лучшем случае. При наименее благоприятных обстоятельствах катастрофа может произойти ещё при строительстве.
Если на территории застройки присутствуют неустойчивые грунты, на которых присутствует повышенная влажность, или же какие-либо сложные рельефы, то в таком случае единственно оптимальным выходом будет грамотный расчет свайного фундамента. Основным преимуществом данной конструкции является предельно высокая надежность закрепления даже в относительно слабых грунтах благодаря тому, что опоры погружаются на достаточно большую глубину. Такие конструкции отличаются гораздо большей надежностью и долговечностью, а для их реализации требуется не такое большое количество бетона, но при этом вы должны понимать, что процесс их расчета и возведения является достаточно трудоемким.
Причин для проведения расчёта свайного фундамента можно найти более чем достаточно. Во-первых, правильно смоделированная конструкция обладает большой устойчивостью. Во-вторых, вбивание свай обходится значительно дешевле, нежели, возведение ленточной или плиточной конструкции. В-третьих, при малой несущей способности грунта — свайный фундамент единственно возможный вариант.
Если участок обладает малой несущей способностью, то сделав правильный расчёт, свайного фундамента вам не придётся рыть глубоких траншей, чтобы сделать надёжное основание. Для этого используются винтовые сваи. Но формулы расчёта при использовании таких материалов значительно усложняются.
Виды фундаментов с ростверком
Ростверк представляет собой верхнюю часть фундамента, с помощью которой объединяются в одно целое оголовки свай, и именно ростверк представляет собой опору для будущего здания. Объединение ростверка и свай осуществляется при помощи специализированной сварки или же путем стандартной заливки бетоном.
По способу монтажа ростверки могут подразделяться на несколько категорий:
- Ленточные – объединяются только соседние сваи;
- Плиточные – связывается каждый отдельный оголовок.
По типу материалов:
- Из бетона с арматурой. Под несущие стены осуществляется монтаж свай, а на глубину и ширину ростверка прорываются траншеи небольшой глубины;
- Подвесной бетонный. Является аналогичным предыдущему варианту, однако особенностью такого фундамента является то, что бетонная лента не соприкасается с грунтом, а устройство компенсационного зазора при этом предоставляет возможность предотвратить разрыв опор при возникновении значительного колебания грунта;
- Железобетонные. Изготовление такого фундамента предусматривает использование двутавра или же широкого металлического швеллера, при этом под несущие стены монтируется швеллер 30, в то время как остальные опоры связываются при помощи швеллера 15-20;
- Из дерева. Крайне редкий вариант, который в последнее время практически не используется;
- Комбинированный. Здесь используются не только металлические несущие элементы, но и бетон.
Что собой представляют винтовые сваи
Чтобы провести правильный расчёт свайного фундамента необходимо как можно больше узнать об основном материале. Это позволит максимально точно составить проект, основываясь на характеристиках свайных конструктов, а также их свойствах.
Все сваи сверху объединяются ростверком. Его можно сделать как из деревянных, так и из металлических балок. Также можно взять сплошную железобетонную плиту. Но это сильно прибавит веса основной конструкции.
Свайные конструкты для расчёта фундамента можно изготовить как самостоятельно, так и заказать на заводе. При изготовлении непосредственно на месте строительства их основание лучше всего делать плоским.
Чтобы сделать правильный расчёт свайного фундамента знать только площадь конструкции недостаточно. Необходимо учитывать силу трения, что возникает между боковой поверхностью стержня и землёй.
Раньше винтовые сваи часто применяли военные инженеры при постройке фортификационных сооружений. Это было связано с тем, что они позволяют конструкции выдерживать повышенные нагрузки в экстремальных условиях.
Внимание! Свайные конструкты до сих пор незаменимы при создании мостов и переправ.
Основная часть сваи — это ствол. Его диаметр от 80 до 130 мм. Конец в форме острого конуса. На него приваривается лопасть. Это позволяет максимально быстро и эффективно вворачивать свайные конструкты в грунт.
Некоторые сваи идут без оголовка. В таком случае в конце ствола есть отверстие. В него заводится рычаг, который позволяет вращать сваю с нужной скоростью. Эта особенность даёт возможность при необходимости удлинить ствол. Данная опция крайне необходима, когда работы проводятся на нестабильных грунтах.
К преимуществам свайных конструктов можно причислить:
- Безопасную технологию установки, которая позволяет в кратчайшие сроки возвести фундамент дома.
- Возможность использования на любых грунтах. Единственным исключением являются скальные породы.
- Когда сваи вворачиваются, не образуется ударная нагрузка. Благодаря этой особенности свайные фундаменты можно строить даже в местах плотной застройки, не опасаясь за сохранность ближайших домов.
- Как только будут установлены винтовые элементы, сразу же можно монтировать ростверки. Конечно же, эта особенность учитывается в расчётах.
- Расчёт свайного фундамента можно делать как для холмистой местности, так и для неровных участков.
- Монтаж осуществляется практически в любых погодных условиях. Неважно сколько градусов за окном. Это никак не повлияет на качество фундамента.
- Возможность перепланировки. Ни один другой вид фундамента не даёт столько простора для изменений конструкции, как свайный. При необходимости стальной болт можно выкрутить и ввинтить в другое место.
Зная преимущества и особенности свайного фундамента можно провести максимально точные расчёты, усчитав все особенности конструкции.
Рассчитываем расстояние между сваями и глубину их установки
Расчет свайно-винтового фундамента с ростверком включает в себя большое количество моментов, но в первую очередь определяется глубина заложения свай, которая зависит от вида и сложности грунта. В первую очередь, нужно определить нормативную глубину промерзания грунта в вашем регионе проживания, после чего отмерить ниже 20-25 см – это и будет глубина заложения свай.
После того как будут проведены изыскательские работы, нужно будет определить уровень расположения грунтовых вод, а также возможность его колебания в разные сезоны и качественную характеристику грунта на участке. Лучше всего, если проектированием свайного фундамента, а также его обустройством будет заниматься квалифицированный специалист.
Осуществляя расчет количества винтовых свай для фундамента в каждом отдельном случае, следует брать в расчет следующие характеристики:
- Насколько прочный используется материал и ростверк;
- Какая присутствует несущая способность у грунта, учитывая также уплотнение в процессе установки опоры;
- Если присутствуют значительные перепады рельефа, то в таком случае определяется и учитывается также несущая способность основания опоры;
- Насколько будут усаживаться сваи под воздействием вертикальной нагрузки;
- Какой вес имеет строение с внутренним содержанием;
- Какие присутствуют сезонные, динамические и ветровые нагрузки.
Помимо этого, в обязательном порядке нужно учитывать осадку свайного фундамента. Свайный фундамент должен делаться в соответствии с рабочим планом, поэтому лучше всего, если его созданием будет заниматься профессиональный архитектор.
Важно! Расчет, а также последующее проектирование свайного фундамента осуществляется только после того, как будут закончены все изыскательские работы на территории, которые проводит квалифицированный специалист.
Данные для вычислительных формул в данном случае будут выбираться в зависимости от качества почвы и ее типа. Стоит отметить, что расчет свайного фундамента по усадке и деформации обуславливает необходимость в максимально возможной точности выходных показателей.
Как закладывать фундамент на основе расчётов
Чтобы построить правильные расчёты необходимо на месте строительства провести геодезические изыскания. В первую очередь нужно под слабыми грунтами определить глубину залегания слоя, который сможет выдержать вес постройки.
Важно! Необходимо делать расчёт таким образом, чтобы свайные конструкты углублялись в несущий слой не менее чем на половину метра.
Чтобы узнать на какую глубину нужно вкручивать сваи, проводится предварительное бурение. Это позволяет определить, где залегают грунтовые воды. Также нужно учитывать, насколько земля промерзает в зимний период.
Весь процесс строительства условно делится на такие этапы:
- Вначале делается разметка и выравнивание. Определяются места, где будут установлены основные сваи. После этого можно монтировать второстепенные элементы. Расстояние между ними должно быть в диапазоне от двух до трёх метров. Стальные болты должны быть под всеми стенами дома.
- Завинчивание начинается с угловых свай. В верхнее отверстие стального болта пропускается лом. Чтобы удлинить рычаг на лом надеваются металлические трубы. При вкручивании отклонение от вертикали не может превысить два градуса. Угол наклона в процессе работы контролируется посредством магнитного уровня.
- Расчёт свайного фундамента на угловых сваях делается с помощью шлангового уровня. Потом наносятся метки. Они определяют горизонтальную плоскость и нижнюю кромку ростверка.
- Вворачиваются оставшиеся сваи.
- Глубина вворачивания должна быть такой, чтобы от верха до земли было 20 см.
- Ненесущая поверхность обрезается по обозначенным уровням.
- Замешивается цементный раствор. Одна часть цемента к четырём частям песка. Им заполняются сваи.
Правильно проведённые расчёты на уровне планирования свайного фундамента позволяют сделать прочное и надёжное строение.
Примеры расчётов
Расчёт прочности одного элемента позволяет определить, сколько, в общем, понадобится свай для фундамента. В качестве константы возьмём расстояние между столбами в два метра. Мало того, согласно современным архитектурным веяниям опоры должны иметь общий ростверк.
Пример один
Диаметр одного металлического болта 30 сантиметров. Расчётная масса здания сто тонн. В формуле расчёта свайного фундамента особую роль играет несущая способность грунта. Возьмём чаще всего встречающийся показатель в четыре килограмма на сантиметр квадратный.
Важно! Нагрузка не должна превышать несущую способность грунта.
Показатель силы, которая будет действовать на каждую сваю в фундаменте обозначается как Fсв. Расчёт параметра проходит по следующей формуле:
(πd2/4)*R
Уточним значения всех переменных:
- π — неизменная величина, бесконечное число, которое для простоты математических исчислений принято обозначать как 3,14.
- d — диаметр металлического болта (30 см).
- R — радиус
Сведём всё в одну формулу:
Fсв=(πd2/4)·R =707,7·4=2826 кг.
Именно такой вес, в данном грунте сможет выдержать одна свая фундамента. Исходя из этих данных — продолжим расчёт.
Общий вес здания ровно 100 тонн. Эта цифра была взята для простоты исчислений. Перед тем как провести дальнейший расчёт свайного фундамента необходимо привести показатели к одной метрической системе. Переведём тонны в килограммы и получим значение N (количество опор).
N= 100000/2826=35,4.
Конечно же, тридцать пять с половиной опор никто монтировать не будет. Поэтому округляем в большую сторону. Выходит, для того чтобы построить дом массой в сто тонн на грунтах с несущей способностью в 4 кг/м2 нужно не менее 36 опор.
Пример два
Чтобы понять алгоритм расчёта свайного фундамента закрепим материал и немного изменим базовые показатели. Расширим основание до 50 сантиметров. Это позволит увеличить практичность всей конструкции. Остальные показатели оставим без изменений.
Fсв=1962,5·4=7850 кг
Проведём расчёт свайного фундамента и получим 13 опор. Как видите, расширение основания позволяет значительно сэкономить на количестве свай, добившись хороших показателей устойчивости конструкции.
Пример три
Расчет свайного фундамента, пример которого вы увидите далее, может использоваться как для легких дачных домов, таки для массивных коттеджей, просто в первом случае используются стандартные винтовые сваи, в то время как при постройке коттеджей нужно будет использовать массивные буронабивные сваи, которые могут выдерживать достаточно серьезные нагрузки.
Для упрощения в примере расчет свайного фундамента осуществляется по винтовым опорам. Стоит отметить, что для таких свай небольшого размера в процессе проведения расчетов не берется в учет бокового трения, которое определяется при возведении тяжелых зданий, которые оказывают на сваи значительное воздействие.
В данном случае будет рассматриваться детальный расчет общего количества свай, а также шага их установки для одноэтажного дома, размер которого составляет 7х7 м:
- Изначально определяется общая масса расходных материалов. Предположим, что общий вес крыши, бруса и облицовки будет составлять 27526 кг с учетом снеговой нагрузки;
- Размер полезной нагрузки составляет 7х7х150=7350;
- Величина снеговой нагрузки составляет 7х7х180=8820;
- Таким образом, приблизительная масса нагрузки на фундамент будет составлять 27526+7350+8820=43696 кг;
- Теперь полученный вес нужно будет умножить на коэффициент надежности 43696х1.1=48065.6 кг;
- Допустим, предусматривается установка винтовых опор, размер которых составляет 86х250х2500. Для того чтобы рассчитать их количество, нужно будет полученную сумму общей нагрузки распределить на ту нагрузку, которая прилагается на каждую сваю. 48065.6/2000=24.03, округляем полученное количество до 24, и получаем точное число нужного нам количества свай;
- Для того чтобы установить 24 опоры, нужно будет использовать шаг установки 1.2 метра. Для формирования половых лаг нужно будет использовать еще две дополнительные сваи, которые уже будут располагаться непосредственно внутри дома.
Таким образом, по вышеприведенной технологи вы сможете рассчитать нужное вам количество свай для любого дома вне зависимости от его особенностей.
На видео ниже вы сможете посмотреть, как осуществляется расчет свайного фундамента специалистами:
Итоги
Свайный фундамент — это экономичный и быстрый способ создания базы для постройки. Он позволяет работать при любых погодных условиях, а также даёт возможность возводить строения даже на самых проблемных грунтах.
Расчёт свайного фундамента позволяет заранее определить, сколько необходимо свай для дома определённой массы. При помощи формул, описанных в статье, расчёты можно проводить быстро и точно.
онлайн калькулятор, какое количество свай нужно, необходимая несущая способностьи подробный монтаж
Фундамент выполняет важную и ответственную функцию, не допускающую никаких сомнений в возможностях или надежности основания.
В этом отношении свайные опорные конструкции позволяют получить полноценный вариант решения проблемы без опасности просадок или деформаций, которые возможны у традиционных видов фундамента.
Особенно ярко эта способность проявляется в сложных условиях, на слабонесущих или обводненных грунтах, торфяниках.
Если традиционные основания базируются на верхних, неустойчивых слоях грунта, то сваи опираются на плотные горизонты, расположенные на значительном расстоянии от поверхности.
Единственной задачей, встающей перед проектировщиком, является грамотный и корректный расчет опорной конструкции.
Содержание статьи
Какие параметры нужно рассчитать для правильного выбора свайного фундамента
Параметры, необходимые для обоснованного выбора свайного фундамента, можно разделить на две группы:
- Измеряемые.
- Расчетные.
К измеряемым могут быть причислены все свойства грунта на данном участке:
- Состав слоев.
- Уровень залегания грунтовых вод.
- Особенности гидрогеологии, возможность сезонного подтопления, подъемы и понижения водоносных горизонтов.
- Глубина залегания и состав плотных слоев.
К расчетным параметрам относятся:
- Величина нагрузки на основание.
- Несущая способность опоры.
- Схема расположения стволов.
- Параметры свай и ростверка.
Указаны только самые общие параметры, в ходе создания проекта нередко приходится рассчитывать большое количество дополнительных позиций.
ВАЖНО!
Расчет фундамента — ответственная и очень сложная задача. Ее решение можно поручить только грамотному и опытному специалисту, имеющему соответствующую профессиональную подготовку и квалификацию. Кроме того, заказ на выполнение расчета должен быть оформлен официальным порядком, чтобы проектировщик нес полную ответственность за результат своих действий. Проект, составленный неформальным порядком, может стать приговором как самой постройке, так и людям, проживающим в ней.
Расчет с помощью онлайн-калькулятора
Тип грунта определяется по результатам бурения пробной скважины. Она имеет глубину до появления контакта с плотными слоями, или до момента погружения на достаточную глубину для установки висячих свай.
Некоторую информацию можно получить в местном геологоразведочном управлении, но она будет усредненной и не сможет дать максимально полные данные о качестве и параметрах грунта на данном участке.
Участок способен иметь специфические инженерно-геологические условия, не свойственные данному региону в целом, поэтому всегда следует производить специализированный геологический анализ.
Глубина промерзания грунта — табличное значение, которое находят в приложениях СНиП.
Существует специальная карта, на которой все регионы России разделены на специальные зоны, обладающие соответствующей глубиной промерзания.
Тем не менее, в действующем ныне СП 22.13330.2011 «Основания зданий и сооружений» имеется методика специализированного расчета глубины промерзания, производимого по теплотехническим показателям грунта и самого здания.
Как найти нагрузку на основание
Нагрузка на фундамент определяется как суммарный вес постройки и всех дополнительных элементов:
- Стены дома.
- Перекрытия.
- Стропильная система и кровля.
- Наружная обшивка, утеплитель.
- Эксплуатационная нагрузка (вес мебели, бытовой техники, прочего имущества).
- Вес людей и животных.
- Снеговая и ветровая нагрузка.
Производится последовательный подсчет всех слагаемых, после чего вычисляется общая сумма. Затем необходимо увеличить ее на величину коэффициента прочности.
Необходимо решить, возможны ли какие-либо дополнительные пристройки или дополнения, увеличивающие вес дома и изменяющие величину нагрузки на основание. Если подобные изменения входят в планы, лучше сразу заложить их в несущую способность фундамента, чтобы упростить себе задачу в будущем.
От каких факторов зависит шаг?
Минимальным расстоянием между двумя соседними винтовыми сваями является двойной диаметр лопасти.
Максимум ограничивается несущей способностью опор и жесткостью ростверка, испытывающего нагрузку от веса дома.
Каждый пролет между опорами можно рассматривать как балку, жестко закрепленную с двух концов.
Тогда величину нагрузки необходимо рассчитать таким образом, чтобы балка не была деформирована или разрушена, а прогиб в центральной точке не превышал допустимых значений.
На практике обычно поступают проще — на основании многочисленных расчетов и эксплуатационных наблюдений выведено максимальное расстояние между соседними сваями, равное 3 (иногда — 3,5) м.
Эту величину считают критической, если по несущей способности опор получаются пролеты больше 3 м, то добавляют 1 или несколько свай для уменьшения шага.
Пример вычисления необходимого количества опор
Для простоты примем общий вес дома со всеми нагрузками равным 30 т. Это приблизительно соответствует весу одноэтажного брусового дома 6 : 4 м, расположенного в средней полосе со снеговой нагрузкой до 180 кг/м2.
Определяется несущая способность одной сваи. Площадь опоры (лопасти) при диаметре 0,3 м составит 0,7 м2. (700 см2). Несущая способность грунта обычно принимается равной среднему арифметическому от значений всех слоев, встречающихся на участке. Допустим, она выражается в 3-4 кг/см2. Тогда каждая свая сможет нести 2,1-2,8 т.
Получается, что для дома в 30 т надо использовать 11-15 свай. Помня о необходимости иметь запас прочности, принимаем максимальное значение. Схему размещения можно принять как свайное поле из 3 рядов по 5 свай в каждом.
Глубину погружения и, соответственно, длину свай принимаем равной глубине залегания плотных грунтовых слоев.
Она определяется практически, методом пробного погружения сваи или бурением скважины.
Пример расчета буронабивной основы
Прежде всего следует вычислить несущую способность одной сваи. Для примера возьмем наиболее распространенный вариант — диаметр скважины 30 см, несущая способность грунта составляет 4 кг/см2. По таблицам СНиП определяем, что несущая способность на песках средней плотности составит около 2,5 т.
Затем производится подсчет общего веса дома. Он делается по обычной методике, но к нему понадобится прибавить вес ростверка, для чего следует вычислить объем ленты и умножить его на удельный вес бетона.
После этого нагрузку на сваи делят на несущую способность единицы и округляют до большего целого значения. Это — количество буронабивных свай, необходимое для дома заданного веса, выстроенного в заданных условиях.
Даже состав грунта редко соответствует лабораторным показателям из-за различных примесей, включений или прочих напластований, изменяющих все параметры.
Поэтому в любом случае надо делать запас прочности, превышающий обычные коэффициенты, заложенные в формулы. Рекомендуется увеличивать его на 10-15%.
ОБРАТИТЕ ВНИМАНИЕ!
Необходимо помнить, что все расчеты производятся по формулам, не учитывающим реальной обстановки на участке.
Основные схемы размещения
Существует несколько разновидностей схем расположения свай:
- Свайное поле.
- Свайный куст.
- Свайная полоса.
Свайное поле представляет собой участок с равномерно распределенными по всей площади опорами.
Используется для жилых или вспомогательных построек, обладающих подходящим весом, этажностью и материалом для использования винтовых свай. Свайные кусты применяются для создания опорной конструкции под точечные объекты — вышки электропередач или мобильной связи, колонны, трубы котельных и т.п.
Свайные полосы служат фундаментом для линейных сооружений — ограждений, заборов, набережных и т.п.
При проектировании схемы расстановки опор учитывается конфигурация, геометрические и функциональные особенности всех элементов сооружения. Нередко используются смешанные, или комбинированные схемы расположения свай, когда совместно со свайным полем наблюдаются участки с кустами и полосами.
Необходимо учитывать, что минимальное расстояние между соседними сваями не должно превышать 2 диаметра, а между соседними рядами — 3 диаметра режущих лопастей. Это важно, так как при погружении грунт теряет свою плотность, на восстановление которой уходит большое количество времени.
Как правильно рассчитать шаг
Расчет шага производится в зависимости от схемы размещения свай и от конфигурации постройки.
Если известно общее количество, опоры расставляются по выбранной схеме — сначала по углам, затем заполняются наиболее нагруженные линии, расположенные под несущими стенами, после чего расставляют оставшиеся сваи по площади комнат для поддержки лаг перекрытий.
Задаче проектировщика является обеспечение максимальной жесткости ростверка, установка опор в точках максимальных нагрузок и равномерное распределение веса дома между остальными стволами.
Для построек обычного типа распределение свай проблемы не вызывает, намного сложнее расстановка опор на сооружениях сложной конфигурации с неравномерным распределением массы элементов.
В таких ситуациях сначала размещают кусты свай под наиболее нагруженными точками, после чего размещают остальные опоры.
ВАЖНО!
В любом случае, необходимо соблюдать минимальные расстояния между соседними опорами, чтобы не снизить удельное сопротивление грунта. В противном случае несущая способность фундамента в данных точках окажется значительно ниже расчетной, что приведет к деформациям или разрушению ростверка и стен постройки.
Оптимальное расстояние
Оптимальное расстояние между сваями — это абстрактное понятие, не имеющее реального числового выражения.
Некоторые источники приводят вполне конкретные значения, но они вызывают больше сомнений, чем полезной информации.
Прежде всего, необходимо учесть нагрузку на каждую опору, которая должна быть меньше предельно допустимых величин.
Кроме этого, необходимо обеспечить такую длину пролетов между сваями, чтобы балки ростверка сохраняли неподвижность и не прогибались.
В этом отношении оптимальное расстояние определяется материалом и размерами ростверка, величиной нагрузки и прочими факторами воздействия.
Поэтому общего оптимального значения расстояния между сваями нет и не может быть. Это величина расчетная, зависит от многих факторов и в каждом конкретном случае имеет собственное значение.
Пример нахождения размеров ростверка
Рассмотрим порядок расчета железобетонного ростверка. Ширина ленты должна быть равна толщине стен.
Если стены дома в 1,5 кирпича, то ширина стен составит 38 см. Такой же будет и ширина ростверка.
Высота ленты при такой ширине должна составить 50 см — это обеспечит необходимую жесткость на прогиб.
Арматурный каркас Будет состоять из двух горизонтальных решеток по 2 стержня 12 мм.
Общий объем бетона, необходимого для отливки, составит 0,5 · 0,38 · 30 м (общая длина ростверка) = 5,7 м3.
Учитывая возможность непроизводительных потерь, лучше заказывать 6 м3 готового бетона марки М200 и выше, или изготовить его самостоятельно прямо на площадке.
Полезное видео
В данном разделе вы сможете ознакомиться с пособием по расчету свайно-ростверкового, плитно-свайного, а также свайно-ленточного фундамента:
Заключение
Большинство пользователей не производит расчет фундамента, так как это слишком сложная и ответственная задача.
Чаще всего для этого привлекают опытных специалистов.
Как минимум, используются онлайн-калькуляторы, позволяющие получить нужные данные быстро и совершенно бесплатно.
Кроме того, такие ресурсы позволяют найти необходимое количество всех материалов и нередко даже рассчитывают их стоимость для монтажа.
Следует учитывать, что всецело полагаться на качество подсчета при помощи неизвестного алгоритма опасно, надо хотя бы продублировать расчет на другом, подобном ресурсе.
В целом, самостоятельный расчет можно производить только для вспомогательных или хозяйственных построек, чтобы не слишком рисковать своим имуществом, здоровьем и жизнью людей.
Вконтакте
Google+
Одноклассники
Калькулятор расчета свайного фундамента — онлайн расчет столбчатого фундамента
С помощью данного калькулятора можно произвести расчеты буронабивных свайно-ростверковых и столбчатых фундаментов. Расчет нагрузки на свайный фундамент.
Онлайн-калькулятор для расчета монолитного буронабивного ростверкового фундамента поможет рассчитать размеры фундамента, опалубки, диаметр и общую длину арматуры и объём расходуемого бетона. Перед началом проектирования здания с таким фундаментом обязательно проконсультируйтесь у специалистов, насколько оправдан такой выбор.
Расчеты данного калькулятора основываются на нормативах, приведенных в ГОСТ Р 52086-2003, СНиП 3.03.01-87 и СНиП 52-01-2003 «Бетонные и железобетонные конструкции».
Столбчатый и свайный фундамент – разновидности фундаментов, в которых используются столбы или сваи в качестве опор. Они погружаются в грунт на необходимую глубину, а их верхние части соединяются цельной железобетонной конструкцией (ростверком), которая не соприкасается с землёй. При столбчатом и свайном варианте ростверкового фундамента отличается глубина установки опор.
Ростверковая конструкция имеет смысл там, где грунт не пригоден для обычного размещения фундамента (слабый грунт, пучинистый, либо промерзающий на значительную глубину). Поскольку сваи забиваются при любых климатических условиях, ростверковый фундамент особенно актуален для регионов с низкими температурами и суровым климатом. Другие преимущества ростверковой технологии – высокая скорость возведения и низкая потребность в земляных работах. Достаточно пробурить отверстия и выполнить установку уже готовых свай.
Многие параметры ростверкового фундамента могут варьироваться. Это форма и материалы свай, способы действия на грунт, способы установки, форма ростверка. Каждый случай ростверкового фундамента должен учитывать расчётные нагрузки, климатические условия, специфику грунта и другие особенности местности и будущего сооружения. Чтобы уточнить все эти моменты, нужно провести необходимые замеры и расчёты, при необходимости – пригласить специалистов. Экономия на первоначальных расчётах может обернуться серьезными последствиями в будущем. Чтобы этого избежать, в первую очередь рекомендуем внимательно изучить данный калькулятор. В нем вы сможете определить будущие расходы и на примере стандартной конструкции определиться с составляющими планируемого фундамента.
Заполняя поля калькулятора, сверьтесь с дополнительной информацией, отображающейся при наведении на иконку вопроса .
Внизу страницы вы можете оставить отзыв, задать вопрос разработчикам или предложить идею по улучшению этого калькулятора.
Разъяснение результатов расчетов
Общая длина ростверка
Суммарный периметр фундамента, включая внутренние перегородки.
Площадь подошвы ростверка
Площадь нижней части ростверка, которая нуждается в гидроизоляции.
Площадь внешней боковой поверхности ростверка
Площадь боковых поверхностей наружной стороны фундамента, нуждающаяся в утеплении.
Объем бетона для ростверка и столбов
Общее количество бетона, которое понадобится для заливки фундамента заданных параметров. Фактическая потребность может оказаться выше из-за уплотнений при заливке, а объём фактически доставленного бетона может оказаться меньше заказанного. Поэтому рекомендуем заказывать бетон с 10-процентным запасом.
Вес бетона
Приблизительный вес бетона при средней плотности.
Нагрузка на почву от фундамента в местах основания столбов
При расчете берется во внимание полный вес конструкции.
Минимальный диаметр продольных стержней арматуры
Рассчитывается по нормативам СНиП. Учитывается относительное содержание продольной арматуры в сечении ленты ростверка.
Минимальное количество рядов арматуры ростверка
Для противодействия естественной деформации ленты ростверка под действием сил сжатия и растяжения, необходимо использовать продольные стержни в разных поясах ростверка (вверху и внизу ленты).
Общий вес арматуры
Вес стержней арматуры, вместе взятых.
Величина нахлеста арматуры
Для крепления стержней арматуры внахлёст, используйте данное значение.
Длина продольной арматуры
Общая длина арматуры включая нахлест.
Минимальное количество продольных стержней арматуры для столбов и свай
Необходимое количество продольных стержней арматуры для каждого столба или сваи.
Минимальный диаметр арматуры для столбов и свай
Минимально допустимый диаметр продольных стержней арматуры, обеспечивающих прочность столбов или свай.
Минимальный диаметр поперечной арматуры (хомутов)
Определяется, основываясь на нормативах СНиП.
Максимальный шаг поперечной арматуры (хомутов)
Рассчитывается таким образом, чтобы при заливке бетона арматурный каркас не был смещён или деформирован.
Общий вес хомутов
Суммарный вес хомутов, которые потребуются при строительстве всего фундамента.
Минимальная толщина доски при опорах через каждый метр
Необходимая толщина досок опалубки при заданных параметрах фундамента и заданном шаге опор. Рассчитывается исходя из ГОСТ Р 52086-2003.
Количество досок для опалубки
Число досок стандартной длиной 6 метров, которые потребуются для возведения всей опалубки.
Периметр опалубки
Общая протяженность опалубки с учетом внутренних перегородок.
Объем и примерный вес досок для опалубки
Такой объем досок потребуется для возведения опалубки. Вес досок рассчитывается из среднего значения плотности и влажности хвойных пород дерева.
Калькулятор свай (трубчатый анкер и фундамент)
Рис. 1. Сопротивление при установке свай
Сваи используются; в качестве анкеров для поднятия конструкций над землей или предотвращения смещения (оседания) структурных оснований. Они могут быть из твердого бетона или стальных труб в зависимости от области применения.
Бетонные сваи обычно выдерживают очень большие вертикальные сжимающие нагрузки и устанавливаются / изготавливаются путем выкапывания ямы в земле, в которую опускают сборную сваю и затем закапывают ее или в которую заливают незатвердевший бетон.Эти сваи не покрываются калькулятором свай CalQlata.
Пустотелые стальные трубчатые сваи, которые используются в калькуляторе свай CalQlata, обычно используются в качестве анкеров или для предотвращения смещения небольших и средних структурных оснований в подозрительных почвенных условиях на суше или на морском дне.
Почва
До 450 миллионов лет назад земная поверхность была каменистой; нигде не было почвы. С тех пор почва на большей части своей поверхности скопилась из разложившихся растительных и животных материалов и эродированных горных пород.Почвы сильно различаются по составу и характеру в зависимости от множества переменных, таких как; состав, температура и влажность.
Источники свойств почвы сильно различаются не потому, что они неверны, а просто потому, что все они разные. Поэтому всегда рекомендуется проверять грунт в месте укладки с помощью штифта небольшого диаметра, проникая на глубину, подходящую для желаемого уровня уверенности. Это относительно недорогой и надежный метод подготовки к прокладке сваи перед установкой.К стержню можно применить те же методы расчета, что и для сваи.
Указанные значения несущей способности грунта действительны только при определенных условиях; глубина, пустоты, увлеченная вода, частицы породы (камни), состав, температура и т. д. — все это способствует изменению прочности в очень малых объемах. Кроме того, прочность подшипника обычно изменяется в зависимости от величины и направления нагрузки, то есть она значительно снижается при нагрузке на растяжение или сжатие вблизи поверхности.
Поскольку прочность грунта увеличивается с глубиной, CalQlata консервативно считает, что поперечное давление грунта на стенку сваи равно давлению на глубине, умноженному на коэффициент Пуассона грунта (в отличие от его угла сдвига, который также может варьироваться с глубиной).
Сопротивление сжимающей силе в основании или вершине сваи (рис. 1), которая вызывает постепенное проникновение (δd), обычно должно быть равно комбинированному напряжению в грунте на глубине. Однако, поскольку условия на вершине сваи изменчивы и в значительной степени неизвестны во время установки, вычислитель сваи консервативно использует только несущую способность при расчете ударного сопротивления вершины сваи.
Свайная установка
Рис. 2. Момент перекоса сваи
На рис. 1 показаны силы сопротивления для типичной стальной трубчатой сваи во время установки.
Сваи обычно забиваются в землю путем падения на них тяжелого груза с определенной высоты. Сила удара создается за счет потенциальной энергии массы. Если молот падает в плотную среду, такую как вода, его эффективная масса (м²) должна использоваться в расчетах энергии удара (см. Исходные данные ниже).
Сопротивление трению между грунтом и внутренней и внешней вертикальными поверхностями сваи увеличивается с увеличением глубины. Инкрементное проникновение достигается за счет преодоления несущего напряжения в грунте на поверхности вершины стены сваи.Сила, создаваемая энергией удара, которая изменяется с каждым постепенным изменением глубины проникновения в грунт, должна быть достаточной для преодоления обеих этих нагрузок.
По мере увеличения глубины сваи большая часть силы удара теряется на преодоление повышенного сопротивления трения, уменьшая силу, доступную для проникновения. Таким образом, постепенное проникновение уменьшается с установленной глубиной, что увеличивает силу, действующую на сваю при каждом ударе.
Маловероятно, что грунт будет иметь одинаковую несущую способность, сопротивление сдвигу, коэффициент трения и коэффициент Пуассона на всем протяжении до установленной глубины, поэтому маловероятно, что каждый удар будет генерировать ожидаемое проникновение на соответствующей глубине.
Хотя разумно продолжать укладку свай до тех пор, пока сила удара (F) не станет достаточной для ваших нужд (Ŵ
Прочность сваи
Стена из сваи должна выдерживать монтажные и эксплуатационные нагрузки, и требуются отдельные расчеты для определения целостности сваи в соответствии с вашими конкретными проектными условиями.Однако наиболее вероятной причиной разрушения сваи является разрыв стены во время установки.
Разрушение или обрушение стенки сваи происходит из-за чрезмерного напряжения мембраны из-за несоосности молотка / сваи (рис. 2), достаточно консервативная оценка которого может быть получена с использованием следующей формулы плоской пластины: σỵ = 6.M / t
Существует множество формул для определения прочности сваи при сжатии, некоторые из которых включают классические или сложные формулы, все из которых можно надежно спрогнозировать с помощью расчета продольного изгиба колонны Эйлера-Ренкина, в котором вы добавляете модуль Юнга материала сваи к модулю упругости грунта. (Eᵖ + Eˢ) при создании композитной жесткости (EI) для колонны.
Расчетная мощность сваи
Рис. 3. Боковая нагрузка
Весу противостоит сочетание сопротивления трения и прочности грунта. Горизонтальным нагрузкам должно противостоять поперечное сжатие почвы, которое меняется в зависимости от глубины, состава и плотности. Растягивающим нагрузкам от анкеров противостоит масса сваи плюс грунтовая пробка, если она остается внутри, и любое остаточное трение между грунтом и стенкой сваи.
Как и все теоретические интерпретации практических задач, в конечном результате есть определенная степень оценки.
Например:
Горизонтальная сила : Сопротивление горизонтальным нагрузкам создает пару моментов (M) на высоте «hᴹ» (рис. 3), величина которой обусловлена сочетанием несущей способности грунта и давления на глубине. Несущая способность при горизонтальной нагрузке не такая же, как при сжатии из-за подъема к поверхности, более того, давление создает большее сопротивление горизонтальным силам, чем несущая способность на значительной глубине (т.е. когда плотность x глубина> несущая способность).Поэтому CalQlata проигнорировала влияние несущей способности для горизонтальных нагрузок в вычислителе свай и предположила, что поперечное сопротивление основано на давлении x глубина⁽⁴⁾. Вам нужно будет убедиться, что ваша свая не расплющивается чуть ниже поверхности почвы из-за горизонтальной силы.
Сила сжатия : Если свая не проникает в подстилающую породу, ее несущая способность (рис. 4; W) будет зависеть от сопротивления трения и несущей способности грунта, которые могут соответствовать или не соответствовать условиям поверхности.В этом случае вы можете основывать несущую способность установленной сваи на конечной силе удара. Однако было бы разумно применить подходящий запас прочности для учета потенциальной ползучести. Эмпирическое правило CalQlata — предполагать полную несущую способность и ⅔ сопротивления трения (R̂ᵛ). Калькулятор сваи предоставляет как теоретические (W̌), так и практические () значения в своих выходных данных.
Комбинированная сила : Когда сваи подвергаются комбинированным вертикальным и горизонтальным нагрузкам (рис. 5; W), сопротивление трения от вертикального компонента будет уменьшено, если горизонтальный компонент достаточен для преодоления деформации в грунте.Если земля и свая теряют контакт более чем на 50% от ее внешней поверхности, сопротивление трению следует игнорировать. Сопротивление вертикальному направлению вверх будет зависеть только от веса (сваи и грунтовой пробки, если она сохраняется), а сопротивление сжатию будет зависеть только от напряжения опоры (σ) на вершине сваи.
Осторожно
Несмотря на то, что сопротивление трения в свае может быть включено в несущую способность сваи, следует позаботиться о том, чтобы в течение ее расчетного срока службы учитывались следующие факторы:
1) С течением времени может возникнуть мера ползучести из-за несоответствий в грунте из-за изменения пластов и вибрационных нагрузок
2) Оседание может привести к сползанию сваи в пласт с низкой прочностью
3) Подземная вода снижает сопротивление трения и несущую способность
4) Скала, частично поддерживающая сваю, со временем может вызвать наклон
5) Деформация свайной стены во время установки может привести к обрушению во время эксплуатации
Все вышеперечисленное может быть выполнено с помощью подходящих испытаний грунта на глубину, превышающую предполагаемую глубину сваи.
Рис. 4. Осевая нагрузка
Калькулятор свай — Техническая помощь
Вы можете использовать любые единицы измерения в калькуляторе свай при условии, что вы согласны. Однако все силы рассчитываются для получения единиц массы-силы (кгс, фунт-сила и т. Д.), Поэтому важно, чтобы значения, вводимые для напряжения (σ и τ), были в простых единицах: например, кгс / м², фунт-сила / дюйм² и т. д.
Входное значение ускорения свободного падения (g) используется только для преобразования энергии удара в массовую силу.
Установка
Калькулятор свай применяет горизонтальное давление (которое изменяется линейно с глубиной) на внутреннюю и внешнюю стенку сваи из-за коэффициента Пуассона грунта. Сопротивление постепенному проникновению рассчитывается только с использованием напряжения опоры (σ) грунта, напряжение сдвига (τ) используется для расчета угла сдвига для горизонтальной силы (F̌ʰ).
Расчетная мощность
Вычислитель свай обеспечивает множество расчетных нагрузок, только минимальные значения которых (R̂ᵛ, F̂ᵛ, Ŵ) могут использоваться с высокой степенью уверенности и без контрольных испытаний.Если вы хотите полагаться на более высокие расчетные мощности, чем эти, рекомендуется провести соответствующие испытания под нагрузкой, зависящие от времени.
Различные слои
Если вы не хотите проводить подробные расчеты для каждого переменного слоя (рис. 6), вы можете консервативно предположить, что ваша свая имеет толщину, равную сумме толщин высокопрочных слоев, полностью игнорируя влияние низкопрочных слоев. . Это также более точный подход, чем предположение о средних свойствах почвы по фактической глубине.
Входные данные
Рис. 5. Объединенные силы.
D = максимальная требуемая глубина сваи
Øᵢ = внутренний диаметр сваи
Øₒ = внешний диаметр сваи
ρᵐ = средняя плотность ³⁾
ρʰ = плотность молотка ³⁾
ρᵖ = плотность сваи
ρˢ = плотность грунта
м = масса молотка ⁽³⁾
hᵈ = высота падения
σ = нагрузка на грунт
τ = напряжение сдвига грунта
μᵢ = коэффициент трения при установке ²⁾
μₒ = коэффициент трения во время эксплуатации ²⁾
ν = коэффициент Пуассона (грунт)
Выходные данные
мₑ = эффективная масса молота ³⁾
E = энергия удара
A = площадь поперечного сечения стенки сваи (вершина)
Ď = общая максимальная глубина (d + δd после окончательного удара)
n = количество ударов (для достижения Ď )
R̂ᵛ = минимальное сопротивление трения по вертикали при установке (из-за μᵢ)
Řᵛ = максимальное сопротивление трения по вертикали после осадки⁽⁵⁾ (из-за μₒ)
F̌ʰ = максимальное горизонтальное усилие (на поверхности почвы)
F̂ᵛ = минимум подъемная сила сваи (только масса сваи)
F̌ᵛ = максимальная подъемная сила сваи (включая массу заглушки и)
Ŵ = минимальная грузоподъемность (от; μₒ + σ)
W̌ = максимальная грузоподъемность (от; μₒ + σ )
hᴹ = высота от конца сваи до точки опоры
r₁ = плечо момента над точкой опоры (только для информации)
r₂ = плечо момента под точкой опоры (только для информации)
M₁ = момент над точкой опоры⁽⁶⁾ (только для информации)
M₂ = Момент ниже точки опоры⁽⁶⁾ (только для информации)
Рис 6.Изменчивые слои почвы
Результаты последовательности ударов:
N ° = число ударов
δd = глубина удара
d = общая глубина после удара
F = сила удара
См. Свойства материала ниже для получения информации о некоторых характерных свойствах материала.
Свойства материала
Монтажная среда: если ваша свая устанавливается с помощью молотка, брошенного под воду, вы должны ввести среднюю плотность (ρᵐ) для воды, в противном случае вы должны ввести значение для воздуха или установить это значение на ноль.
Материал молота: Плотность материала молота (ρʰ) уменьшается на плотность среды в расчете (ρᵐ) для расчета энергии удара (E). Поэтому важно, чтобы обе плотности были репрезентативными
Материал сваи: плотность материала сваи используется только в расчетах силы, необходимой для вытягивания сваи из земли (Fᵛ)
Материал почвы: Свойства почвы должны быть основаны на значениях испытаний на месте, если это вообще возможно.Это можно установить, вставив штифт в землю в месте установки сваи, а затем ретроспективно установив характеристики грунтовых условий с помощью калькулятора свай и изменив свойства грунта (σ, μᵢ и μₒ), гарантируя, что:
а) ретроспективные расчеты отражают фактические условия во время установки;
б) Нагрузки при извлечении измеряются не менее чем через 30 дней после осадки. В качестве альтернативы для оценки могут использоваться следующие данные:
Плотность | Вещество | кг / м³ | фунт / дюйм³ |
---|---|---|---|
ρᵐ | воздух | 1.256 | 4.54E-5 |
вода | 1000 | 0,0361 | |
морская вода | 1023 | 0,037 | |
ρʰ | сталь | 7850 | 0,2836 |
бетон | 2400 | 0,0867 | |
гранитная порода | 2750 | 0.09935 | |
ρᵖ | сталь | 7850 | 0,2836 |
алюминий | 2685 | 0,097 | |
титан (HT) | 4456 | 0,161 | |
нержавеющая 316 | 7941 | 0,2869 | |
ρˢ | глина сухая | 1590 | 0.0574 |
глина средняя | 1625 | 0,0587 | |
мокрая глина | 1750 | 0,0632 | |
суглинок | 1275 | 0,0461 | |
илово-сухой | 1920 | 120 | |
илово-влажный | 2163 | 135 | |
песчано-сухое | 1600 | 0.0578 | |
мокрый песок | 1900 | 0,0686 |
Напряжение | Вещество | кг / м² | фунт / дюйм² | ν |
---|---|---|---|---|
σˢ | глина плотная | от 35 до 55 | от 0,05 до 0,08 | 0,45 |
глина средняя | от 20 до 35 | 0.03 до 0,05 | 0,35 | |
глина сыпучая | от 10 до 20 | от 0,014 до 0,03 | 0,3 | |
суглинок | от 7,5 до 15 | от 0,01 до 0,02 | 0,3 | |
ил | от 4,5 до 7,5 | от 0,0064 до 0,01 | 0,35 | |
ил | 1 к 4.5 | от 0,001 до 0,0064 | 0,3 | |
песчано-сухое | от 10 до 30 | от 0,014 до 0,04 | 0,4 | |
мокрый песок | от 5 до 10 | от 0,007 до 0,014 | 0,3 | |
τˢ | глина плотная | от 29,4 до 46,2 | от 0,0418 до 0.0656 | |
глина средняя | от 11,5 до 20,2 | от 0,0164 до 0,0287 | ||
глина сыпучая | от 3,6 до 7,3 | от 0,0052 до 0,0104 | ||
суглинок | от 4,3 до 8,7 | от 0,0062 до 0,0123 | ||
ил | 0.8 к 1,3 | от 0,0011 до 0,0019 | ||
ил | от 0,1 до 0,4 | от 0,0001 до 0,0006 | ||
песчано-сухое | от 8,4 до 25,2 | от 0,0119 до 0,0358 | ||
мокрый песок | от 2,9 до 5,8 | от 0,0041 до 0,0082 |
Вещество | мкᵢ | мкₒ |
---|---|---|
глина плотная | 0.225 | 0,45 |
глина средняя | 0,2 | 0,4 |
глина сыпучая | 0,15 | 0,3 |
суглинок | 0,175 | 0,35 |
ил | 0,15 | 0,3 |
ил | 0.125 | 0,25 |
песчано-сухое | 0,1 | 0,2 |
мокрый песок | 0,175 | 0,35 |
Применимость
Расчет сваи применяется только к трубчатым сваям, заделанным в поверхностный грунт
Точность
Точность вычислений в калькуляторе свай зависит от введенной информации.Выходные данные в значительной степени основаны на линейном изменении давления с глубиной и постоянной плотности почвы на этой глубине. В этом случае ожидается, что результаты будут в пределах ± 10% от фактических значений.
Если изменение грунта происходит по глубине сваи, для свойств грунта следует использовать средние значения; в этом случае; Ожидается, что результаты будут в пределах ± 20% от фактических значений.
Маловероятно, что какой-либо расчет свай позволит достичь значительно большей точности, чем ожидалось выше.
Банкноты
- Ударная вибрация, смещение грунта и переменные условия с глубиной — все это бесконтрольно изменяет конечную нагрузку на сваю во время установки
- Сопротивление трению при установке меньше, чем при эксплуатации из-за осадки (через ≈30 дней). CalQlata рекомендует, если не известны точные значения, коэффициент трения для связных грунтов при установке должен быть вдвое меньше, чем при эксплуатации, который обычно составляет ≈0,35. Для несвязных грунтов оба значения следует принимать одинаковыми при ≈0.15
- Для энергии удара используется эффективная масса молота mₑ = m. (Ρʰ-ρᵐ) / ρʰ
- Боковая нагрузка на стенки сваи рассчитывается по формуле ν.d.ρˢ
- Включая внутренние и внешние вертикальные стенки сваи
- Эта информация предоставляется для проверки: M₁ должно быть идентично M₂, если расчет правильный
Дополнительная литература
Дополнительную информацию по этому вопросу можно найти в справочных публикациях (8, 9, 51 и 52)
Грузоподъемность свай | Программное обеспечение SkyCiv Cloud для структурного анализа
Как рассчитать предельную несущую способность одиночной сваи
Грузоподъемность
Оценка предельной несущей способности одиночной сваи — один из наиболее важных аспектов проектирования свай, который иногда может быть сложным.В этой статье будут рассмотрены основные уравнения для расчета одинарной сваи, а также приведен пример.
Чтобы легко понять механизм передачи нагрузки одиночной сваи, представьте бетонную сваю длиной L и диаметром D, как показано на рисунке 1.
Рисунок 1: Механизм передачи нагрузки для свай
Нагрузка Q, приложенная к свае, должна передаваться непосредственно на грунт у основания сваи. Часть этой нагрузки будет восприниматься сторонами сваи за счет так называемого «поверхностного трения», развиваемого вдоль вала (Q s ), а остальная часть будет выдержана грунтом, на который опирается свая (Q p ).Следовательно, предельная несущая способность (Qu) сваи определяется уравнением (1). Существует несколько методов оценки значений Q p и Q s .
\ ({Q} _ {u} = {Q} _ {p} + {Q} _ {s} \) (1)
Q u = Максимальная грузоподъемность
Q p = Допустимая нагрузка на концевую опору
Q s = Сопротивление поверхностному трению
Хотите попробовать программное обеспечение SkyCiv Foundation Design? Наш бесплатный инструмент позволяет пользователям выполнять расчеты несущей способности без загрузки или установки!
Калькулятор проектирования фундамента
Усилие на конце подшипника, Q
pКонечная несущая способность — это теоретически максимальная нагрузка на единицу площади, которая может без сбоев выдерживать опору в почве.Следующее уравнение Карла фон Терзаги, отца механики грунтов, является одной из первых и наиболее часто используемых теорий при оценке предельной несущей способности фундаментов. Уравнение Терзаги для предельной несущей способности может быть выражено как:
\ ({q} _ {u} = (c × {N} _ {c}) + (q × {N} _ {q}) + (\ frac {1} {2} × γ × B × { N} _ {γ}) \) (2)
q u = Максимальная допустимая нагрузка на конец
c = сцепление почвы
q = Эффективное давление на грунт
γ = Удельный вес грунта
B = Глубина или диаметр поперечного сечения
N c , N q , N γ = Факторы подшипника
Поскольку q u выражается в единицах нагрузки на единицу площади или давления, умножение его на площадь поперечного сечения сваи приведет к несущей способности сваи на конце (Q p ).Результирующим значением последнего члена уравнения 2 можно пренебречь из-за относительно небольшой ширины сваи, следовательно, его можно исключить из уравнения. Таким образом, предельная несущая способность сваи может быть выражена, как показано в уравнении (3). Эта модифицированная версия уравнения Терзаги используется в модуле SkyCiv Foundation при проектировании свай.
\ ({Q} _ {p} = {A} _ {p} × [(c × {N} _ {c}) + (q × {N} _ {q})] \) (3)
A p = Площадь поперечного сечения сваи
Коэффициенты опоры N c и N q являются безразмерными, получены эмпирическим путем и зависят от угла трения почвы (Φ).Исследователи уже завершили расчеты, необходимые для определения коэффициентов опоры. В таблице 1 приведены значения N q согласно данным инженерного командования военно-морских сил (NAVFAC DM 7.2, 1984). Значение N c примерно равно 9 для свай под глинистыми грунтами.
Коэффициент подшипника (Н q ) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Угол трения (Ø) | 26 | 28 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
Забивные сваи | 10 | 15 | 21 | 24 | 29 | 35 | 42 | 50 | 62 | 77 | 86 | 120 | 145 |
Буронабивные сваи | 5 | 8 | 10 | 12 | 14 | 17 | 21 | 25 | 30 | 38 | 43 | 60 | 72 |
Таблица 1: N q значения из NAVFAC DM 7.2
Предел прочности при поверхностном трении, Q
сКожное сопротивление сваи развивается по длине сваи. Обычно сопротивление трению сваи выражается как:
\ ({Q} _ {s} = ∑ (p × ΔL × f) \) (4)
p = Периметр сваи
ΔL = Инкрементная длина сваи, по которой берутся p и f
f = Сопротивление трению агрегата на любой глубине
Оценка значения единицы сопротивления трения (f) требует рассмотрения нескольких важных факторов, таких как характер установки свай и классификация грунта.Уравнения (5) и (6) показывают вычислительный метод определения единицы сопротивления трению свай в песчаных и глинистых грунтах соответственно. Таблицы 2 и 3 представляют рекомендуемый эффективный коэффициент давления грунта (K) и угол трения грунт-сваю (δ ’) в соответствии с NAVFAC DM7.2.
Для песчаных почв:
\ (f = K × σ ’× tan (δ’) \) (5)
K = эффективный коэффициент давления грунта
σ ’= эффективное вертикальное напряжение на рассматриваемой глубине
δ ’= угол трения грунт-сваи
Для глинистых почв:
\ (f = α × c \) (6)
α = Эмпирический коэффициент сцепления
Угол трения грунта-сваи (δ ’) | |
---|---|
Тип сваи | δ ’ |
Стальная свая | 20º |
Куча древесины | 3/4 × Φ |
Бетонная свая | 3/4 × Φ |
Таблица 2: Значения угла трения грунта-сваи (NAVFAC DM7.2, 1984)
Коэффициент бокового давления земли (K) | ||
---|---|---|
Тип сваи | Компрессионная свая | Натяжная свая |
Забивные H-образные сваи | 0,5–1,0 | 0,3-0,5 |
Забивные сваи (круглые, прямоугольные) | 1,0–1,5 | 0,6–1,0 |
Забивные сваи (конические) | 1.5-2,0 | 1,0–1,3 |
Забивные сваи | 0,4-0,9 | 0,3-0,6 |
Буронабивные сваи (диаметр <24 ″) | 0,7 | 0,4 |
Таблица 3: Значения коэффициента бокового давления земли (K) (NAVFAC DM7.2, 1984)
Коэффициент адгезии (α) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
c / p a | α | ||||||||||||
≤ 0.1 | 1,00 | ||||||||||||
0,2 | 0,92 | ||||||||||||
0,3 | 0,82 | ||||||||||||
0,4 | 0,74 | ||||||||||||
0,6 | 0,62 | ||||||||||||
0,8 | 0,54 | ||||||||||||
1,0 | 0,48 | ||||||||||||
1,2 | 0,42 | ||||||||||||
1,4 | 0,40 | ||||||||||||
1,6 | 0,38 | ||||||||||||
1.8 | 0,36 | ||||||||||||
2,0 | 0,35 | ||||||||||||
2,4 | 0,34 | ||||||||||||
2,8 | 0,34 |
Примечание: p a = атмосферное давление ≈ 100 кН / м 2
Таблица 4: Значения фактора адгезии (Terzaghi, Peck, and Mesri, 1996)
Пример: Расчет вместимости свай в песке
Бетонная свая длиной 12 метров и диаметром 500 мм забивается в несколько слоев песка без наличия грунтовых вод.Найдите максимальную несущую способность (Q и ) сваи.
Детали | |
---|---|
Раздел | |
Диаметр | 500 мм |
Длина | 12 месяцев |
Слой 1-Свойства грунта | |
Толщина | 5 месяцев |
Масса устройства | 17,3 кН / м 3 |
Угол трения | 30 градусов |
Сплоченность | 0 кПа |
Столб подземных вод | Нет |
Свойства слоя 2-грунта | |
Толщина | 7 месяцев |
Масса устройства | 16.9 кН / м 3 |
Угол трения | 32 градуса |
Сплоченность | 0 кПа |
Столб подземных вод | Нет |
Шаг 1. Вычислите допустимую нагрузку на концевую опору (Q p ).
На кончике стопки:
A p = (π / 4) × D 2 = (π / 4) × 0,5 2
A p = 0.196 м 2
c = 0 кПа
θ = 32º
N q = 29 (из таблицы 1)
Эффективное давление на почву (q):
q = (γ 1 × t 1 ) + (γ 2 × t 2 ) = (5 м × 17,3 кН / м 3 ) + (7 м × 16,9 кН / м 3 )
q = 204,8 кПа
Затем используйте уравнение (3) для определения допустимой нагрузки на концевую опору:
Q p = A p × [(c × N c ) + (q × N q )]
Q p = 0.196 м 2 × (204,8 КПа × 29)
Q p = 1164,083 кН
Шаг 2: Вычислить сопротивление поверхностному трению (Q s ).
Используя уравнения (4) и (5), рассчитайте поверхностное трение на слой почвы.
Q с = ∑ (p × ΔL × f)
p = π × D = π × 0,5 м
p = 1,571 м
Слой 1:
ΔL = 5 м
f 1 = K × σ ’ 1 × tan (δ’)
К = 1.25 (Таблица 3)
δ ’= 3/4 × 30º
δ ’= 22,50º
σ ’ 1 = γ 1 × (0,5 × t 1 ) = 17,3 кН / м 3 × (0,5 × 5 м)
σ ’ 1 = 43,25 кН / м 2
f 1 = 1,25 × 43,25 кН / м 2 × tan (22,50º)
f 1 = 22,393 кН / м 2
Q s1 = p × ΔL × f 1 = 1,571 м × 5 м × 22,393 кН / м 2
Q s1 = 175.897 кН
Уровень 2:
ΔL = 7 м
f 2 = K × σ ’ 2 × tan (δ’)
K = 1,25 (таблица 3)
δ ’= 3/4 × 32º
δ ’= 24º
σ ‘ 2 = (γ 1 × t 1 ) + [γ 2 × (0,5 × t 2 )] = (17,3 кН / м 3 × 5 м) + [16,9 кН / м 3 × (0,5 × 7 м)]
σ ’ 2 = 145,65 кН / м 2
f 2 = 1.25 × 145,65 кН / м 2 × tan (24º)
f 2 = 81,059 кН / м 2
Q s2 = p × ΔL × f 2 = 1,571 м × 7 м × 81,059 кН / м 2
Q s2 = 891,406 кН
Общее сопротивление кожному трению:
Q s = Q s1 + Q s2 = 175,897 кН + 891,406 кН
Q s = 1067,303 кН
Шаг 3: Рассчитайте предельную грузоподъемность (Q и ).
Q u = Q p + Q s = 1164,083 кН + 1067,303 кН
Q u = 2231,386 кН
Пример 2: Расчет грузоподъемности свай в глине
Рассмотрим бетонную сваю диаметром 406 мм и длиной 30 м, залитую слоистой насыщенной глиной. Найдите максимальную несущую способность (Q и ) сваи.
Детали | |
---|---|
Раздел | |
Диаметр | 406 мм |
Длина | 30 метров |
Слой 1-Свойства грунта | |
Толщина | 10 м |
Масса устройства | 8 кН / м 3 |
Угол трения | 0º |
Сплоченность | 30 кПа |
Столб подземных вод | 5 месяцев |
Свойства слоя 2-грунта | |
Толщина | 10 м |
Масса устройства | 19.6 кН / м 3 |
Угол трения | 0º |
Сплоченность | 0 кПа |
Столб подземных вод | Полностью погруженный |
Шаг 1. Вычислите допустимую нагрузку на концевую опору (Q p ).
На кончике стопки:
A p = (π / 4) × D 2 = (π / 4) × 0,406 2
A p = 0.129 кв.м. 2
c = 100 кПа
N c = 9 (типичное значение для глины)
Q p = (c × N c ) × A p = (100 кПа × 9) × 0,129 м 2
Q p = 116,1 кН
Шаг 2: Вычислить сопротивление поверхностному трению (Q s ).
Используя уравнения (4) и (6), рассчитайте поверхностное трение на слой почвы.
Q с = ∑ (p × ΔL × f)
р = π × D = π × 0.406 кв.м.
p = 1,275 м
Слой 1:
ΔL = 10 м
α 1 = 0,82 (таблица 4)
c 1 = 30 кПа
f 1 = α 1 × c 1 = 0,82 × 30 кПа
f 1 = 24,6 кН / м 2
Q s1 = p × ΔL × f 1 = 1,275 м × 10 м × 24,6 кН / м 2
Q s1 = 313,65 кН / м 2
Уровень 2:
ΔL = 20 м
α 2 = 0.48 (Таблица 4)
c 2 = 100 кПа
f 2 = α 2 × c 2 = 0,48 × 100 кПа
f 2 = 48 кН / м 2
Q s2 = p × ΔL × f 2 = 1,275 м × 20 м × 48 кН / м 2
Q s2 = 1224 кН / м 2
Общее сопротивление кожному трению:
Q s = Q s1 + Q s2 = 313.65 кН + 1224 кН
Q s = 1537,65 кН
Шаг 3: Рассчитайте предельную грузоподъемность (Q и ).
Q u = Q p + Q s = 116,1 кН + 1537,65 кН
Q u = 1,653,75 кН
Хотите попробовать программное обеспечение SkyCiv Foundation Design? Наш бесплатный инструмент позволяет пользователям выполнять расчеты несущей способности без загрузки или установки!
Калькулятор проектирования фундамента
Артикулы:
- Дас, Б.М. (2007). Принципы фундаментальной инженерии (7-е издание) . Глобальный инжиниринг
- Р. Раджапаксе (2016). Практическое правило проектирования и строительства свай (2-е издание) . Elsevier Inc.
- Томлинсон, М.Дж. (2004). Практика проектирования и строительства свай (4-е издание) . E&FN Spon.
Расчет свайного фундамента. Калькулятор онлайн
Расчет свайного фундамента — очень важный этап проекта будущего дома.Если допустить малейшую ошибку, срок службы конструкции сократится в лучшем случае до двадцати лет. При наименее благоприятных обстоятельствах катастрофа может произойти даже во время строительства.
Если внутри здания есть неустойчивые грунты, на которых наблюдается повышенная влажность, или какие-либо сложные рельефы, в этом случае единственным оптимальным решением будет правильный расчет свайного фундамента. Основное преимущество такой конструкции — чрезвычайно высокая надежность крепления даже на относительно мягком грунте, поскольку опора погружается на довольно большую глубину.Такие конструкции обладают гораздо большей надежностью и долговечностью, а для их реализации требуется не так много бетона, но вы должны понимать, что процесс их расчета и строительства довольно трудоемок.
Причин для расчета свайного фундамента можно найти более чем достаточно. Во-первых, правильно смоделированная конструкция имеет высокое сопротивление. Во-вторых, забивка свай обходится намного дешевле, чем строительство ленточной или черепичной конструкции. В-третьих, при невысокой несущей способности грунта — свайный фундамент — единственный вариант.
Если земля имеет низкую несущую способность, то при правильном расчете свайного фундамента вам не нужно рыть глубокие траншеи, чтобы сделать надежное основание. Для этого используются винтовые сваи. Но формула расчета при использовании таких материалов намного сложнее.
Плот представляет собой верхнюю часть фундамента, которая объединит в одну торцевые стенки свай, а фундамент плота является опорой для будущего здания. Соединение плота и свай производится при помощи специальной сварки или стандартной заливки бетона.
По монтажу решетки можно разделить на несколько категорий:
- Лента сливает только смежные сваи;
- Плитка — связывает каждый отдельный наконечник.
По виду материала:
- Бетон с арматурой. Под несущими стенами производится установка свай, а по глубине и ширине ростверка прорывают траншеи небольшой глубины;
- Подвесной бетон. Аналогичен предыдущему варианту, однако отличительной особенностью этого фундамента является то, что бетонная полоса не соприкасается с землей, а устройство компенсационного зазора при этом дает возможность предотвратить поломку опор в при сильных колебаниях грунта;
- Бетон.Изготовление такого фундамента предполагает использование двутавра или широкого металлического швеллера, под несущими стенами монтируется швеллер 30, а остальные опоры связаны с швеллером 15-20;
- из дерева. Крайне редкий вариант, который в последнее время практически не используется;
- Комбо. Здесь используются не только металлические опорные элементы, но и бетон.
Для проведения правильного расчета свайного фундамента необходимо более подробно ознакомиться с материалом основания. Это позволит точно создать проект, исходя из характеристик свайных конструкций и их свойств.
Все сложить вместе на ростверке. Его можно сделать из деревянных и металлических балок. Также можно взять монолитную железобетонную плиту. Но это сильно прибавит веса основной конструкции.
Свайные конструкции для расчета фундамента можно изготовить как самостоятельно, так и заказать на заводе. При изготовлении наземной постройки их фундамент лучше делать ровным.
Для правильного расчета свайного фундамента знать только квадратную конструкцию недостаточно.Необходимо учитывать трение, возникающее между боковой поверхностью стержня и землей.
Раньше винтовые сваи часто использовались военными инженерами при строительстве укреплений. Это было связано с тем, что они позволяют конструкции выдерживать высокие нагрузки в экстремальных условиях.
Внимание! Свайные конструкции по-прежнему незаменимы при создании мостов и переходов.
Основная часть ворса — ствол. Его диаметр от 80 до 130 мм.заканчиваются в виде острого конуса. Он приварен к клинку. Это позволяет быстро и эффективно вкручивать сваю в грунтовые конструкции.
Некоторые сваи обходятся без наконечника. В этом случае конец ствола имеет отверстие. На нем поставлен рычаг, позволяющий вращать сваю с нужной скоростью. Эта функция позволяет при необходимости удлинить ствол. Этот вариант очень необходим, когда работы ведутся на неустойчивом грунте.
К достоинствам свайных конструкций можно отнести:
- Безопасная технология монтажа, позволяющая быстро возвести фундамент дома.
- Возможность использования на любых почвах. Единственное исключение — камень.
- При перекатывании сваи не образуется ударная волна. Благодаря этой особенности свайный фундамент можно возводить даже в районах плотной застройки, не опасаясь за сохранность близлежащих домов.
- После установки винтовых элементов можно сразу же монтировать решетки. Разумеется, эта особенность учитывается при расчетах.
- Расчет свайного фундамента можно производить как для холмистой местности, так и для неровностей.
- Монтаж осуществляется практически в любых погодных условиях. Независимо от того, сколько градусов снаружи. Это не повлияет на качество фундамента.
- Возможность перепланировки. Ни один другой тип фундамента не дает такого большого простора для конструктивных изменений, как свайный. При необходимости стальной болт можно открутить и прикрутить в другом месте.
Зная преимущества и особенности свайного фундамента, можно провести самые точные расчеты, Uscita все конструкции.
Расчет свайно-винтового фундамента с плотом включает в себя большое количество моментов, но в первую очередь определяется глубиной сваи фундамента, которая зависит от типа и сложности грунта. В первую очередь необходимо определить нормативную глубину промерзания грунта в вашем районе проживания, затем замерить ниже 20-25 см — это будет глубина свай фундамента.
После проведенных изыскательских работ необходимо будет определить расположение грунтовых вод, а также возможность колебаний в разные сезоны и качественные характеристики почвы на участке.Лучше всего, если проектированием свайных фундаментов и его разработкой будет заниматься квалифицированный специалист.
При расчете количества винтовых свай для фундамента в каждом конкретном случае следует учитывать следующие характеристики:
- Насколько прочен материал и ростверк;
- Какая присутствует несущая способность грунта, в том числе за счет уплотнения во время установки опоры;
- При наличии значительных перепадов рельефа местности в этом случае определяется и также учитывается несущая способность базовой опоры;
- Как усадить сваи под действием вертикальной нагрузки;
- Какой вес имеет структура внутреннему содержимому;
- Какие бывают сезонные, динамические и ветровые нагрузки.
Кроме того, необходимо обязательно учитывать отстой свайного фундамента. Свайный фундамент должен быть в соответствии с планом работ, поэтому лучше, если его созданием будет заниматься профессиональный архитектор.
Важно! Расчет и последующее проектирование свайных фундаментов производится только после завершения всех изыскательских работ на объекте, проводимых квалифицированным специалистом.
Данные для расчета формул в этом случае будут выбираться в зависимости от качества и типа почвы.Следует отметить, что расчет свайного фундамента на усадку и деформацию требует максимально возможной точности выходных показателей.
Для построения правильных расчетов необходимо на строительной площадке провести геодезические изыскания. Первым делом под слабыми грунтами необходимо определить глубину слоя, способного выдержать вес постройки.
Важно! Расчет нужно делать так, чтобы свайные конструкции погружались в опорный слой не менее чем на полметра.
Чтобы узнать, на какую глубину нужно закручивать сваю, предварительно просверлите ее. Это позволяет определить, где находится уровень грунтовых вод. Также нужно учитывать, как промерзает земля зимой.
Весь процесс строительства разделен на следующие этапы:
- Сначала разметка и выравнивание. Определяется местом, где вы будете устанавливать основные сваи. Затем вы можете установить второстепенные элементы. Расстояние между ними должно быть в пределах двух-трех метров.Под всеми стенами дома следует разместить стальные болты.
- Привинчивание начинается с угловых свай. В верхнее отверстие стального болта пропускается лом. Удлинить рычаг на изношенном куске металлической трубы. При бурении отклонение от вертикали не должно превышать двух градусов. Угол наклона в процессе регулируется магнитным уровнем.
- Расчет свайного фундамента в угловых сваях производится с помощью шлангового уровня. Накладываем этикетку. Они определяют горизонтальную плоскость и нижний край ростверка.
- Остальные стопки свернуты.
- Глубина завинчивания должна быть такой, чтобы от верха до земли было 20 см.
- Поверхность занавеса обрезана на указанных уровнях.
- Для перемешивания раствора. Одна часть цемента на четыре части песка. Они набиты стопками.
Исправьте расчеты в планировке уровня свайного фундамента, сделайте прочную и надежную конструкцию.
Расчет на прочность отдельного предмета позволяет определить, сколько в целом вам потребуется свай для фундамента.За постоянную принимаем расстояние между стойками два метра. Причем согласно современным архитектурным тенденциям опоры должны иметь общий плотный фундамент.
Один пример ↑
Диаметр одного металлического болта 30 сантиметров. Ориентировочный вес постройки сто тонн. В формуле расчета свайного фундамента особую роль играет несущая способность грунта. Возьмем самый распространенный показатель — четыре килограмма на квадратный сантиметр.
Важно! Нагрузка не должна превышать несущую способность грунта.
Норма силы, которая будет действовать на каждую сваю в фундаменте, обозначена как Fсв. Расчет этого параметра производится по следующей формуле:
(πd2 / 4) * R
Задайте значения всех переменных:
- π — неизменное значение, бесконечное число, которое для простоты в математическом исчислении обозначается как 3,14.
- d — диаметр металлического болта (30 см).
- R — радиус, в данном случае четыре килограмма.
Сведите все к одной формуле:
Fсв = (πd2 / 4)? R = 707,7? 4 = 2826 кг.
Именно такой вес в грунте способен выдержать один свайный фундамент. Исходя из этих данных — продолжаем рассчитывать.
Общий вес постройки ровно 100 тонн. Эта цифра была взята для удобства расчетов. Перед дальнейшим расчетом свайного фундамента необходимо привести показатели к единой метрической системе.Переведите тонны в килограммы и получите значение N (количество опор).
N = 100000/2826 = 35,4.
Конечно, на тридцати пяти с половиной опорах одну монтировать не буду. Поэтому поймали в большую сторону. Для того, чтобы построить дом массой сто тонн на грунте с несущей способностью 4 кг / м Два нужно минимум 36 опор.
Пример второй ↑
Для понимания алгоритма расчета свайного фундамента закрепите материал и немного измените базовую линию. Увеличьте основание до 50 см.Это повысит удобство использования всей конструкции. Остальные параметры оставляем без изменений.
Fсв = 1962,5? 4 = 7850 кг
Рассчитайте свайный фундамент и получите 13 опор. Как видите, расширение основания позволяет значительно уменьшить количество свай, добившись хорошей стабильности работы.
Пример третий ↑
Расчет свайного фундамента, пример которого вы увидите позже, может использоваться как световой для загородного дома, имеет пару коттеджей, только в первом случае используются стандартные винтовые сваи, а при строительстве коттеджей потребуются использовать массивные буронабивные сваи, способные выдерживать довольно большие нагрузки.
Для упрощения примера расчет свайного фундамента выполняется с помощью винтовых опор. Следует отметить, что для этих свай малых размеров в процессе расчетов не учитывается поперечное трение, которое определяется при строительстве тяжелых зданий, оказывающих сваи значительным ударом.
При этом следует рассматривать подробный расчет общего количества свай и шаг их установки для одноэтажных домов, размер которых составляет 7 × 7 м:
- Изначально определяется общая масса расходников.Предположим, что общий вес бруса и обшивки крыши будет 27526 кг с учетом снеговой нагрузки;
- Размер полезной нагрузки 7х7х150 = 7350;
- Значение снеговой нагрузки 7х7х180 = 8820;
- Таким образом, примерный вес нагрузки на фундамент составит 27526 + 7350 + 8820 = 43696 кг;
- Теперь вес нужно будет умножить на запас прочности 43696х1,1 = 48065,6 кг;
- Например, предусмотрена установка шурупов-опор размером 86х250х2500.Чтобы рассчитать их количество, вам понадобится сумма общей нагрузки, которая будет прикреплена к сваям для распределения этой нагрузки. 48065,6 / 2000 = 24,03, округляем полученное число до 24 и получаем точное количество нужного количества стопок;
- Для установки 24 опор потребуется шаг установки 1,2 метра. Для формирования полового лага потребуется использовать две дополнительные сваи, которые будут располагаться прямо внутри дома.
Таким образом, по указанной выше технологии вы сможете рассчитать необходимое количество свай для любого дома вне зависимости от его особенностей.
На видео ниже вы можете увидеть, как производится расчет свайного фундамента специалистами:
Свайный фундамент — это экономичный и быстрый способ создания фундамента под строительство. Он позволяет работать в любых погодных условиях, а также дает возможность строить постройки даже на самых проблемных почвах.
Расчет свайного фундамента позволяет заранее определить, сколько нужно свай для дома определенной массы. Используя формулы, описанные в статье, можно быстро и точно провести расчеты.
Связанные с контентом
Калькулятор грузоподъемности винтовой сваи: проект свайного фундамента
По мере того, как наш бренд продолжал развиваться вместе с технологиями, мы поняли, что любому, кто использует наши запатентованные конструкции мирового класса, потребуется помощь в определении того, какой продукт и точное количество им потребуется для поддержания своей структуры. прочный фундамент на долгие годы. Вот почему мы создали калькулятор производительности Cantsink , чтобы помочь всем нашим профессионально сертифицированным подрядчикам.
Наши винтовые сваи имеют предел текучести 50 000 фунтов на квадратный дюйм и минимальную прочность на разрыв 65 000 фунтов на квадратный дюйм. Это означает, что Cantsink создал чрезвычайно прочный продукт. Хотя эти цифры весьма впечатляющие, может быть трудно подсчитать, что на самом деле означают эти цифры, когда они используются для поддержки конструкции. Наш калькулятор грузоподъемности поможет вам определить, какие размеры вам понадобятся для поддержки вашей конкретной конструкции.
Инженеры Cantsink хотят, чтобы вы были уверены, что приобретаемый вами продукт гарантированно будет работать для той работы, которую вы выполняете.Наши продукты полностью производятся в Соединенных Штатах, поэтому качество, которое вы собираетесь получить, будет соответствовать всем данным, введенным вами в калькулятор емкости. Контроль качества является приоритетом, поэтому наш калькулятор предназначен для работы в тандеме с нашими качественными продуктами.
Отчасти мы сделали Калькулятор мощности потому, что верим в устойчивость. Чтобы сохранить эту приверженность устойчивому бренду, мы не хотим производить слишком много продуктов, которые производим.Наш калькулятор позволяет нам не только предоставить вам точные размеры, которые вам нужны, но также помогает нам поддерживать работу с нулевым потреблением энергии совершенно новым способом.
У вас есть вопросы о нашем калькуляторе емкости? Не стесняйтесь обращаться к нам сегодня по телефону (678)280-7453 или [email protected], и наши опытные представители службы поддержки клиентов помогут вам с калькулятором и с любыми другими вопросами, которые могут у вас возникнуть!
КАК РАССЧИТАТЬ ГРУЗОПОДЪЕМНОСТЬ? (СТАТИЧЕСКИЙ АНАЛИЗ)
Предел несущей способности сваи — это максимальная нагрузка, которую она может выдержать без разрушения или чрезмерной осадки грунта.
Несущая способность сваи в основном зависит от трех факторов, как указано ниже:
- Тип грунта, в который заделывается свая
- Способ свайной установки
- Размер сваи (сечение и длина сваи)
При расчете несущей способности сваи для монолитных бетонных свай с помощью статического анализа необходимо использовать параметр прочности грунта на сдвиг и размер сваи.
Несущая способность сваи с использованием статического анализаСвая передает нагрузку в почву двумя способами.Во-первых, за счет сжатия в наконечнике, называемого «концевой подшипник » или «упорный подшипник »; во-вторых, сдвигом по поверхности, обозначенным как « поверхностное трение ».
Несущая способность монолитных свай в связном грунтеПредел несущей способности (Q и ) сваи в связных грунтах дается формулой, приведенной ниже, где первый член представляет сопротивление торцевому подшипнику (Q b ), а второй член дает оболочку сопротивление трению (Q s ).
Где,
Q u = Предельная грузоподъемность, кН
A p = Площадь поперечного сечения вершины сваи, м 2
N c = Коэффициент несущей способности, можно принять 9
α i = Коэффициент адгезии для i-го слоя в зависимости от плотности почвы. Он зависит от прочности грунта на сдвиг без дренажа и может быть получен из рисунка, приведенного ниже.
Изменение альфа с когезиейc i = Среднее сцепление для i-го слоя, в кН / м 2
A si = Площадь ствола сваи в i-м слое, м 2
Минимальный коэффициент запаса прочности 2,5 используется для получения безопасной грузоподъемности сваи (Q safe ) от предельной грузоподъемности (Q u ).
Q сейф = Q u /2,5
Несущая способность монолитных свай в несвязном грунтеПредел несущей способности сваи «Q u » состоит из двух частей.Одна часть возникает из-за трения, называемого трением кожи или трением вала или боковым срезом , обозначенным как «Q s », а другая — концевым подшипником в основании или на кончике носка сваи, «Q b ».
Уравнение, приведенное ниже, используется для расчета предельной несущей способности сваи.
Где,
A p = площадь поперечного сечения свайного основания, м 2
D = диаметр ствола сваи, м
γ = эффективная удельная масса грунта на вершине сваи, кН / м 3
N γ = коэффициент несущей способности
Н q = коэффициент несущей способности
Φ = угол внутреннего трения на вершине сваи
P D = Эффективное давление вскрыши на конце сваи, кН / м 2
K i = Коэффициент давления грунта, применимый для i-го слоя
P Di = Эффективное давление вскрыши для i-го слоя, в кН / м 2
δ i = Угол трения стенки между сваей и грунтом для i-го слоя
A si = Площадь ствола сваи в i-м слое, м 2
Первый член — это выражение для конечной несущей способности сваи ( Q b ), а второй член — это выражение для поверхностного трения сваи ( Q s ).
Минимальный коэффициент запаса прочности 2,5 используется для достижения безопасной прочности сваи (Q safe ) от предельной несущей способности (Q u ).
Q сейф = Q u / 2,5
Важные примечания, которые следует запомнить- Значение коэффициента несущей способности N q получается из рисунка, приведенного ниже.
- Значение коэффициента несущей способности N γ вычисляется с использованием приведенного ниже уравнения.
- Для забивных свай в рыхлом и плотном песках с φ в диапазоне от 30 0 до 40 0 , k i могут использоваться значения в диапазоне от 1 до 1,5.
- δ угол трения стенки можно принять равным углу трения грунта вокруг ствола сваи.
- Максимальная эффективная перекрывающая порода у основания сваи должна соответствовать критической глубине, которая может быть принята равной 15 диаметрам ствола сваи для φ ≤ 30 0 и увеличена до 20 раз для φ ≥ 40 0
- Для свай, проходящих через связные пласты и оканчивающихся гранулированным пластом, в гранулированный пласт должно быть выполнено проникновение, по крайней мере, в два раза больше диаметра ствола сваи.
Расчет несущей способности сваи для одиночных и групповых свай
🕑 Время считывания: 1 минута
Расчет несущей способности сваи определит предельную нагрузку, которую свайный фундамент может принять в условиях эксплуатационной нагрузки. Эта способность также называется несущей способностью свай. Устанавливаемые сваи могут быть как одиночными, так и групповыми. Следовательно, расчет нагрузки для одиночной и групповой свай будет другим.Это делается для заданных условий нагрузки или размера фундамента. Здесь расчет несущей способности как для одиночных, так и для групповых свай. Расчет несущей способности одиночной сваи Здесь необходимо определить вертикальную нагрузку и горизонтальную нагрузку, действующую на сваю. Расчет вертикальной нагрузкиРис.1: Вертикальная нагрузка на сваю
Допустимое сопротивление сжатию R ac одиночной сваи обеспечивается концевым подшипником F eb и поверхностным трением для каждого слоя F sf .Таким образом,
Rac = Feb + Total (Fsf) Уравнение 1
Таким образом, максимальная сжимающая рабочая нагрузка, которую может выдержать одна свая, равна ее общему сопротивлению R ac, за вычетом собственного веса сваи W. Таким образом, Nser
Крыса = Всего (Fsf) + W Ур.3
Детали исследования почвы предоставят подробную информацию о концевом подшипнике и величине поверхностного трения.Эти значения получены с помощью испытательных нагрузок и энергетических процедур забивания свай. Эти конечные значения делятся на частный коэффициент безопасности от 2 до 3, чтобы получить допустимые значения F eb и F sf . Расчет горизонтальной нагрузкиРис.2: Горизонтальная нагрузка на сваи
Двумя основными факторами, ограничивающими горизонтальную вместимость сваи, являются:- Максимальный прогиб конструкции
- Конструктивная способность сваи
Рис.3.Групповая вместимость сваи
Неповрежденная Несущая способность и требуемые условия забивки достигаются за счет обеспечения минимального свободного расстояния между сваями. Это расстояние будет равно удвоенному диаметру сваи.Рис.4. Минимальное расстояние между сваями
Общая вертикальная эксплуатационная нагрузка на группу свай не должна превышать грузоподъемность группы, которая определяется по формуле: Групповая нагрузка = групповая фрикционная способность + несущая способность на конце группы= 2D (L + K) k1 + BLk2 Уравнение 4
Где k1 и k2 — коэффициенты почвы. Нагрузки на отдельные сваи внутри группы ограничиваются несущей способностью одной сваи.Вместимость сваи — обзор
Время влияет на изменения осевой нагрузки в глинистом грунте
Вместимость сваи, рассчитанная по предыдущему уравнению, не учитывает влияние старения с течением времени на емкость сваи, учитывая, что на старой платформе который был построен 40 лет назад и более, если пересмотреть расчет, вы можете обнаружить, что он отличается от коэффициента безопасности API в дополнение к условиям окружающей среды. окруженный грунт как единое целое, поэтому в расчетах не учитывается дополнительная адгезия.Поэтому недавно было проведено исследование, чтобы определить поведение осевой способности глинистой почвы во времени.
Кларк (1993) и Богард и Мэтлок (1990) провели полевые исследования, в которых было показано, что время, необходимое забивным сваям для достижения предельной прочности в связном грунте, может быть относительно большим — до 2–3 лет.
Стоит отметить, что в течение короткого периода времени после установки наблюдается значительное увеличение прочности, и это происходит из-за того, что показатель прочности быстро увеличивается после непосредственного движения, и этот показатель уменьшается в процессе рассеивания.
Во время забивки сваи в нормальных или легких переуплотненных глинах почва, окружающая сваю, значительно нарушается, напряженное состояние изменяется, и это также создает большое превышение порового давления. После установки сваи это избыточное поровое давление начинает рассеиваться, что означает, что окружающий грунт вокруг свай начинает консолидироваться, и, исходя из этого, емкость сваи в глинистой почве со временем увеличивается. Этот процесс называется « настройка ». Скорость рассеяния избыточного порового давления зависит от радиального коэффициента уплотнения, диаметра сваи и слоистости грунта.
В наиболее распространенном случае, когда забивные трубные сваи, поддерживающие конструкцию, имеют расчетные нагрузки, прикладываемые к сваям вскоре после установки, при проектировании свай следует учитывать характеристики времени уплотнения. В традиционных стационарных морских сооружениях время между установкой сваи и полной загрузкой платформы составляет от 1 до 3 месяцев, но в некоторых случаях ввод в эксплуатацию и запуск происходят раньше, и в этом случае эта информация должна быть передана. для инженерного бюро, поскольку ожидаемое увеличение пропускной способности со временем является важными проектными переменными, которые могут повлиять на безопасность системы фундамента на ранних этапах процесса консолидации.
Поведение сваи при значительных осевых нагрузках в высокопластичных, нормально консолидированных глинах было изучено с использованием большого количества испытаний свайных моделей и некоторых натурных испытаний на нагрузку на сваи.
В результате этого исследования диссипации порового давления с данными нагрузочных испытаний в разное время после забивки сваи были получены эмпирические корреляции между степенью консолидации, условиями закупоривания и сдвиговой способностью ствола сваи. Это исследование показало, что результаты испытаний стальных свай с закрытым концом в сильно переуплотненной глине указывают на отсутствие значительного изменения вместимости с течением времени.Это противоречит испытаниям стальных свай с закрытым концом диаметром 0,273 м (10,75 дюйма) в переуплотненной глине, где была обнаружена значительная и быстрая установка за 4 дня, поэтому емкость сваи в конце установки так и не восстановилась полностью.