Что такое заземление и зануление простыми словами: Заземление – что это простыми словами и для чего нужно, как работает

Содержание

Заземление – что это простыми словами и для чего нужно, как работает

Тело человека – хороший проводник электрического тока. Самыми высокими показателями электропроводности обладают мышцы и подкожная-жировая клетчатка, то есть как раз те места, которые первыми контактируют с внешним источником тока, будь то оголенный провод или неисправный электроприбор.

Ток проникает в тело через поры и каналы потовых желез, поэтому очевидно, что сухая кожа отличается более высоким сопротивлением, чем влажная. Так, при контакте с напряжением 220 В значение силы тока, воздействующей на мокрый кожный покров, составляет порядка 220 мА. При такой электротравме смерть наступает мгновенно, учитывая, что опасным для организма считается показатель уже в 15мА, а смертельном опасным – 100 мА.

Это доказывает необходимость разработки мер, которые предотвращают случайное поражение электрическим током во всех областях человеческой деятельности, как на производстве, так и в быту. Одна из таких мер – установка заземляющих устройств (ЗУ).

Что такое заземление

Если говорить простыми словами, это защитная система, которая предотвращает от ударов током при прикосновении к металлическим частям оборудования, находящегося под напряжением. Вся конструкция состоит из следующих частей:

  • Металлический контур
  • Заземляющая шина
  • Разводка проводов заземления

Контур представляет собой 4-6 штырей (электродов), забитых в грунт и соединенных между собой металлическими полосами. Необходимая глубина заземляющего устройства – 2,5-3 метра, то есть ниже уровня промерзания почвы. Это требуется для того, чтобы даже зимой контур получал доступ к влаге, проводящей ток.

Вверху одного вертикального электрода располагается «контактная зона» (чаще всего в виде болта с резьбой), от которой берет начало медная шина, ведущая в специальную планку в распределительном щитке.

От главной заземляющей шины, в свою очередь, расходятся медные жилы к розеткам потребителей. Эти провода, по сути, отвечают за подключение заземления – к примеру, в современных домах разводка от щитка выполняется трехжильным кабелем, где одна из жил – желто-зеленого цвета – отведена «под землю».

Рис 1. Устройство заземления. а) – заземление в линию; б) – контур заземления

Требования к заземлению

Обеспечение безопасности потребителя при работе с электрическими приборами – приоритетная задача производителей и эксплуатантов электроустановок, поэтому в этой сфере действует ряд норм и правил. Отметим основные:

  • Заземлять нужно все, что имеет металлический корпус: котлы, станки, насосы, инструменты, оборудование;
  • Штыри и соединения контура должны отличаться антикоррозионностью и износостойкостью, что обеспечивается правильным выбором материала и диаметра – например, для этих целей нередко используется нержавеющая сталь с поперечным сечением не менее 90 кв. мм;
  • Заземлители должны всегда находиться во влажной почве – для этого нужно учесть географические, климатические и геологические особенности региона и выбрать правильную глубину размещения металлических электродов.

Почему человека бьет током

Смоделируем ситуацию:

  1. В бытовом электрическом приборе, установленном без заземления (к примеру, в стиральной машине), нарушилась целостность проводки. Причины могут быть любые – естественный износ, механические повреждения, вредительство насекомых или грызунов.
  2. В результате на корпусе агрегата скапливается электрический разряд.
  3. Человек прикасается к устройству и получает удар током.

Важно понимать, что ток при этом движется по замкнутой цепи, где тело человека выступает как одно из звеньев. Если бы мы, скажем, летали по воздуху, то электрические травмы были бы нам практически не страшны – посмотрите на птиц за окном: они спокойно сидят на высоковольтных проводах, не догадываясь о смертельной опасности.

Однако мы, в отличие от птиц, ходим по земле, которая, в свою очередь, считается идеальной точкой с нулевым потенциалом. Получается, что тело человека выступает как проводник, по которому электрический ток от неисправного электроприбора или оголенного провода устремляется к земле, чтобы уравнять количество заряженных частиц в этих двух точках, как того требуют законы природы.

Как работает заземление

Ток движется по пути наименьшего сопротивления. Этот простой принцип лежит в основе работы заземления: наш кожный покров обладает более высоким сопротивлением, чем металлический провод, поэтому при касании поверхности под напряжением ток сразу уходит в землю, не причиняя человеку вреда. Это главное, что нужно понимать о работе ЗУ.

Есть и еще один фактор, который обеспечивает работу заземления – бесконечно обширное «сечение» грунта. Обратимся к физике: ток, уходя во влажную почву, запускает цепную реакцию ионов, которые передают энергию все дальше и дальше, практически до бесконечности. Чем больше электрически заряженных частиц (ионов) участвует в процессе, тем быстрее передается энергия, рассеивается ток и, следовательно, тем эффективнее работает заземление. Добавим, что здесь немаловажную роль играет и достаточный диаметр металлических электродов, входящих в контур заземляющего устройства.

Заземление и зануление – в чем отличие

Кроме установки ЗУ, существует еще один способ, защищающий человека от удара током от неисправных электроустановок. Это зануление (другое название: заземление на ноль). Его суть в том, что при возникновении неисправности возникает короткое замыкание, что приводит к отключению автомата-предохранителя. Технически это реализовано так: корпус электроустановки соединяется с нейтралью источника питания, то есть с заземленной точкой трансформатора.

Простыми словами, разница между занулением и заземлением в том, что в первом случае питающая цепь отключается из-за превышения токовой уставки автомата, а во втором – опасный ток отправляется в грунт и «растекается» в его влажной среде.

В многоквартирных высотках заземлять электроприборы технически сложно, поэтому здесь чаще всего используется зануление (наряду с УЗО). В частных домах, наоборот, удобнее всего сделать систему заземления.

Для чего применяются УЗО и дифавтоматы

Эксплуатация заземляющих устройств невозможна без дополнительных приборов. К главным из них нужно отнести устройство защитного отключения (УЗО) и дифференциальные автоматы. Несмотря на внешнюю схожесть, они используются для разных задач:

  1. УЗО отключается в момент появления в сети так называемого тока утечки, который может привести, с одной стороны, к возгоранию (при повреждении электропроводки изоляция начинает сильно греться), а с другой – к удару током, если человек дотронется до неисправного оборудования. УЗО всегда работает «в связке» с обычным автоматом.
  2. Дифференциальный автомат соединяет в себе функции устройства защитного отключения и автомата, то есть он защищает систему электропроводки от перегрузок и коротких замыканий, а человека – от электрических травм.

Таким образом, заземление представляет собой металлический провод, уходящий в почву и предназначенный для «утекания» тока в землю при возникновении неисправности в системе электроснабжения.

Чем отличается зануление от заземления простыми словами:ликбез от дилетанта estimata

Отредактировано 6.07.2019

В данной статье говорится об защитном занулении и заземлении.

Если говорить максимально по простому, то зануление провоцирует моментальное отключение электроэнергии при опасном контакте человека и провода под напряжением. А заземление мгновенно отводит опасное напряжение в землю.

Если говорить немного более подробно, то

  • заземление идёт от корпуса электрооборудования с помощью специального заземляющего провода к распределительному щитку. От распределительного щитка заземляющий провод идёт к заземляющему контуру — металлической конструкции, вкопанную в землю рядом с домом. Если по какой-либо причине произойдет пробой электричества на корпус электроприбора или контакт с оголенной токоведущей частью, то это электричество уйдет в землю и минует человека.
    Рекомендую прочитать статьи Системы заземления и  Что можно и что нельзя использовать в качестве естественного заземлителя.
  • зануление представляет собой соединение корпуса электрооборудования с нейтральным проводом сети — нулём. Если по какой-либо причине произойдет пробой электричества на корпус электроприбора или контакт с оголенной токоведущей частью, то произойдет короткое замыкание и автоматические выключатели (автоматы), предохранители или другие защитные устройства отключат электроэнергию.
Наглядная разница между заземлением и занулением

Как правило, зануление используется там, где невозможно организовать полноценное заземление. Или как дополнительная защита, на случай, если заземляющий кабель придет в негодность по какой-либо причине. При этом, заземление остается более эффективным подходом к защите человека от поражения элетричеством.


Учтите, что зануление опаснее, чем заземление. В  случае если произойдет пробой электричества, то при занулении есть вероятность попадание под действие электрического тока, т.к. человек имеет меньшее сопротивление, чем оборудование.
Также возможно что при одгорании нуля в щитке фаза будет попадать на корпус.

Обратите внимание, что подключение заземления/зануления в квартирах/домах к электроприборам осуществляется с помощью специальных розеток и вилок, имеющих заземляющий контакт. В России для этого обычно используют так называемые «евро розетки» и «евро вилки». Если их нет, значит заземление/зануление не используется… Но и наличие такого контакта не гарантирует что у вас заземление/зануление есть и оно подключено.
евро розетка
евро вилка

Чем отличается заземление от зануления: разница

Современная трёхфазная электропроводка выполнена по пятипроводной схеме, а однофазная по трёхпроводной. В этих схемах зануление и заземление выполнены отдельными проводами, следовательно, они выполняют разные функции. Для того чтобы правильно использовать эти проводники необходимо знать, чем отличается заземление от зануления.

Определение из нормативных документов

В «библии» электромонтёров Правилах Устройства Электроустановок п.п.1.7.28-1.7.31 даётся чёткое определение, что считается заземлением, а что занулением электрооборудования.

Однако формулировки, используемые в этом и других документах, являются сложными для людей, не связанных с электричеством. Для лучшего понимания материала статьи можно объяснить, что такое заземление и зануление простыми словами.

Что такое зануление

Все жилые районы и большинство промышленных предприятий подключены к понижающим трансформаторам, вторичные обмотки которых соединены в «звезду» и подключены к контуру заземления без разрывов и переключателей. Такая схема электропитания называется «с глухозаземлённой нейтралью».

От таких подстанций отходит четыре провода — три фазных от концов обмоток и нейтраль, или нулевой проводник, от средней точки звезды.

Занулением является соединение металлических корпусов электроприборов с нейтралью трансформатора или с нулевым проводником в однофазной сети 220В.

Согласно ПУЭ п.1.7.31 защитным занулением это подключение будет в том случае, если оно выполнено для повышения электробезопасности, а не по требованиям технологии или иным причинам.

Информация! Если нулевой проводник, присоединённый к контуру заземления или глухозаземлённой нейтрали, используется только для защиты, то его можно назвать «защитнное заземление».

Что такое заземление

Заземление — это подключение корпуса оборудования к контуру заземления. Такой контур может находиться возле здания или на трансформаторной подстанции. В последнем случае электропитание осуществляется по пятипроводной схеме, с дополнительным заземляющим проводом РЕ.

Соединение оборудования с заземлителями может осуществляться с двумя целями:

  • Защитное заземление. Производится для предотвращения электротравм. Определение даётся в ПУЭ п.1.7.29.
  • Рабочее (функциональное) заземление. Используется для работы электрооборудования, описывается в ПУЭ п.1.7.30.
Информация! Соединение заземления с нейтралью в трансформаторной подстанции или во вводном щитке даёт возможность также называть его «защитным занулением».

Для чего применяют заземление и зануление

С точки зрения электротехники эти проводники являются равнозначными и основное отличие заземления от зануления заключается в назначении таких проводов.

Зачем необходимо заземление

Прикосновение к элементам, находящимся под напряжением сети, может быть опасным для здоровья. В исправном оборудовании корпус отделён от токоведущих частей при помощи изоляционных материалов.

При разрушении изоляции на металлических частях корпуса появляется высокое напряжение и если оборудование не подключено к контуру заземления контакт человека с оборудованием приведёт к поражению электрическим током.

Наличие заземления обеспечивает отсутствие разности потенциалов между оборудованием с повреждённой изоляцией и заземлёнными элементами здания. При этом происходит срабатывание дифференциальной защиты и, при коротком замыкании на корпус, отключению автоматического выключателя.

Рабочее и защитное зануление

Соединение оборудования с нейтралью есть двух видов:

  • Защитное. Предназначено для отключения питания при нарушении изоляции. При этом возникает короткое замыкание между элементами, подключёнными к фазным проводам, и занулённым корпусом. Это вызывает повышение тока в сети выше уставки соответствующего автоматического выключателя.
  • Рабочее. Используется для получения однофазного напряжения в трёхфазной сети. В данной схеме нейтраль подключается не к корпусу, а к нулевой шине электросхемы или щита.

Схема подключения

Схемы подключения заземления и зануления отличаются в зависимости от назначения.

Защитное заземление должно подключаться к электроприборам без выключателей и разъединителей. Для этого используется отдельный пятый проводник РЕ в подходящем кабеле. Второй конец этого кабеля присоединяется к глухозаземлённой нейтрали понижающего трансформатора в схемах электроснабжения TN-S.

Защитное зануление предполагает присоединение корпусов оборудования к нейтральному проводнику ДО вводного автомата и в таком виде практически не используется.

Для использования защитного зануления точку соединения с нейтралью необходимо дополнительно заземлять. При этом морально устаревшая схема электроснабжения TN-C преобразовывается в более современную схему TN-C-S.

Рабочее зануление выполняется путём установки в электрощите нулевой шины N. К ней присоединяются нулевые провода отдельных линий при монтаже однофазных автоматов и нейтраль однофазных потребителей в трёхфазной сети.

Принцип работы заземления и зануления

Основная задача защитного заземления и защитного зануления одинаковая — предотвратить электротравму человека при повреждении изоляции между элементами, находящимися под напряжением и металлическим корпусом оборудования.

Однако эти приспособления выполняют свои функции по-разному и главное, чем отличается зануление от заземления это способом защиты и используемой защитной аппаратуры.

Принцип работы заземления

Для поражения электрическим током необходима разность потенциалов между корпусом оборудования и поверхностью, на которой стоит человек. Обычно это заземлённый пол или сантехника. При повреждении изоляции заземляющий провод отводит высокое напряжение в землю и шунтирует тело человека.

Согласно нормам ПУЭ п.1.8.39 сопротивление контура заземления должно быть не более 4 Ом, что многократно превышает сопротивление тела человека, даже если контакт был произведён мокрыми руками.

В результате ток, протекающий через организм, становится намного меньше величины, при которой он начинает ощущаться как лёгкое покалывание.

Ток, протекающий через заземляющий провод, называется ток утечки и его появление приводит к срабатыванию дифференциальной защиты, а при его увеличении выше уставки автоматического выключателя происходит аварийное отключение автомата линии.

Принцип работы зануления

Зануление является менее надёжной защитой и предназначено для отключения линии в аварийных ситуациях защитным автоматом. Это защитное устройство сработает только при коротком замыкании между внутренней частью электрооборудования и корпусом.

Фактически, нулевой проводник в сетях с глухозаземлённой нейтралью выполняет две функции — заземления и зануления и является совмещённым проводом PEN, однако его сопротивление не нормируется и разность потенциалов между занулённым корпусом и заземлёнными элементами здания может достигать значительной величины, особенно если линия проложена тонким проводом и имеет значительную протяжённость и сопротивление.

Подходящий к квартире или частному дому однофазный двухжильный кабель кроме двухполюсного автомата проходит через дифреле, которое не отключает питание при нарушении изоляции. Такая защита сработает только при прикосновении к корпусу оборудования с повреждённой изоляцией.

В чем практическая разница между заземлением и занулением

Если заземляющий и нейтральный проводники оба проходят от потребителя к глухозаземлённой нейтрали трансформаторной подстанции, где подключаются к контуру заземления, то возможно не имеет значения, как их использовать?

Несмотря на то, что с точки зрения электротехники эти проводники равнозначные, отличия в монтаже делают недопустимым произвольное подключение земли и ноля в щитке и к электроприборам. Согласно ПУЭ, у каждого из этих проводов свои требования и область применения:

  • Заземление. Используется для того, чтобы обеспечить отсутствие напряжения на корпусе электроприбора. При нарушении изоляции напряжение по заземляющему проводнику отводится в землю, при этом появляется ток утечки. Если его величина превышает 30мА, то срабатывает УЗО или дифавтомат, установленные в электрощитке. Заземляющий провод должен проходить от контура заземления до розетки или корпуса оборудования без автоматов или выключателей без контакта с нейтралью.
  • Зануление. Согласно ПУЭ п.1.7.132 использовать подключение к рабочему нулевому проводнику для защиты от поражения электричеством запрещено, поэтому зануление применяется для разделения трёхфазного электропитания на три однофазных линии. Для подключения к нейтрали корпуса оборудования необходимо выполнить отвод от нулевого провода с дополнительным заземлением места разделения. В этом случае дополнительный провод считается заземляющим.
Заземление и зануление служат для защиты человека от поражения электрическим током. Основное отличие зануления от заземления в том что они по разному осуществляют эту защиту. Заземление обеспечивает безопасность путем снижения напряжения прикосновения до безопасной величины (электрический ток уходит в землю). Зануление — путем отключения поврежденного оборудования от сети.

Что лучше

Главное, чем отличается заземление от зануления, это надёжностью защиты от поражения электрическим током. По нейтральному проводу протекает электрический ток, что может привести к разрушению мест соединений и подгоранию контактов автоматов и рубильников.

Согласно ПУЭ, нулевой проводник должен отключаться одновременно с фазным, но это не гарантирует одновременного включения контактов выключателя. В этом случае на корпусе занулённого электроприбора через электросхему появится фазное напряжение.

В отличие от защитного заземления, установленное в схеме зануления УЗО будет отключать питание только в случае попадания человека под напряжение.

Ток утечки, протекающий через повреждённую изоляцию и зануление, вызовет только срабатывание автоматического выключателя при коротком замыкании. Незначительный ток может привести к полному разрушению электроприбора и его возгоранию.

Опасность зануления в быту

Для защиты от поражения электрическим током применяются два вида защит — заземление и зануление. В чем разница между ними понимают не все электромонтёры, а тем более домашние мастера.

Поэтому при монтаже электропроводки иногда вместо заземляющего провода используется подключение к нейтрали. Выполнить эту работу по всем нормам ПУЭ, описанным в главе 1.7, затруднительно и вместо этого просто производится соединение нейтральной и заземляющей шин в электрощитке после вводного автомата или даже в розетке.

Такое зануление выполняет свои защитные функции до тех пор, пока нейтральный проводник сохраняет свою целостность на всем протяжении. При аварийных ситуациях на заземляющих клеммах и корпусах электроприборов гарантировано появляется напряжение, что может быть опасным для жизни.

Поэтому использование рабочего нулевого проводника в качестве защитного запрещено нормами ПУЭ.

Вывод

Главное, чем отличается заземление от зануления — это надёжность защиты. В случае подключении корпуса к заземлению высокое напряжение отводится в землю и появляющийся при этом ток утечки вызывает срабатывание дифференциальной защиты. При монтаже зануления отключение производится автоматическим выключателем только в случае короткого замыкания. Поэтому при выборе способа защиты зануление следует устанавливать только при невозможности произвести монтаж заземления.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

 

Чем отличается заземление от зануления: объясняем простыми словами | samelectrik.ru

Сегодня параллельно эксплуатируются две системы электроснабжения домов и предприятий и в то же время активно проводится реконструкция на более безопасный способ электроснабжения объектов жилого фонда. Для непосвященного человека эти системы снабжения на вид одинаковы, но их работа и реализация имеют много особенностей. Приступим к их разбору.

Система TN-C

В этой системе ( https://samelectrik.ru/sistema-zazemleniya-tn-c.html) питание электрических сетей происходит по четырех проводной схеме. Три провода фазы L1, L2, L3 и провод нейтрали (N), который в системах с глухозаземленной нейтралью также является и PE проводником земли.

Возможно каждый домашний мастер слышал такое выражение как «зануление». Его практикуют для обеспечения электробезопасности электроприборов, когда корпус устройства электрически соединен с проводником (N) ноль электрической сети. При возникновении аварийной ситуации, зануление призвано отвести с корпуса устройства опасное напряжение.

Этот метод признан небезопасным, поскольку в процессе эксплуатации проводники подвергаются перегрузкам и физическим разрушениям. А проводник (N) в некоторых аварийных случаях становится источником напряжения. Опасный потенциал на корпусе устройства приведет к электротравматизму домочадцев.

Поэтому категорически не рекомендуется использовать рабочий ноль в качестве защитного заземления. А в качестве защитных мер, в двух проводной сети, использовать специальные защитные устройства: дифференциальные реле или УЗО.

Прогрессивный метод электроснабжения TN-C-S

Этот тип электроснабжения потребителей электрической энергии ( https://samelectrik.ru/sistema-zazemleniya-tn-c-s.html) происходит по пяти проводной схеме. Три фазы L1, L2, L3, провод нейтрали N и защитный провод PE. Тут обеспечивается безопасность подключенного оборудования постоянно, поскольку провод РЕ не участвует в электроснабжении, а выполняет только защитные меры. Вероятность того что проводник станет источником тока, полностью исключена.

Ниже на картинке показаны две схемы, зануление и заземление. Что бы вы сами смогли сделать выводы, глядя на изображение:

Организовывать зануление самостоятельно небезопасно и запрещено по нормам ТБ. Для того чтобы произвести заземление электротехники самостоятельно, читайте наши статьи, про изготовление контура заземления в разделе: https://samelectrik.ru/elektroprovodka/zazemlenie-i-molniezashhita.

в чем разница между понятиями

В электротехнике защитное заземление и зануление имеет разное значение. Люди не знакомые с определениями этих понятий ошибочно полагают, что они имеют отношение к выполнению одинаковых функций. В статье пойдет речь об отдельном определении каждого понятия, а также выведения их основных различий.

Понятие заземления

Прежде чем дать ответ на вопрос, чем отличается заземление от зануления, рассмотрим каждое понятие отдельно. Заземление – это специальное соединение электроустановок с землей. Цель этого соединения является снижение резкого скачка напряжения в электрической сети. Оно используется в той цепи, где нейтраль будет изолирована. Когда будет установлено подходящее заземляющее оборудование, то избыточный ток, который поступает в сеть, будет уходить в землю по отводящим контактам. Сопротивление этой части должно быть относительно низким, чтобы ток был поглощен без остатка.

Также функция защитного заземления электроустановок позволяет увеличить объем аварийного тока замыкания, несмотря на то, что это противоречит его назначению. Заземлитель с большим сопротивлением слабый ток замыкания может не воспринять, только со специальными защитными приборами. В таком случае, когда будет аварийная ситуация, установка будет под напряжением, что может представлять большую опасность для здоровья человека в этом помещении. Назначение защитных электроустановок также рассчитано на отведение блуждающего тока в электрической сети.

Заземлитель является особым проводником, который может состоять из одного или нескольких элементов. Обычно они соединены между собой электропроводящим материалом и заключены в землю, которая поглощает проходящий заряд. В качестве заземляющих проводников может использоваться сталь и медь. По нормам ПУЭ данная мера защиты в обязательном порядке должна делаться в современных жилых домах, а также рабочих помещениях, заводах, в общественных заведениях и других зданиях различного назначения.

В большинстве домов современного образца установлены схемы заземления. Однако их может не быть в старых зданиях. В такой ситуации специалисты рекомендуют заменить проводку трехжильным кабелем с заземляющим проводом, подключив защитную электроустановку. Бывают ситуации, когда нет возможности сделать монтаж полноценного заземляющего контура. В современной электротехнике может использоваться специальное портативное оборудование – переносной заземляющий штырь (шина). Их действие соответствует стандартному заземляющему устройству жилых домов или отводов. Такое устройство имеет хорошее практическое значение, легко подвергается монтажу и переноске, починке, а также имеет широкий функционал.

Функцию заземления могут выполнять несколько самостоятельных групп защитного оборудования. Грозозащитные. Они служат для того, чтобы быстро отводить импульсный высокий заряд от молнии. Зачастую их применение необходимо в разрядниках и современных молниеотводах. Рабочие. Такая группа позволяет поддерживать в нужном режиме работу всех электроустановок при разных условиях (нормальные и аварийные).

Защитные. Данная группа оборудования нужна для предотвращения прямого контакта людей и животных с электрическим зарядом, который возникает в результате механического повреждения фазы в проводе. Они позволяют предотвратить множество несчастных случаев, которые могли бы быть, если проблемы с силовой линией не были замечены своевременно.

Заземлители условно разделены на искусственные и естественные. Искусственные электроустановки представляют собой специальные конструкции, которые делаю специально для того, чтобы увести избыточный ток сети в землю, обеспечив защиту своему дому. Их могут производить на заводе или делаться самостоятельно, используя стальные элементы.
Естественными заземлителями является грунт, фундамент под зданием или же дерево возле дома.

Видео “В чем отличия”

Понятие зануления

Занулением может называться соединение отдельных металлических деталей, которые не находятся под воздействием постоянного напряжения, либо с заземленной нейтралью понижающего источника трехфазного тока, либо при заземленном генераторе однофазного тока. Таким образом, высокие скачки напряжения будут отводиться к трансформатору или к отдельному щитку для поглощения. Обычно зануление делается в электроустановках с заземленной нейтралью. Оно позволяет при пробое изоляционного слоя на проводе и коротком замыкании быстро сработать автоматическому выключателю или отреагировать другому защитному оборудованию.

Достаточно часто устанавливают дополнительные устройства защитного отключения. Они будут срабатывать при разной силе тока по фазе и «нулю» силового провода. Такое оборудование может быть установлено вместе с автоматическим выключателем. В таком случае, после пробоя жилы может одновременно сработать оба устройства или же сработает элемент более быстрого действия.

Обычно зануление применяется по правилам устройства электроустановок для промышленного оборудования. Данный вид защиты не является гарантом безопасности здания. Если поврежденная фаза попадет на внешнюю часть устройства, тогда ток никуда не уйдет. Впоследствии произойдет сопряжение сразу двух фаз, что приводит к короткому замыканию в электрической сети. Зануление не создает защиту от тока для человека. Условно это специфический индикатор неполадки или повреждения силовой линии, который предупреждает возгорание при коротком замыкании.

В жилых домах и квартирах совсем не обязательно делать зануление, так как это наоборот может иметь ряд негативных последствий. Например, если в кабеле сгорит нулевая жила, то большинство бытового оборудования и техники также сгорит. Это связано с резким скачком высокого напряжения в электрической сети.

Главные отличия

В первую очередь нужно отметить, что зануление и заземление имеют совершенно разное назначение и действие. Основная разница этих защитных мер – это их назначение.
Заземление служит более эффективным и надежным способом защиты жилого дома от скачка напряжения, чем метод зануления. Различие в их назначении, позволяет выбрать из них тот способ предохранения, который больше подходит в конкретной ситуации. Можно сразу сделать в жилом доме оба варианта защиты. Однако следует отметить, что обычно предпочтение отдают именно заземлению, считая, что этот метод необходим в любом случае.

Заземление позволяет создать защиту сети, быстро снизить напряжение переменного тока в сети до нормального стабильного значения. Тогда как зануление будет способствовать более быстрому отключению цепи, которая была под напряжением, где фактически произошел сбой на линии. Также большой разницей является тот факт, что способы их монтажа имеют разную степень сложности.

Создание зануления в жилом доме, и подключение специального оборудования требует более глубоких познаний об электротехнике. Чтобы этот метод защиты сработал правильно, нужно сделать все правильно. Определить точку зануления очень важно, так как в противном случае могут быть негативные последствия. При монтаже защитных контуров заземления достаточно следовать четким указаниям или инструкциям. Их конструкция достаточно простая.

Способ заземления не имеет зависимости от фазности электрических приборов и различных устройств, так как они имеют одинаковую схему установки. Также схемы создания заземления имеют большее разнообразие, в отличие от зануления, что позволяет подобрать более подходящий вариант в конкретной ситуации. Еще одно их различие заключается в том, что заземление направлено обеспечивает выравнивание потенциалов, а зануление реагирует на такое изменение обесточиванием сети.

Видео “Заземление и ноль: в чем разница?”

Из видео вы на практике увидите, в чем разница между этими двумя показателями.

Зануление и заземление в чем разница: 3 принципа действия


Чем отличается заземление от зануления: определяем главные типы

Конструкции, которые используют электрическое напряжение с землей, относятся к понятию заземления.

Если простыми словами, так сказать для чайников, объяснить, чем отличается ноль от фазы “земля” то лучше использовать схемы с пометкой electric или electrical. Так же понять отличие между этими двумя показателями в электрике можно исходя из видео. Все что там указанно применяется в рабочее время при использовании двухпроводной установки.

За счет такого использование вы можете прикоснуться к поверхностям, которые находятся под напряжением и при этом минимально ощутить заряд.

Такой способ используют только в электрических устройствах с заизолированной нейтралью.

Заземление еще выполняет функцию, увеличения максимального тока при коротком замыкании. Такое действие необходимо для срабатывания защитного устройства в случае попадания нетоковедущих частей под напряжение.

Устройство заземления представляется одним или множеством проводников, которые соединяют линию электроэнергии с землей.

Основные типы заземления такие:

  1. Заземление рабочего типа. Основная задача, которая должна выполняться таким заземлением – это обеспечение бесперебойной работы электрического оборудования, не только при обычном режиме, но и при аварийной ситуации.
  2. Заземление защитного типа. Такое заземление используют для обеспечения защиты при выполнение работ электрическим оборудованием. Основной причиной появления опасной ситуации может стать пробой фазонесущего кабеля на корпус или рабочую поверхность оборудования.
  3. Заземление грозозащитного типа. Основной задачей такого типя является отвод заряда молнии в случае прямого попадания в молниеприемник

Заземление имеет отличие от зануления, не только по предназначению, но и по способу монтажных работ. Зануление подключается к металлическим элементам или непосредственно к корпусу оборудование и заменяет заземление, которое не проводит ток при нормальной работе устройств. В основном зануление подключается к нейтральному источнику, который имеет пониженное напряжение трехфазного кабеля. Еще установка заземления может быть осуществлена с помощью генератора однофазного напряжения, то есть к заземленному выводу.

Чем опасно самовольное заземление и зануление

Многие так называемые специалисты, которые самостоятельно меняют старую проводку, на проводку нового поколения с наличием 3х проводов, уверены, что заземление – это тоже самое зануление и зануляют шину РЕ. Такое действие является смертельно опасным по многим причинам.

А именно по таким:

  1. В случае обрыва нулевого провода, все электрические приборы, которые подключены к сети, будут запитываться от разных фаз. Так как нагрузка не может быть уравновешена случайным образом, то все напряжение, которое образовалось на остатке нулевого кабеля, будет иметь отличие от нуля и это приведет к образованию напряжения на корпусе всех включенных устройств, а это опасно для жизни.
  2. Если появилась необходимость проведения ремонтных работ в квартире, а щиток в перегородке и вам необходимо откинуть от него провода, то в этом случае можно при подключении проводов перепутать их местами. В таком случае все электрические приборы, которые оформлены в металлическом корпусе могут быть под фазным напряжением корпуса и при этом автомат защиты не сработает.
  3. Если электротехнический проект в доме выполнен правильно, то шина РЕ должна быть соединенная с системой выравнивания потенциалов, а особенно это относится к ванным комнатам. В случае выполнения самостоятельного зануления шины РЕ и соединением ее с СУП, то у вас образуется повторное заземление нулевого провода.

Такое подключение является опасностью для жизни не только вас, но и ваших соседей.

В частном случае, если вы не разбираетесь в проводке, то лучше не рисковать и не трогать защитное покрытие, здесь нужно вызвать мастера.

Что лучше: зануление и заземление отличие

Для лучшего понятия отличий заземления и зануления, мы представим вам отличия в использование систем. На основание такого прочитанного материала вы сможете сделать самостоятельные выводы.

Основные отличия систем:

  1. Для заземления дома самостоятельным образом вам понадобится только сварочный аппарат. Для изготовления зануления вам необходимы еще некоторые знания, которые связаны с выбором подходящей точки для подключения провода нейтрали.
  2. В случае обрыва провода в щите зануление перестает работать. В этом случае вы можете стать жертвой поражения электрического тока. С системой заземления такого не произойдет.

Если вы периодически выполнять проверку всех кабелей такой ситуации не возникнет.

Как сделать зануление

Основной задачей зануления является защита рабочего персонала, за счет своевременного срабатывания защитного автомата.

Принцип действий зануления заключается в образование короткого замыкания при неожиданном пробое изоляции кабеля и попадание напряжения на рабочую часть устройства.

За счет того что возникает искусственное короткое замыкание срабатывают основные защитные механизмы.

Такие как:

  • Автомат;
  •  Предохранитель;
  •  Система защиты от короткого замыкания.

В основном разница зануления и заземления заключается в способе монтажа, а так же в использование надежного способа защиты приборов, в которых есть наличие нейтрала. Но перед началом проведения монтажа такой системы защиты, необходимо учесть факт короткого замыкания, которое будет искусственно создано с помощью нулевого кабеля. Ток для создания такого замыкания должен быть достаточно высоким, для 100% срабатывания защитного механизма.

В том случае если тока не достаточно для срабатывания автоматики, это может привести к появлению напряжения на металлических элементах оборудования.

Такое появление напряжение может представлять опасность для всего рабочего персонала и существенно повлиять на рабочий процесс.

Чем отличается заземление от зануления (видео)

Как вы заметили изготовить правильное заземление в доме очень легко. Такая система защиты является безопасной и долговечной. А вот для создания зануления вам необходимо обращаться к услугам специалиста, который выполнит установку самостоятельно. Так же необходимо проводить периодически осмотр своей системы защиты. Специалисты рекомендуют использовать защитную систему зануления, только в тех случаях, если вы проживаете в хрущевках. Думаем после изучения статьи и всех отличий вы разобрались в разнице между заземлением и занулением.

Что такое заземление, или просто о простом / Хабр

Добого времени суток, читатели.

Давно читаю ресурс, хорошая штука. Решил привнести и я немного ясности в нашу жизнь, а именно — в простую, казалось бы, вещь — заземление.

Навеяно статьей, но после прочтения комментариев у меня закрались сомнения — а всем ли понятно о сути заземления? Захотел добавить кое-что от себя, простыми словами, безо всяких ПУЭ. Ведь заземление — это защита, а стало быть — важно.

Итак:

Заземление — 2 вида по функционированию

1.

Электропроводяшие части корпуса оборудования (шкафы, etc.) соединены с нулем. Это, как правильно подсказывают, называется «занулением». Работает таким образом: корпус оборудования соединен с нулем и при попадании фазы на корпус происходит КЗ и вышибает автомат. Никто не пострадал.

2.

Если есть контур заземления, то электропроводящие части корпуса оборудования и etc., к которым может прикоснуться человек (и любой читатель этого топика), соединены с этим контуром. Как работает? Ток не «утекает» и не «впитывается» в землю, не утекает в среднюю точку обмоток трансформатора, с ним мало чего происходит. При пробое на корпус все, в т.ч. и контур здания становится под тем же напряжением, что и корпус. Контур соединен и с землей (той, по которой ходим), а значит, человека не ударит током — в цепи уравнены потенциалы. Все становится под фазой.

Почему не довольствоваться одними лишь автоматами? Да потому, что время срабатывания не равно нулю у любого суперавтомата. Земля действует быстрее любого УЗО!

Про молниезащиту

Немаловажную роль в этом играет заземление (не буду писать слово «грамотно выполненное по всем ГОСТ» — топик рассчитан на простое понимание основы заземления, а не на изучение нормативов). Здесь цепь выглядит по-другому: в облаках скапливается потенциал по отношению к земле и при достижении определенной величины он разрядится (а вот здесь — да, ток уходит в землю, выравнивая потенциалы неба и земли, ибо такая цепь). Через проводящие материалы. Здесь важно, чтобы не через людей и оборудование. Делают молниеотводы, и их подключают к контуру. Толстыми железяками, чтобы уменьшить сопротивление, чтобы максимум тока потекло через наименьшее сопротивление. Но все равно — на протяженные провода и кабели ток наведется — и не мало вольт. Ток с вольтами могут пожечь все. Здесь помогают УЗИПы. Там стоят разрядники, которые при срабатывании на возросшее напряжение/ток замыкают все жилы кабеля на землю.

Такой вот краткий топик основ.

З.Ы. Здесь есть отличные иллюстрации

Учебное пособие по физике: Заземление — снятие заряда

В предыдущих трех разделах Урока 2 обсуждались три распространенных метода зарядки — заряд трением, заряд индукцией и заряд проводимостью. Обсуждение зарядки было бы неполным без обсуждения разряда . У объектов с избыточным зарядом — положительным или отрицательным — этот заряд можно удалить с помощью процесса, известного как заземление. Заземление — это процесс удаления избыточного заряда с объекта посредством передачи электронов между ним и другим объектом значительного размера.Когда заряженный объект заземлен, избыточный заряд уравновешивается переносом электронов между заряженным объектом и землей. Земля — это просто объект, который служит, казалось бы, бесконечным резервуаром электронов; Земля способна передавать электроны заряженному объекту или принимать электроны от заряженного объекта, чтобы нейтрализовать этот объект. В этом последнем разделе Урока 2 будет обсуждаться процесс заземления.

Заземление отрицательно заряженного объекта

Чтобы начать обсуждение заземления, мы рассмотрим заземление отрицательно заряженного электроскопа.Любой отрицательно заряженный объект имеет избыток электронов. Если нужно удалить заряд, ему придется потерять лишние электроны. Как только лишние электроны удалены из объекта, в объекте будет равное количество протонов и электронов, и он будет иметь баланс заряда. Чтобы удалить избыток электронов из отрицательно заряженного электроскопа, электроскоп должен быть подключен проводящим путем к другому объекту, который способен принимать эти электроны.Другой объект — земля. В типичных электростатических экспериментах и ​​демонстрациях это делается простым касанием электроскопа рукой. При контакте избыточные электроны покидают электроскоп и попадают в человека, который его касается. Эти избыточные электроны впоследствии распространяются по поверхности человека.

Этот процесс заземления работает, потому что избыточные электроны отталкивают друг друга. Как всегда, отталкивающее воздействие между одноименно заряженными электронами заставляет их искать средства пространственного разделения друг от друга.Это пространственное разделение достигается за счет перемещения к более крупному объекту, который дает большую площадь поверхности для распространения. Из-за относительного размера человека по сравнению с типичным электроскопом избыточные электроны (почти все они) способны уменьшать силы отталкивания, перемещаясь в человека (то есть на землю). Как и контактная зарядка, о которой говорилось ранее, заземление — это просто еще один пример разделения заряда между двумя объектами. Степень, в которой объект готов разделить избыточный заряд, пропорциональна его размеру.Таким образом, эффективная земля — ​​это просто объект с достаточно значительным размером, чтобы разделить подавляющее большинство избыточного заряда.

Заземление положительно заряженного объекта

Предыдущее обсуждение описывает заземление отрицательно заряженного электроскопа. Электроны переносились с электроскопа на землю. Но что, если электроскоп заряжен положительно? Как перенос электрона позволяет нейтрализовать объект с избытком протонов? Чтобы исследовать эти вопросы, мы рассмотрим заземление положительно заряженного электроскопа.Положительно заряженный электроскоп должен получать электроны, чтобы получить равное количество протонов и электронов. Собирая электроны от земли , электроскоп будет иметь баланс заряда и, следовательно, будет нейтральным. Таким образом, заземление положительно заряженного электроскопа включает передачу электронов от земли в электроскоп. Этот процесс работает, потому что избыточный положительный заряд на электроскопе притягивает электроны от земли (в данном случае от человека).Хотя это может нарушить любой баланс заряда, присутствующий на человеке, значительно больший размер человека позволяет избыточному заряду отдаляться друг от друга. Как и в случае заземления отрицательно заряженного электроскопа, заземление положительно заряженного электроскопа включает разделение заряда. Избыточный положительный заряд распределяется между электроскопом и землей. И еще раз: степень, в которой объект готов разделить избыточный заряд, пропорциональна его размеру.Человек является эффективным заземлением, потому что он имеет достаточный размер, чтобы разделить подавляющее большинство избыточного положительного заряда.

Необходимость проведения пути

Любой объект может быть заземлен при условии, что заряженные атомы этого объекта имеют проводящий путь между атомами и землей. Обычно в лаборатории приклеивают две соломинки к заряженной алюминиевой пластине. Одна соломка покрыта алюминиевой фольгой, а другая — голым пластиком.При прикосновении к соломке с алюминиевым покрытием алюминиевая пластина теряет заряд. Он заземлен за счет движения электронов от земли к алюминиевой пластине. При прикосновении к пластиковой соломке заземления не происходит. Пластик служит изолятором и предотвращает попадание электронов от земли к алюминиевой пластине. Заземление требует наличия проводящего пути между землей и заземляемым объектом. Электроны будут двигаться по этому пути.

Урок 2 этого раздела Физического класса был посвящен методам зарядки и разрядки объектов.Один из принципов, который постоянно возникал, заключался в соотношении силы и расстояния. Эта связь будет исследована в Уроке 3.


Мы хотели бы предложить … Иногда просто прочитать об этом недостаточно. Вы должны с ним взаимодействовать! И это именно то, что вы делаете, когда используете один из интерактивных материалов The Physics Classroom. Мы хотели бы предложить вам совместить чтение этой страницы с использованием нашего интерактивного зарядного устройства.Вы можете найти его в разделе Physics Interactives на нашем сайте. Charging Interactive — это электростатическая «игровая площадка», которая позволяет учащемуся исследовать различные концепции, связанные с зарядом, взаимодействиями зарядов, процессами зарядки и заземлением. Как только вы освоитесь с концепциями, коснитесь кнопки «Играть» своим игровым лицом.

Проверьте свое понимание

Используйте свое понимание заряда, чтобы ответить на следующие вопросы.По завершении нажмите кнопку, чтобы просмотреть ответы.

1. Человек, стоящий на земле, касается положительно заряженной консервной банки. Впоследствии поп может стать нейтральным. Поп может стать нейтральным во время этого процесса, потому что ______.

а. электроны переходят от баночки к человеку (земле)

г. электроны переходят от человека (земли) к банке

г. протоны переходят от баллончика к человеку (земле)

г.протоны переходят от человека (земли) к банке с взрывчаткой

2. Студент-физик, стоя на земле, касается разряженной пластиковой бейсбольной битой отрицательно заряженным электроскопом. Это вызовет ___.

а. Электроскоп должен быть заземлен, поскольку электроны вытекают из электроскопа.

г. Электроскоп должен быть заземлен, поскольку электроны попадают в электроскоп.

г. Электроскоп должен быть заземлен, поскольку протоны выходят из электроскопа.

г. Электроскоп должен быть заземлен, поскольку протоны попадают в электроскоп.

e. бейсбольной битой, чтобы получить избыток протонов.

ф. абсолютно ничего (или очень мало) произойдет, так как пластиковая бита не проводит.

3. ИСТИНА или ЛОЖЬ :

Объект, который становится заземленным, получает нейтроны во время процесса заземления.

Веб-сайт класса физики

Заземление положительно заряженного электроскопа

Электроскоп — это устройство для определения заряда, которое показывает наличие заряда на самом устройстве или на других объектах в непосредственной близости. Наличие заряда на электроскопе обозначается отклонением его иглы от ее обычного вертикального положения.Игла, имея возможность свободно вращаться вокруг своей оси, будет отклоняться всякий раз, когда заряд в игле будет таким же, как заряд в вертикальной опоре, на которой она балансирует. Поскольку пластина, опора и игла электроскопа соединены и сделаны из проводящего материала, любой заряд электроскопа будет распределяться по всему проводнику. Таким образом, если электроскоп приобретает общий положительный заряд, этот положительный заряд будет распространяться по всему электроскопу — пластине, опоре и игле.Поскольку одинаковые заряды отталкиваются, положительно заряженная опора и положительно заряженная игла отталкиваются друг от друга, вызывая отклонение иглы.

При прикосновении к положительно заряженному электроскопу его заряд заземляется (или нейтрализуется). Это показано на анимации ниже. Процесс заземления включает в себя передачу электронов между заряженным электроскопом и проводящим объектом, к которому он прикасается. При прикосновении к положительно заряженному электроскопу электроны попадают в электроскоп с земли.Будучи положительно заряженным, электроскоп притягивает часть электронов проводящего материала (в данном случае человека). Отрицательно заряженные электроны попадают в электроскоп и нейтрализуют положительный заряд. Когда электроскоп теряет заряд, игла возвращается в свое естественное вертикальное положение.


Дополнительная информация о физических описаниях электростатических явлений доступна в Учебном пособии по физике. Подробная информация доступна по следующим темам:

Нейтральный vs.Заряженные предметы

Зарядные взаимодействия

Заземление — снятие заряда

Последствия для здоровья повторного подключения человеческого тела к поверхностным электронам Земли

J Environ Public Health. 2012; 2012: 2.

, 1, 2 , * , 3 , 4 , 5 и 6

Гаэтан Шевалье

1 Кафедра развития и клеточной биологии, Калифорнийский университет в Ирвине, Ирвин, Калифорния 92697, США

2 Earth FX Inc., Палм-Спрингс, Калифорния 92262, США

Стивен Т. Синатра

3 Медицинский факультет Университета CT, c / o Optimum Health Building, 257 East Center Street, Farmington, CT 06040, USA

James L. Oschman

4 Nature’s Own Research Association, Dover, NH 03821, USA

Karol Sokal

5 Отделение амбулаторной кардиологии, Военный клинический госпиталь, 85-681 Быдгощ, Польша

Pawel Sokal

6 6 отделения нейрохирургии, Военный клинический госпиталь, 85-681 Быдгощ, Польша

1 Кафедра развития и клеточной биологии Калифорнийского университета в Ирвине, Ирвин, Калифорния 92697, США

2 Earth FX Inc., Палм-Спрингс, Калифорния 92262, США

3 Медицинский факультет Университета CT, c / o Optimum Health Building, 257 East Center Street, Farmington, CT 06040, USA

4 Nature’s Own Research Association, Dover, NH 03821, США

5 Отделение амбулаторной кардиологии, Военный клинический госпиталь, 85-681 Быдгощ, Польша

6 Отделение нейрохирургии, Военный клинический госпиталь, 85-681 Быдгощ, Польша

berg

Академический редактор: Герри Швальф

Поступило 15.06.2011; Принята в печать 4 октября 2011 г.

Это статья в открытом доступе, распространяемая по лицензии Creative Commons Attribution License, которая разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии правильного цитирования оригинальной работы.

Эта статья цитируется в других статьях в PMC.

Abstract

Экологическая медицина обычно занимается факторами окружающей среды, негативно влияющими на здоровье человека. Тем не менее, новые научные исследования выявили удивительно положительный и недооцененный экологический фактор, влияющий на здоровье: прямой физический контакт с огромным количеством электронов на поверхности Земли.Современный образ жизни отделяет людей от таких контактов. Исследования показывают, что этот разрыв может быть одним из основных факторов физиологической дисфункции и плохого самочувствия. Было обнаружено, что воссоединение с электронами Земли способствует интригующим физиологическим изменениям и субъективным отчетам о благополучии. Заземление (или заземление) относится к обнаружению преимуществ — включая лучший сон и уменьшение боли — от ходьбы босиком на улице или сидения, работы или сна в помещении, подключенных к проводящим системам, которые переносят электроны Земли из земли в тело.В этой статье рассматриваются исследования заземления и потенциал заземления как простого и легко доступного глобального метода, имеющего важное клиническое значение.

1. Введение

Экологическая медицина фокусируется на взаимодействии между здоровьем человека и окружающей средой, включая такие факторы, как загрязненный воздух и вода и токсичные химические вещества, а также то, как они вызывают или опосредуют заболевания. Повсюду в окружающей среде присутствует удивительно полезный, но игнорируемый глобальный ресурс для поддержания здоровья, профилактики заболеваний и клинической терапии: поверхность самой Земли.Это установленный, хотя и не получивший широкого признания факт, что поверхность Земли обладает безграничным и постоянно обновляемым запасом свободных или подвижных электронов. Поверхность планеты электропроводна (за исключением ограниченных ультрасухих областей, таких как пустыни), и ее отрицательный потенциал поддерживается (т.е. пополняется запасом электронов) глобальной атмосферной электрической цепью [1, 2].

Растущее количество свидетельств свидетельствует о том, что отрицательный потенциал Земли может создать стабильную внутреннюю биоэлектрическую среду для нормального функционирования всех систем организма.Более того, колебания интенсивности потенциала Земли могут быть важны для установки биологических часов, регулирующих суточные ритмы тела, такие как секреция кортизола [3].

Также хорошо известно, что электроны из молекул антиоксидантов нейтрализуют активные формы кислорода (ROS, или, говоря популярным языком, свободные радикалы), участвующие в иммунных и воспалительных реакциях организма. Интернет-ресурс Национальной медицинской библиотеки PubMed содержит список 7021 исследований и 522 обзорных статей, полученных в результате поиска по запросу «антиоксидант + электрон + свободный радикал» [3].Предполагается, что приток свободных электронов, поглощаемых телом при прямом контакте с Землей, вероятно, нейтрализует АФК и тем самым уменьшает острое и хроническое воспаление [4]. На протяжении всей истории люди в основном ходили босиком или в обуви из шкур животных. Спали на земле или на коже. Благодаря прямому контакту или через смоченную потом шкуру животных, используемую в качестве обуви или ковриков для сна, многочисленные свободные электроны земли могли проникать в тело, которое является электропроводным [5].Благодаря этому механизму каждая часть тела могла уравновеситься с электрическим потенциалом Земли, тем самым стабилизируя электрическую среду всех органов, тканей и клеток.

Современный образ жизни все больше отделяет людей от изначального потока электронов Земли. Например, с 1960-х годов мы все чаще носим изолирующую обувь на резиновой или пластиковой подошве вместо традиционной кожи, сделанной из шкур. Росси посетовал на то, что использование изоляционных материалов в обуви после Второй мировой войны отделило нас от энергетического поля Земли [6].Очевидно, мы больше не спим на земле, как раньше.

В течение последних десятилетий резко возросло количество хронических заболеваний, иммунных расстройств и воспалительных заболеваний, и некоторые исследователи ссылаются на факторы окружающей среды как на их причину [7]. Однако возможность современного отключения от поверхности Земли как причина не рассматривалась. Большая часть исследований, рассмотренных в этой статье, указывает на это.

В конце 19 века движение за возвращение к природе в Германии утверждало, что босиком на улице даже в холодную погоду приносит много пользы для здоровья [8].В 1920-х годах Уайт, врач, исследовал практику сна заземленным после того, как некоторые люди сообщили, что они не могут нормально спать, «если они не находятся на земле или не связаны с землей каким-либо образом», например, с помощью медных проводов. прикреплены к заземленным водопроводным, газовым или радиаторным трубам. Он сообщил об улучшении сна с помощью этих методов [9]. Однако эти идеи никогда не прижились в обществе.

В конце прошлого века эксперименты, инициированные независимо Обером в США [10] и К.Sokal и P. Sokal [11] в Польше выявили явные физиологические преимущества и пользу для здоровья при использовании проводящих подкладок, матов, электродных пластырей типа EKG и TENS, а также пластин, соединенных внутри помещения с Землей снаружи. Обер, бывший руководитель кабельного телевидения, обнаружил сходство между человеческим телом (биоэлектрическим организмом, передающим сигнал) и кабелем, используемым для передачи сигналов кабельного телевидения. Когда кабели «заземлены» на землю, помехи практически исключаются из сигнала.Кроме того, все электрические системы стабилизируются путем заземления их на Землю. К. Сокал и П. Сокал, тем временем, обнаружили, что заземление человеческого тела представляет собой «универсальный регулирующий фактор в природе», который сильно влияет на биоэлектрические, биоэнергетические и биохимические процессы и, по-видимому, оказывает значительное модулирующее воздействие на хронические заболевания, с которыми они ежедневно сталкиваются. клиническая практика.

Заземление (также известное как заземление) относится к контакту с электронами поверхности Земли при ходьбе босиком на улице или сидя, работе или сне в помещении, подключенном к проводящим системам, некоторые из которых запатентованы, которые передают энергию от земли в тело.Новые научные исследования подтверждают концепцию, согласно которой электроны Земли вызывают множественные физиологические изменения, имеющие клиническое значение, включая уменьшение боли, улучшение сна, переход от симпатического к парасимпатическому тонусу в вегетативной нервной системе (ВНС) и разжижающий кровь эффект. Исследование, наряду со многими анекдотическими сообщениями, представлено в новой книге под названием Earthing [12].

2. Обзор документов по заземлению

Исследования, обобщенные ниже, включают методы тестирования в помещении в контролируемых условиях, которые имитируют ходьбу босиком на открытом воздухе.

2.1. Сон и хроническая боль

В слепом пилотном исследовании Обер набрал 60 субъектов (22 мужчины и 28 женщин), которые страдали самоописанными нарушениями сна и хронической болью в мышцах и суставах в течение как минимум шести месяцев [10]. Субъекты были случайным образом разделены на месячное исследование, в котором обе группы спали на проводящих матрасах из углеродного волокна, предоставленных Ober. Половина контактных площадок была подключена к специальному заземлению за окном спальни каждого испытуемого, а другая половина была «фиктивно» заземлена — не подключена к Земле.Результаты представлены в.

Таблица 1

Субъективная обратная связь о сне, боли и самочувствии.

Категории Испытуемые * Контрольные испытуемые **
То же Улучшено То же Улучшено
Время засыпать = 85% 20 = 87% 3 = 13%
Качество сна 2 = 7% 25 = 93% 20 = 87% 3 = 13%
Ощущение бодрствования отдохнувшим 0 = 0% 27 = 100% 20 = 87% 3 = 13%
Жесткость и боль в мышцах 5 = 18% 22 = 82% 23 = 100% 0 = 0%
Хроническая боль в спине и / или суставах 7 = 26% 20 = 74% 23 = 100% 0 = 0%
Общее состояние здоровья -быть 6 = 22% 21 = 78% 20 = 8 7% 3 = 13%

Большинство обоснованных испытуемых описали симптоматическое улучшение, в то время как большинство в контрольной группе этого не сделали.Некоторые субъекты сообщили о значительном облегчении астматических и респираторных заболеваний, ревматоидного артрита, ПМС, апноэ во сне и гипертонии во время сна. Эти результаты показали, что эффект заземления выходит за рамки уменьшения боли и улучшения сна.

2.2. Сон, стресс, боль и кортизол

Пилотное исследование оценивало суточные ритмы кортизола, коррелирующие с изменениями сна, боли и стресса (тревожность, депрессия и раздражительность), что контролировалось субъективными отчетами [13].Двенадцать субъектов с жалобами на дисфункцию сна, боль и стресс были заземлены на Землю во время сна в собственных кроватях с использованием проводящего наматрасника в течение 8 недель.

Чтобы получить базовое измерение кортизола, испытуемые жевали дакроновые салветы в течение 2 минут, а затем помещали их в промаркированные по времени пробирки для отбора проб, которые хранились в холодильнике. Самостоятельный сбор образцов начинался в 8 часов утра и повторялся каждые 4 часа. После 6 недель заземления субъекты повторили этот 24-часовой тест слюны.Образцы обрабатывали с помощью стандартного радиоиммуноанализа. Сводные результаты показаны в.

Уровни кортизола до и после заземления. У нестрессированных людей нормальный 24-часовой профиль секреции кортизола следует предсказуемой схеме: самый низкий около полуночи и самый высокий около 8 часов утра. Тенденция нормализации паттернов после шести недель сна обоснована.

Субъективные симптомы нарушения сна, боли и стресса сообщались ежедневно в течение 8-недельного периода тестирования. У большинства испытуемых с высоким уровнем ночной секреции или за пределами допустимого диапазона наблюдалось улучшение после того, как они спали на земле. Это демонстрируется восстановлением нормальных профилей секреции кортизола днем ​​и ночью.

Одиннадцать из 12 участников сообщили, что засыпали быстрее, и все 12 сообщили, что ночью просыпались реже. Заземление тела ночью во время сна также положительно влияет на уровень утренней усталости, дневную энергию и уровень боли в ночное время.

Около 30 процентов взрослого населения Америки в целом жалуются на нарушение сна, в то время как примерно у 10 процентов наблюдаются симптомы функционального нарушения в дневное время, соответствующие диагнозу бессонницы. Бессонница часто коррелирует с большой депрессией, генерализованной тревогой, злоупотреблением психоактивными веществами, слабоумием и различными болями и физическими проблемами. Прямые и косвенные издержки хронической бессонницы оцениваются в десятки миллиардов долларов ежегодно только в США [14].Принимая во внимание бремя личного дискомфорта и затрат на лечение, заземление тела во время сна, кажется, может многое предложить.

2.3. Заземление снижает электрические поля, наведенные на тело

Напряжение, наведенное на человеческое тело из-за электрической среды, измерялось с помощью измерительной головки с высоким импедансом. Эпплуайт, инженер-электрик и эксперт по проектированию систем электростатического разряда в электронной промышленности, был одновременно объектом и автором исследования [15].Измерения проводились в незаземленном состоянии, а затем были заземлены с помощью токопроводящей накладки и токопроводящей подушки. Автор измерил индуцированные поля в трех положениях: левая грудь, живот и левое бедро.

Каждый метод (пластырь и пластырь) немедленно снижал общий переменный ток (AC) 60 Гц, наведенное на тело, на очень значительный коэффициент, в среднем примерно в 70 раз. показывает этот эффект.

Влияние заземления подушки на режим 60 Гц.

Исследование показало, что когда тело заземлено, его электрический потенциал выравнивается с электрическим потенциалом Земли за счет передачи электронов от Земли к телу.Это, в свою очередь, препятствует тому, чтобы режим 60 Гц создавал электрический потенциал переменного тока на поверхности тела и не создавал возмущений электрических зарядов молекул внутри тела. Исследование подтверждает «зонтичный» эффект заземления тела, объясненный лауреатом Нобелевской премии Ричардом Фейнманом в его лекциях по электромагнетизму [16]. Фейнман сказал, что когда потенциал тела такой же, как электрический потенциал Земли (и, следовательно, заземлен), оно становится продолжением гигантской электрической системы Земли.Таким образом, потенциал Земли становится «рабочим агентом, который нейтрализует, уменьшает или отталкивает электрические поля от тела».

Applewhite смог задокументировать изменения внешнего напряжения, индуцированного на теле, путем отслеживания падения напряжения на резисторе. Этот эффект ясно показал «эффект зонтика», описанный выше. Тело заземленного человека не подвержено возмущениям электронов и электрических систем.

Джеймисон спрашивает, является ли отсутствие надлежащего заземления людей фактором, способствующим потенциальным последствиям электрического загрязнения в офисных помещениях [17].Существует много споров о том, вызывают ли электромагнитные поля в окружающей среде риск для здоровья [18], но нет никаких сомнений в том, что организм реагирует на присутствие электрических полей в окружающей среде. Это исследование демонстрирует, что заземление по существу устраняет внешнее напряжение, наведенное на тело от обычных источников электроэнергии.

2.4. Физиологические и электрофизиологические эффекты

2.4.1. Снижение общих уровней стресса и напряжения и сдвиг в балансе ВНС

Пятьдесят восемь здоровых взрослых субъектов (включая 30 контрольных) участвовали в рандомизированном двойном слепом пилотном исследовании, посвященном влиянию заземления на физиологию человека [19].Заземление осуществлялось с помощью токопроводящей клейкой ленты на подошве каждой ступни. Система биологической обратной связи регистрировала электрофизиологические и физиологические параметры. Подопытные были подвергнуты воздействию 28 минут в незаземленном состоянии, а затем 28 минут с подключенным заземляющим проводом. Контроли откопали в течение 56 минут.

После заземления около половины испытуемых показали резкое, почти мгновенное изменение среднеквадратичных (среднеквадратичных) значений электроэнцефалограмм (ЭЭГ) левого полушария (но не правого полушария) на всех частотах, проанализированных системой биологической обратной связи (бета , альфа, тета и дельта).

Все заземленные испытуемые показали резкое изменение среднеквадратичных значений поверхностных электромиограмм (SEMG) для правой и левой верхней трапециевидной мышцы. Заземление снизило пульс объема крови (BVP) у 19 из 22 подопытных (статистически значимо) и у 8 из 30 контрольных (несущественно). Заземление человеческого тела оказало значительное влияние на электрофизиологические свойства мозга и мускулатуры, на BVP, а также на шум и стабильность электрофизиологических записей. Взятые вместе, изменения в ЭЭГ, ЭМГ и BVP предполагают снижение общих уровней стресса и напряжения и сдвиг баланса ВНС при заземлении.Результаты расширяют выводы предыдущих исследований.

2.4.2. Подтверждение перехода от симпатической к парасимпатической активации

Многопараметрическое двойное слепое исследование было разработано для воспроизведения и расширения предыдущих электрофизиологических и физиологических параметров, измеренных сразу после заземления, с помощью улучшенной методологии и современного оборудования [20]. Четырнадцать мужчин и 14 женщин с хорошим здоровьем в возрасте от 18 до 80 лет были протестированы, сидя в удобном кресле, в течение двухчасовых сеансов заземления, оставляя время для стабилизации сигналов до, во время и после заземления (40 минут для каждого периода). .Также были записаны фиктивные двухчасовые сеансы заземления с теми же испытуемыми, что и в контрольной группе. Для каждого сеанса статистический анализ проводился на четырех 10-минутных сегментах: до и после заземления (фиктивное заземление для контрольных сеансов) и до и после незаземления (фиктивное незаземление для контрольных сеансов). Были задокументированы следующие результаты:

  1. немедленное уменьшение (в течение нескольких секунд) проводимости кожи (SC) при заземлении и немедленное увеличение при отсутствии заземления. Никаких изменений в контрольных сеансах (фиктивное заземление) не наблюдалось;

  2. Частота дыхания (ЧД) увеличилась во время заземления, и этот эффект продолжался после заземления.Дисперсия RR увеличивалась сразу после заземления, а затем уменьшалась;

  3. Дисперсия оксигенации крови (BO) уменьшилась во время заземления, а после заземления резко увеличилась;

  4. Дисперсия частоты пульса (PR) и индекса перфузии (PI) увеличивалась к концу периода заземления, и это изменение сохранялось после незаземления.

Немедленное снижение SC указывает на быструю активацию парасимпатической нервной системы и соответствующую дезактивацию симпатической нервной системы.Немедленное увеличение SC при прекращении заземления указывает на обратный эффект. Повышенный RR, стабилизация BO и небольшое увеличение частоты сердечных сокращений предполагают начало метаболической реакции исцеления, требующей увеличения потребления кислорода.

2.4.3. Иммунные клетки и болевые реакции с индукцией мышечной болезненности с отсроченным началом

Уменьшение боли от заземленного сна было документально подтверждено в предыдущих исследованиях [10, 13]. Это пилотное исследование искало маркеры крови, которые могли бы различать заземленных и незаземленных субъектов, которые завершили один сеанс интенсивных эксцентрических упражнений, что привело к отсроченной мышечной болезненности (DOMS) икроножной мышцы [21].Если бы маркеры могли различать эти группы, будущие исследования можно было бы проводить более подробно с большей предметной базой. DOMS является распространенной жалобой в мире фитнеса и спорта после чрезмерной физической активности и включает острое воспаление перенапряженных мышц. Он развивается через 14–48 часов и сохраняется более 96 часов [22]. Нет известных методов лечения, сокращающих период выздоровления, но очевидно, что массаж и гидротерапия [23–25] и иглоукалывание [26] могут уменьшить боль.

Восемь здоровых мужчин в возрасте 20–23 лет проделали аналогичную процедуру подъема пальцев ног, неся на плечах штангу, равную одной трети веса их тела.Каждый участник тренировался индивидуально в понедельник утром, а затем контролировал оставшуюся часть недели, соблюдая аналогичный график приема пищи, сна и жизни в отеле. Группа была случайным образом разделена пополам и либо заземлена, либо мнимо заземлена с использованием токопроводящего пластыря, помещенного на подошву каждой ноги в часы активности, и токопроводящего листа в ночное время. Общий анализ крови, химический анализ крови, химический анализ ферментов, уровень кортизола в сыворотке и слюне, магнитно-резонансная томография и спектроскопия, а также уровни боли (всего 48 параметров) были взяты в одно и то же время дня перед эксцентрическим упражнением и в 24, 48 и 72 часа спустя.Параметры, постоянно различающиеся на 10 процентов и более, нормализованные к исходному уровню, были сочтены заслуживающими дальнейшего изучения.

Параметры, которые различались по этим критериям, включали количество лейкоцитов, билирубин, креатинкиназу, соотношение фосфокреатин / неорганический фосфат, глицеринфосфорилхолин, фосфорилхолин, визуальную аналоговую шкалу боли и измерения давления в правой икроножной мышце.

Результаты показали, что заземление тела изменяет показатели активности иммунной системы и боли.Среди необоснованных мужчин, например, наблюдалось ожидаемое резкое увеличение лейкоцитов на этапе, когда известно, что DOMS достигает своего пика, и большее восприятие боли (см.). Этот эффект демонстрирует типичную воспалительную реакцию. Для сравнения, у заземленных мужчин было только небольшое снижение лейкоцитов, что указывало на скудное воспаление и, что впервые наблюдалось, на более короткое время восстановления. Позже Браун прокомментировал, что были «значительные различия» в боли, о которой сообщали эти мужчины [12].

Отсроченное начало болезненности и заземления мышц. В соответствии со всеми измерениями, необоснованные субъекты выражали ощущение большей боли. Обнаружение боли было связано с приглушенным ответом белых кровяных телец, указывающим на то, что заземленное тело испытывает меньше воспалений.

2.4.4. Вариабельность сердечного ритма

Быстрое изменение проводимости кожи, о котором сообщалось в более раннем исследовании, привело к гипотезе о том, что заземление может также улучшить вариабельность сердечного ритма (ВСР), измерение реакции сердца на регуляцию ВНС.Было разработано двойное слепое исследование с 27 участниками [27]. Испытуемые сидели в удобных креслах с откидывающейся спинкой. На подошву каждой ступни и на каждую ладонь помещали четыре клейких электродных пластыря типа чрескожной электрической стимуляции нервов (TENS).

Участники служили своим собственным контролем. Данные каждого участника из 2-часового сеанса (40 минут из которых были обоснованными) сравнивались с данными другого 2-часового фиктивного сеанса. Последовательность сеансов заземления по сравнению с сеансами фиктивного заземления назначалась случайным образом.

Во время заземленных сеансов у участников наблюдалось статистически значимое улучшение ВСР, которое выходило далеко за рамки основных результатов релаксации (которые были продемонстрированы на необоснованных сеансах). Поскольку улучшение ВСР является важным положительным показателем состояния сердечно-сосудистой системы, предлагается использовать простые методы заземления в качестве базовой интегративной стратегии для поддержки сердечно-сосудистой системы, особенно в ситуациях повышенного вегетативного тонуса, когда симпатическая нервная система активнее, чем парасимпатическая. нервная система.

2.4.5. Снижение основных показателей остеопороза, улучшение регуляции глюкозы и иммунного ответа

К. Сокал и П. Сокал, кардиолог и нейрохирург отец и сын из медицинского персонала военной клиники в Польше, провели серию экспериментов, чтобы определить, действительно ли контакт с Землей через медный проводник может повлиять на физиологические процессы [11]. Их исследования были вызваны вопросом, влияет ли естественный электрический заряд на поверхности Земли на регуляцию физиологических процессов человека.

Двойные слепые эксперименты проводились в группах от 12 до 84 субъектов, соблюдающих одинаковую физическую активность, диету и потребление жидкости в течение испытательных периодов. Заземление было достигнуто с помощью медной пластины (30 мм × 80 мм), размещенной на нижней части стойки, прикрепленной полосой, чтобы она не оторвалась в течение ночи. Пластина была соединена проводящим проводом с большей пластиной (60 мм × 250 мм), контактировавшей с Землей снаружи.

В одном эксперименте с субъектами, не принимавшими лекарства, заземление в течение одной ночи сна приводило к статистически значимым изменениям концентрации минералов и электролитов в сыворотке крови: железа, ионизированного кальция, неорганического фосфора, натрия, калия и магния.Почечная экскреция кальция и фосфора была значительно снижена. Наблюдаемое снижение содержания кальция и фосфора в крови и моче напрямую связано с остеопорозом. Результаты показывают, что заземление на одну ночь снижает основные показатели остеопороза.

Непрерывное заземление во время отдыха и физической активности в течение 72 часов снижает уровень глюкозы натощак у пациентов с инсулинозависимым сахарным диабетом. Пациенты хорошо контролировались глибенкламидом, противодиабетическим препаратом, в течение примерно 6 месяцев, но на момент исследования у них был неудовлетворительный гликемический контроль, несмотря на рекомендации по питанию и физическим упражнениям и дозу глибенкламида 10 мг / день.

К. Сокал и П. Сокал взяли образцы крови у 6 взрослых мужчин и 6 женщин, не страдающих заболеваниями щитовидной железы. Одна ночь заземления вызвала значительное снижение уровня свободного трийодтиронина и повышение уровня свободного тироксина и тиреотропного гормона. Значение этих результатов неясно, но предполагает влияние заземления на взаимосвязь печени, гипоталамуса и гипофиза с функцией щитовидной железы. Обер и др. [12] наблюдали, что многие люди, принимающие препараты для лечения щитовидной железы, сообщали о симптомах гипертиреоза, таких как учащенное сердцебиение, после начала приема заземления.Такие симптомы обычно исчезают после того, как лечение будет снижено под наблюдением врача. Через ряд регуляций обратной связи гормоны щитовидной железы влияют почти на все физиологические процессы в организме, включая рост и развитие, обмен веществ, температуру тела и частоту сердечных сокращений. Очевидно, что необходимы дальнейшие исследования влияния заземления на функцию щитовидной железы.

В другом эксперименте исследовали влияние заземления на классический иммунный ответ после вакцинации. Заземление ускорило иммунный ответ, о чем свидетельствует увеличение концентрации гамма-глобулина.Этот результат подтверждает связь между заземлением и иммунным ответом, как было предложено в исследовании DOMS [21].

К. Сокал и П. Сокал пришли к выводу, что заземление человеческого тела влияет на физиологические процессы человека, включая повышение активности катаболических процессов, и может быть «основным фактором, регулирующим эндокринную и нервную системы».

2.4.6. Электродинамика измененной крови

Поскольку заземление вызывает изменения многих электрических свойств тела [1, 15, 19, 28], следующим логическим шагом была оценка электрических свойств крови.Подходящим показателем является дзета-потенциал эритроцитов (RBC) и агрегация RBC. Дзета-потенциал — это параметр, тесно связанный с количеством отрицательных зарядов на поверхности эритроцитов. Чем выше число, тем выше способность эритроцитов отталкивать другие эритроциты. Таким образом, чем больше дзета-потенциал, тем хуже свертывается кровь.

В исследовании приняли участие десять относительно здоровых субъектов [29]. Они были удобно усажены в кресло с откидной спинкой и были заземлены в течение двух часов с накладками электродов на их ступни и руки, как и в предыдущих исследованиях.Образцы крови были взяты до и после.

Приземление тела к земле существенно увеличивает дзета-потенциал и снижает агрегацию эритроцитов, тем самым снижая вязкость крови. Субъекты, страдающие от боли, сообщали об уменьшении до такой степени, что это было почти незаметно. Результаты убедительно свидетельствуют о том, что заземление — естественное решение для пациентов с чрезмерной вязкостью крови, вариант, представляющий большой интерес не только для кардиологов, но и для любого врача, обеспокоенного взаимосвязью вязкости крови, свертывания крови и воспаления.В 2008 году Адак и его коллеги сообщили о наличии как гиперкоагулируемой крови, так и плохого дзета-потенциала эритроцитов у диабетиков. Зета-потенциал был особенно низким среди диабетиков с сердечно-сосудистыми заболеваниями [30].

3. Обсуждение

До сих пор физиологическое значение и возможные последствия для здоровья стабилизации внутренней биоэлектрической среды организма не были важной темой исследований. Однако некоторые аспекты этого относительно очевидны. В отсутствие контакта с землей внутреннее распределение заряда не будет равномерным, а будет подвержено различным электрическим возмущениям в окружающей среде.Хорошо известно, что многие важные регуляции и физиологические процессы связаны с событиями, происходящими на поверхности клеток и тканей. В отсутствие общей контрольной точки или «земли» электрические градиенты из-за неравномерного распределения заряда могут накапливаться вдоль поверхностей тканей и клеточных мембран.

Мы можем предсказать, что такая разница зарядов будет влиять на биохимические и физиологические процессы. Во-первых, структура и функционирование многих ферментов чувствительны к местным условиям окружающей среды.Каждый фермент имеет оптимальный pH, который способствует максимальной активности. Изменение электрического окружения может изменить pH биологических жидкостей и распределение заряда на молекулах и тем самым повлиять на скорость реакции. Эффект pH возникает из-за критически важных заряженных аминокислот в активном центре фермента, которые участвуют в связывании субстрата и катализе. Кроме того, способность субстрата или фермента отдавать или принимать ионы водорода зависит от pH.

Другой пример — потенциалзависимые ионные каналы, которые играют критическую биофизическую роль в возбудимых клетках, таких как нейроны.Локальные изменения профилей заряда вокруг этих каналов могут привести к электрической нестабильности клеточной мембраны и к несоответствующей спонтанной активности, наблюдаемой во время определенных патологических состояний [31].

Исследование заземления предлагает понимание клинического потенциала контакта босиком с Землей или имитации контакта босиком в помещении через простые проводящие системы, стабильности внутренней биоэлектрической функции и физиологии человека. Первоначальные эксперименты привели к субъективным сообщениям об улучшении сна и уменьшении боли [10].Последующие исследования показали, что улучшение сна коррелирует с нормализацией дневного и ночного профиля кортизола [13]. Результаты значительны в свете обширных исследований, показывающих, что недостаток сна оказывает стрессовое воздействие на организм и приводит ко многим пагубным последствиям для здоровья. Недостаток сна часто является следствием боли. Следовательно, уменьшение боли может быть одной из причин только что описанных преимуществ.

Уменьшение боли во время сна было подтверждено в контролируемом исследовании DOMS.Заземление — первое известное вмешательство, ускоряющее восстановление после DOMS [21]. Болезненные состояния часто являются результатом различных видов острых или хронических воспалительных состояний, частично вызванных АФК, генерируемыми нормальным метаболизмом, а также иммунной системой как частью реакции на травму или травму. Воспаление может вызвать боль и потерю подвижности в суставах. Воспалительный отек может оказывать давление на болевые рецепторы (ноцирецепторы) и нарушать микроциркуляцию, что приводит к ишемической боли.Воспаление может вызвать выброс токсичных молекул, которые также активируют болевые рецепторы. Современные биомедицинские исследования также документально подтвердили тесную связь между хроническим воспалением и практически всеми хроническими заболеваниями, включая болезни старения, и сам процесс старения. Резкий рост воспалительных заболеваний недавно был назван «воспалительным старением» для описания прогрессирующего воспалительного статуса и потери способности справляться со стрессом как основных компонентов процесса старения [32].

Уменьшение воспаления в результате заземления было зарегистрировано с помощью инфракрасной медицинской визуализации [28], а также измерений химического состава крови и количества лейкоцитов [21]. Логическое объяснение противовоспалительных эффектов заключается в том, что заземление тела позволяет отрицательно заряженным антиоксидантным электронам с Земли проникать в организм и нейтрализовать положительно заряженные свободные радикалы в очагах воспаления [28]. Документально подтвержден поток электронов от Земли к телу [15].

Пилотное исследование электродинамики эритроцитов (дзета-потенциал) показало, что заземление значительно снижает вязкость крови, важный, но игнорируемый параметр при сердечно-сосудистых заболеваниях, диабете [29] и кровообращении в целом. Таким образом, разжижение крови может способствовать доставке большего количества кислорода к тканям и дополнительно способствовать уменьшению воспаления.

Снижение стресса подтверждено различными измерениями, показывающими быстрые сдвиги в ВНС от симпатического к парасимпатическому преобладанию, улучшение вариабельности сердечного ритма и нормализацию мышечного напряжения [19, 20, 27].

Здесь не сообщается о многих наблюдениях Обера и др. За более чем два десятилетия. [12] и K. Sokal и P. Sokal [11], указывающие на то, что регулярное заземление может улучшить кровяное давление, сердечно-сосудистые аритмии и аутоиммунные состояния, такие как волчанка, рассеянный склероз и ревматоидный артрит. Некоторые эффекты заземления на лекарства описаны Ober et al. [12] и на сайте: http://www.earthinginstitute.net/. Например, комбинация заземления и кумадина может оказывать комплексный разжижающий кровь эффект и должна контролироваться врачом.Сообщалось о нескольких случаях повышенного МНО. МНО (международное нормализованное отношение) — широко используемый метод измерения свертывания крови. Влияние заземления на функцию щитовидной железы и прием лекарств было описано ранее.

С практической точки зрения, врачи могут рекомендовать пациентам «занятия босиком» на открытом воздухе, если позволяют погода и условия. Обер и др. [12] заметили, что ходьба босиком всего 30-40 минут в день может значительно уменьшить боль и стресс, и исследования, обобщенные здесь, объясняют, почему это так.Очевидно, что заземление босиком не требует затрат. Однако использование токопроводящих систем во время сна, работы или отдыха в помещении предлагает более удобный и рутинный подход.

4. Заключение

De Flora et al. написал следующее: «С конца 20-го века хронические дегенеративные заболевания преодолели инфекционные заболевания в качестве основных причин смерти в 21-м веке, поэтому увеличение продолжительности жизни человека будет зависеть от поиска вмешательства, которое подавляет развитие этих заболеваний и замедляет их развитие. их прогресс »[33].

Может ли такое вмешательство быть расположено прямо у нас под ногами? Исследования, наблюдения и связанные с ними теории, связанные с заземлением, открывают интригующую возможность относительно поверхностных электронов Земли как неиспользованного ресурса здоровья — Земли как «глобального лечебного стола». Новые данные показывают, что контакт с Землей — будь то на улице босиком или в помещении с подключением к заземленным проводящим системам — может быть простой, естественной и в то же время чрезвычайно эффективной экологической стратегией против хронического стресса, дисфункции ВНС, воспаления, боли, плохого сна, нарушения ВСР. , гиперкоагулируемая кровь и многие общие расстройства здоровья, включая сердечно-сосудистые заболевания.Исследования, проведенные на сегодняшний день, подтверждают концепцию, согласно которой заземление человеческого тела может быть важным элементом в уравнении здоровья наряду с солнечным светом, чистым воздухом и водой, питательной пищей и физической активностью.

Раскрытие информации

Г. Шевалье, С. Т. Синатра и Дж. Л. Ошман являются независимыми подрядчиками Earthx L. Inc., компании, спонсирующей исследования в области заземления, и владеют небольшим процентом акций компании.

Ссылки

1. Уильямс Э., Хекман С.Локальный суточный ход электризации облаков и глобальный суточный ход отрицательного заряда на Земле. Журнал геофизических исследований . 1993. 98 (3): 5221–5234. [Google Scholar] 2. Анисимов С., Мареев Э., Бакастов С. О возникновении и эволюции аэроэлектрических структур в поверхностном слое. Журнал геофизических исследований D . 1999. 104 (12): 14359–14367. [Google Scholar] 3. Oschman JL. Перспектива: предположим, что сферическая корова: роль свободных или мобильных электронов в работе с телом, энергетической и двигательной терапии. Журнал работы с телом и двигательной терапии . 2008. 12 (1): 40–57. [PubMed] [Google Scholar] 4. Oschman JL. Перенос заряда в живой матрице. Журнал работы с телом и двигательной терапии . 2009. 13 (3): 215–228. [PubMed] [Google Scholar] 5. Холидей Д., Резник Р., Уокер Дж. Основы физики, четвертое издание . Нью-Йорк, Нью-Йорк, США: John Wiley & Sons; 1993. [Google Scholar] 6. Росси В. Сексуальная жизнь стопы и обуви . Vol. 61. Хартфордшир, Великобритания: Издания Вордсворта; 1989 г.[Google Scholar] 7. Стейн Р. Разрушает ли современная жизнь нашу иммунную систему? Вашингтон Пост; 2008. [Google Scholar] 8. Просто A. Возвращение к природе: истинный естественный метод исцеления и жизни и истинное спасение души . Нью-Йорк, Нью-Йорк, США: Б. Похоть; 1903. [Google Scholar] 9. Уайт Г. Более тонкие силы природы в диагностике и терапии . Лос-Анджелес, Калифорния, США: типография Phillips Printing Company; 1929. [Google Scholar] 11. Сокал К., Сокал П. Заземление человеческого тела влияет на физиологические процессы. Журнал альтернативной и дополнительной медицины . 2011. 17 (4): 301–308. [Бесплатная статья PMC] [PubMed] [Google Scholar] 12. Обер С., Синатра С.Т., Цукер М. Заземление: самое важное открытие в области здравоохранения? Лагуна-Бич, Калифорния, США: Основные публикации в области здравоохранения; 2010. [Google Scholar] 13. Гали М., Теплиц Д. Биологические эффекты заземления человеческого тела во время сна, измеренные по уровням кортизола и субъективным отчетам о сне, боли и стрессе. Журнал альтернативной и дополнительной медицины .2004. 10 (5): 767–776. [PubMed] [Google Scholar] 15. Applewhite R. Эффективность токопроводящей накладки и токопроводящей подушки в снижении наведенного напряжения человеческого тела за счет заземления. Европейская биология и биоэлектромагнетизм . 2005; 1: 23–40. [Google Scholar] 16. Фейнман Р., Лейтон Р., Сэндс М. Лекции Фейнмана по физике . II. Бостон, Массачусетс, США: Аддисон-Уэсли; 1963. [Google Scholar] 17. Джеймисон KS, ApSimon HM, Джеймисон SS, Белл JNB, Йост MG. Влияние электрических полей на заряженные молекулы и частицы в отдельных микросредах. Атмосферная среда . 2007. 41 (25): 5224–5235. [Google Scholar] 18. Genuis SJ. Реализация актуальной идеи: изучение воздействия электромагнитного излучения на здоровье населения. Общественное здравоохранение . 2008. 122 (2): 113–124. [PubMed] [Google Scholar] 19. Chevalier G, Mori K, Oschman JL. Влияние заземления на физиологию человека. Европейская биология и биоэлектромагнетизм . 2006. 2 (1): 600–621. [Google Scholar] 20. Chevalier G. Изменения частоты пульса, частоты дыхания, оксигенации крови, индекса перфузии, проводимости кожи и их изменчивость, вызванные во время и после заземления людей в течение 40 минут. Журнал альтернативной и дополнительной медицины . 2010; 16 (1): 1–7. [PubMed] [Google Scholar] 21. Браун Р., Шевалье Г., Хилл М. Пилотное исследование влияния заземления на болезненность мышц с отсроченным началом. Журнал альтернативной и дополнительной медицины . 2010. 16 (3): 265–273. [Бесплатная статья PMC] [PubMed] [Google Scholar] 22. Бобберт М.Ф., Холландер А.П., Хуйцзин ПА. Факторы отсроченной мышечной болезненности мужчины. Медицина и наука в спорте и физических упражнениях . 1986. 18 (1): 75–81.[PubMed] [Google Scholar] 23. Тартибиан Б., Малеки Б., Аббаси А. Влияние приема жирных кислот Омега-3 на воспринимаемую боль и внешние симптомы отсроченной мышечной болезненности у нетренированных мужчин. Клинический журнал спортивной медицины . 2009. 19 (2): 115–119. [PubMed] [Google Scholar] 24. Вэйл Дж, Халсон С., Гилл Н., Доусон Б. Влияние гидротерапии на признаки и симптомы отсроченной мышечной болезненности. Европейский журнал прикладной физиологии . 2008. 102 (4): 447–455. [PubMed] [Google Scholar] 25.Зайнуддин З., Ньютон М., Сакко П., Носака К. Влияние массажа на отсроченную болезненность мышц, отек и восстановление мышечной функции. Журнал спортивной подготовки . 2005. 40 (3): 174–180. [Бесплатная статья PMC] [PubMed] [Google Scholar] 26. Hübscher M, Vogt L, Bernhörster M, Rosenhagen A, Banzer W. Влияние иглоукалывания на симптомы и мышечную функцию при отсроченной мышечной болезненности. Журнал альтернативной и дополнительной медицины . 2008. 14 (8): 1011–1016. [PubMed] [Google Scholar] 27.Chevalier G, Sinatra S. Эмоциональный стресс, вариабельность сердечного ритма, заземление и улучшение вегетативного тонуса: клиническое применение. Интегративная медицина: журнал врача . 2011; 10 (3) [Google Scholar] 28. Oschman JL. Могут ли электроны действовать как антиоксиданты? Обзор и комментарии. Журнал альтернативной и дополнительной медицины . 2007. 13 (9): 955–967. [PubMed] [Google Scholar] 29. Шевалье Г., Синатра СТ, Ошман Дж. Л., Делани Р. М.. Заземление человеческого тела снижает вязкость крови — главный фактор сердечно-сосудистых заболеваний. Журнал альтернативной и дополнительной медицины . Под давлением. [Бесплатная статья PMC] [PubMed] [Google Scholar] 30. Адак С., Чоудхури С., Бхаттачарья М. Динамическое и электрокинетическое поведение мембраны эритроцитов при сахарном диабете и диабетических сердечно-сосудистых заболеваниях. Biochimica et Biophysica Acta . 2008. 1780 (2): 108–115. [PubMed] [Google Scholar] 31. Шахин М, Шателье А, Бабич О, Крупп Дж. Напряжение-управляемые натриевые каналы при неврологических расстройствах. ЦНС и неврологические расстройства — мишени для лекарств .2008. 7 (2): 144–158. [PubMed] [Google Scholar] 32. Франчески С., Бонафе М., Валенсин С. и др. Воспаление-старение: эволюционная перспектива старения иммунитета. Анналы Нью-Йоркской академии наук . 2000; 908: 244–254. [PubMed] [Google Scholar] 33. де Флора С., Квалья А., Бенничелли С., Верчелли М. Эпидемиологическая революция 20-го века. Журнал FASEB . 2005. 19 (8): 892–897. [PubMed] [Google Scholar]

Что такое заземление грузовиков и вагонов и почему они необходимы?

Статическое электричество

В холодные и сухие дни после прогулки по ковру, чтобы открыть входную дверь, может возникнуть искра, которая прыгнет между рукой и дверной ручкой.Это высвобождение электричества происходит из-за накопления статического электричества в теле человека, которое может достигать 10-15 кВ (киловольт). Разряд с таким напряжением может составлять всего 20-30 мДж (миллиДжоуль), что значительно превышает пороговое значение для воспламенения пропана, паров бензина или даже мелких частиц пыли.

Заземление грузовиков | Заземление вагона

Когда грузовики или поезда загружают и выгружают жидкости и сухие материалы, при передаче этих материалов возникает трение, создавая статическое электричество.Уровень заряда выше для слабопроводящих растворителей, протекающих через пластиковые трубки. Кроме того, высокая скорость потока или большое количество пузырьков воздуха, проходящих через трубку, могут усилить статическое электричество. Автоцистерны, загружающие пропан, газ или легковоспламеняющиеся жидкости, могут накапливать достаточно статического электричества, чтобы испустить 2250 миллиДжоулей. Для воспламенения пропана требуется всего 26 миллиджоулей, а для паров бензина — 24.


Электрификация потока

Когда жидкие или сухие сыпучие материалы проходят по трубе с высокой скоростью потока, как это обычно происходит при погрузке и разгрузке жидкостей из грузовиков и поездов, электростатический заряд текущего продукта генерирует статическое электричество.Большое количество пузырьков воздуха и повышенная скорость потока могут усилить статическое электричество.

A: Заряд, который движется вместе с потоком продукта
B: Заряд, который прикреплен к твердой поверхности и не может перемещаться

Перенос материалов генерирует статическое электричество.

Заполнение, дозирование, транспортировка и опрокидывание материалов в транспортные средства или сосуды генерируют статическое электричество просто за счет движения обрабатываемого или обрабатываемого материала.Статическое электричество может воспламениться, если судно или транспортное средство не заземлено должным образом.

  1. Без надлежащего заземления — При погрузке сыпучих или жидких продуктов движущийся материал создает трение, и на поверхности транспортного средства накапливается электростатический заряд. Это скопление увеличивает риск статической искры и источника воспламенения.
  2. Статический разряд при правильном заземлении — При правильном заземлении электростатический заряд имеет путь к земле, предотвращая накопление заряда.
9024 9027 Полиэтилен 9027 Полиэтилен 9027 Дизельное топливо 9027 Неопрен
Накопление статического заряда
ЖИДКОСТИ
Накопление статического заряда
ПОРОШКИ
Бензол PTFE
Древесина
Сырой / газовый конденсат Полиуретан
Реактивное топливо ПВХ
Керосин Pyrex
9024 Nylon X 24601 9027 Nylon Гексан Полипропилен
Гептан Полистирол

Возгорание материала при погрузке грузовика без надлежащего заземления


hing Что такое заземление?

Все вещи хотят быть нейтральными, поэтому, когда в объекте накапливается заряд (положительный или отрицательный), этот избыточный заряд будет искать путь наименьшего сопротивления, чтобы стать нейтральным.Заземление (или заземление) соединяет этот объект с землей и снимает любое накопившееся напряжение. Почему земля? Поскольку земля такая большая, она может легко поглотить и нейтрализовать любой заряд.

Воздух, протекающий над поверхностью объекта, или жидкости, протекающие по трубе во время погрузки и разгрузки транспортных средств, накапливают заряд. Для разряда этого напряжения автомобиль должен быть подключен к земле через медный или стальной провод, прикрепленный к электроду в земле. Слишком длинные линии могут иметь сопротивление, достаточное для предотвращения полного рассеивания статического электричества, будут искать более короткий путь, перепрыгивая через промежутки в оборудовании, создавая искру или источник воспламенения горючих газов.И NFPA, и API рекомендуют, чтобы сопротивление этих линий составляло не более 10 Ом от конца до конца.

Что такое склеивание?

Связывание — это соединение двух проводящих объектов вместе, поддерживая каждый объект при одинаковом электрическом заряде. Если один объект накапливает заряд, может образоваться искра, когда этот заряд пытается нейтрализовать себя, перепрыгивая через промежуток к другому проводящему объекту.

Вагоны и цистерны состоят из множества деталей, металлических и прочих. Чтобы снять статическое электричество, все части должны быть соединены — скреплены — таким образом, чтобы электричество могло беспрепятственно проходить через каждый объект на землю.Это предотвращает попадание одной части в другую, даже если они не соприкасаются, точно так же, как заряженная рука на дверной ручке получает поразительный результат. Эта искра возникла за наносекунды до контакта между ними, когда заряд прыгнул по воздуху.


Линия заземления грузовика

Заземление автоцистерны (заземление)

Процедура загрузки во время переездов включает в себя подключение грузовика к земле (заземление) водителем перед любыми другими операциями. В системе заземления грузовика должны быть цепи, предотвращающие передачу топлива, если заземление не выполнено.Обычно грузовая эстакада имеет систему заземления, которая подключается к грузовику.

Заземление вагона (заземление)

Пути, по которым движутся вагоны, имеют собственную систему заземления. Колеса в сборе имеют контакты «металл-металл», поэтому они всегда заземлены. Но многие железнодорожные вагоны имеют колесные подшипники, которые не проводят ток, что делает остальную часть тележки электрически изолированной. Как и в случае с грузовиком, при загрузке или разгрузке железнодорожных вагонов операторы будут использовать системы заземления вагонов для снятия статического электричества,

Износостойкие прокладки на литой каретке также изолируют сборку от цистерны и фитинга, поэтому процедура требует заземления цистерны. погрузочно-разгрузочная эстакада во время переездов.Опять же, система должна иметь отказоустойчивую схему, которая отключает перекачку топлива в случае потери заземления.


Решения SafeRack для заземления, переполнения и мониторинга

При работе с нефтехимическими или другими горючими жидкостями безопасность невозможно переоценить. Важно принять все меры предосторожности, чтобы избежать несчастных случаев, и SafeRack упрощает это. Наши отраслевые эксперты и наши технологически продвинутые системы защиты от перелива и проверки грунта помогают повысить как безопасность, так и производительность.И мы можем помочь вам выбрать и установить электронное стоечное оборудование для точного и надежного мониторинга независимо от потребностей вашего вагона или цистерны.


Подробнее о безопасности автоцистерн

Около 25% всех грузов, перевозимых в США, перевозится в автоцистернах, при этом почти половина из них — легковоспламеняющиеся жидкости, которые необходимо перекачивать на транспортные средства (5 основных грузовых эстакад для перевозки химикатов) ). При таком большом количестве опасных грузов на дорогах страны и при том, что автомобили проезжают под автоцистернами, не редкость, почему так мало катастроф?
Прочтите обо всех устройствах безопасности для автоцистерн.

Как нейтрализовать заряд объекта, который нельзя заземлить

В предыдущем посте мы узнали, что в зоне, защищенной от электростатического разряда (EPA), все поверхности, предметы, люди и устройства, чувствительные к электростатическому разряду (ESD), имеют одинаковый электрический потенциал. Мы достигаем этого, используя только «заземляемые» материалы или. Но что делать, если вам абсолютно необходим предмет в вашем EPA, и он не может быть заземлен? Не переживайте, не вся надежда потеряна! Есть несколько вариантов, которые позволят вам использовать рассматриваемый предмет.Поясним…

Проводники и изоляторы

В ESD Control мы различаем проводников и изоляторов . Материалы, которые легко переносят электроны, называются проводниками . Некоторыми примерами проводников являются металлы, углерод и слой пота человеческого тела.

Заряженный проводник может переносить электроны, что позволяет ему быть заземленным

Материалы, которые не переносят электроны легко, называются изоляторами и по определению являются непроводящими.Некоторые известные изоляторы — это обычные пластмассы и стекло.

Изоляторы удерживают заряд, их нельзя заземлить и «отводить» заряд.

Как проводники, так и изоляторы могут заряжаться статическим электричеством и разряжаться. Электростатические заряды можно эффективно снять с проводников путем их заземления. Однако заземленный элемент должен быть токопроводящим или рассеивающим. С другой стороны, изолятор будет удерживать заряд и не может быть заземлен и «отводит» заряд.

Проводники и изоляторы в EPA

Первые два основных принципа ESD Control:

  1. Заземлите все проводники, включая людей.
  2. Снимите все изоляторы.

Для достижения №1 все поверхности, продукты и люди связаны с землей. Связывание означает соединение, обычно через сопротивление от 1 до 10 МОм. Ремешки для запястий и коврики для рабочей поверхности — одни из наиболее распространенных устройств, используемых для снятия статических зарядов.Браслеты отводят заряд от операторов, а правильно заземленный коврик обеспечит заземление для незащищенных устройств, чувствительных к электростатическому разряду. Подвижные предметы (например, контейнеры и инструменты) скрепляются путем нахождения на скрепленной поверхности или удерживания связанным человеком.

Однако что, если рассматриваемый статический заряд находится на чем-то, что нельзя заземлить, например, на изоляторе? Тогда вступит в силу № 2 наших принципов управления электростатическим разрядом. В соответствии со стандартом ESD «» все второстепенные изоляторы и предметы (пластмассы и бумага), такие как кофейные чашки, пищевые обертки и личные вещи, должны быть удалены с рабочей станции или любых других операция, при которой обрабатываются незащищенные ESDS. Угроза электростатического разряда, связанная с основными изоляторами технологического процесса или источниками электростатического поля , должна быть оценена, чтобы убедиться, что:

  • электростатическое поле в месте работы с ESDS не должно превышать 5 000 В / м;

или

  • если электростатический потенциал, измеренный на поверхности технологического изолятора, превышает 2 000 В, объект должен находиться на расстоянии не менее 30 см от ESDS; и
  • Если электростатический потенциал, измеренный на поверхности технологического изолятора, превышает 125 В, объект должен находиться на расстоянии не менее 2,5 см от ESDS.”

[IEC 61340-5-1: 2016 пункт 5.3.4.2 Изоляторы]

Всегда держите изоляторы на расстоянии не менее 31 см от предметов ESDS

Изоляторы, необходимые для процесса

Ну, все мы знаем, что в жизни нет ничего черного и белого. Было бы легко просто следовать приведенным выше «правилам» и Боб — ваш дядя, но, к сожалению, это не всегда возможно. Бывают ситуации, когда упомянутый изолятор является предметом, используемым на рабочем месте, например ручным инструментом.Они необходимы — вы не можете просто выбросить их из EPA. Если вы это сделаете, работа не будет выполнена.

Итак, вопрос в том, как «удалить» эти жизненно важные изоляторы, фактически не «удаляя» их из своего EPA? Сначала вы должны попробовать 2 варианта:

1. Замените обычные изоляционные предметы на антистатическую версию. Имеется множество инструментов и принадлежностей, которые защищены от электростатического разряда — от обработки документов до чашек и диспенсеров, щеток и мусорных баков. Они являются проводящими или рассеивающими и заменяют стандартные изолирующие разновидности, которые обычно используются на рабочем месте.Дополнительные сведения об использовании инструментов и аксессуаров, защищающих от электростатического разряда, см. В этом посте.

2. Периодически наносите слой Topical Antistat. Reztore® Topical Antistat (или аналогичный раствор) предназначен для использования на поверхностях, не подверженных электростатическому разряду. После нанесения и высыхания поверхности остается антистатическое и защитное покрытие, рассеивающее статическое электричество. Покрытие, рассеивающее статическое электричество, позволяет заряду стекать при заземлении. Антистатические свойства снизят трибоэлектрическое напряжение до менее 200 вольт.Таким образом, он придает поверхностям электрические свойства, не подверженные электростатическому разряду, до тех пор, пока твердое покрытие не изнашивается.

Если эти два варианта не подходят для вашего приложения, изолятор называют «важным для процесса», и поэтому нейтрализация с помощью ионизатора должна стать необходимой частью вашей программы управления электростатическим разрядом.

Нейтрализация

На большинстве рабочих станций ESD есть изоляторы или изолированные проводники, которые нельзя удалить или заменить. Их следует решать с помощью ионизации.Примерами некоторых распространенных основных изоляторов технологического процесса являются подложка для печатных плат, изолирующие испытательные приспособления и пластиковые корпуса изделий.

Корпуса для электронных устройств — изоляторы, необходимые для производства

Примером изолированных проводов могут быть токопроводящие дорожки или компоненты, установленные на печатной плате, которые не контактируют с рабочей поверхностью ESD.

Ионизатор создает большое количество положительно и отрицательно заряженных ионов. Вентиляторы помогают ионам течь по рабочей зоне.Ионизация может нейтрализовать статические заряды на изоляторе за считанные секунды, тем самым уменьшая их способность вызывать повреждение электростатическим разрядом. Заряженные ионы, созданные ионизатором, будут:

  • нейтрализует заряды на технологических изоляторах
  • нейтрализует заряды на второстепенных изоляторах
  • нейтрализует изолированные проводники
  • минимизировать трибоэлектрический заряд

Изоляторы и изолированные проводники часто используются в устройствах, чувствительных к электростатическому разряду (ESDS) — ионизаторы могут помочь

Сводка

Изоляторы по определению не являются проводниками и поэтому не могут быть заземлены.Изоляторы можно контролировать, выполнив следующие действия в EPA:

  • Всегда держите изоляторы на расстоянии не менее 31 см от предметов ESDS или
  • Замените обычные изоляционные элементы на версию с защитой от электростатического разряда или
  • Периодически наносите слой Topical Antistat

Когда ничего из вышеперечисленного невозможно, изолятор называют «важным для процесса», и поэтому нейтрализация с помощью ионизатора должна стать необходимой частью вашей программы управления электростатическим разрядом.

ЭЛЕКТРИЧЕСКАЯ БЕЗОПАСНОСТЬ — прикладное промышленное электричество

Важность электробезопасности

С помощью этого урока я надеюсь избежать распространенной ошибки, обнаруживаемой в учебниках по электронике, состоящей в игнорировании или недостаточном освещении темы электробезопасности. Я предполагаю, что тот, кто читает эту книгу, хотя бы мимолетно заинтересован в реальной работе с электричеством, и поэтому тема безопасности имеет первостепенное значение.

Еще одно преимущество включения подробного урока по электробезопасности — это практический контекст, который он устанавливает для основных понятий напряжения, тока, сопротивления и проектирования схем. Чем более актуальной будет техническая тема, тем больше вероятность того, что студент обратит внимание и поймет. А что может быть важнее приложения для личной безопасности? Кроме того, поскольку электрическая энергия является повседневным явлением в современной жизни, почти любой может ознакомиться с иллюстрациями, приведенными на таком уроке.Вы когда-нибудь задумывались, почему птиц не шокирует, когда они отдыхают на линиях электропередач? Читайте и узнайте!

Физиологические эффекты электричества

Большинство из нас испытали ту или иную форму электрического «шока», когда электричество заставляет наше тело испытывать боль или травму. Если нам повезет, степень этого переживания ограничится покалыванием или приступами боли из-за накопления статического электричества, проходящего через наши тела. Когда мы работаем с электрическими цепями, способными передавать большую мощность нагрузкам, поражение электрическим током становится гораздо более серьезной проблемой, а боль — наименее значимым результатом поражения электрическим током.

Поскольку электрический ток проходит через материал, любое противодействие току (сопротивлению) приводит к рассеиванию энергии, обычно в виде тепла. Это самый простой и понятный эффект воздействия электричества на живую ткань: ток заставляет ее нагреваться. Если количество выделяемого тепла достаточно, ткань может обжечься. Эффект носит физиологический характер, такой же, как повреждение, вызванное открытым пламенем или другим высокотемпературным источником тепла, за исключением того, что электричество обладает способностью сжигать ткани под кожей жертвы, даже обжигая внутренние органы.

Как электрический ток влияет на нервную систему

Еще одно воздействие электрического тока на тело, возможно, наиболее опасное, касается нервной системы. Под «нервной системой» я имею в виду сеть особых клеток в организме, называемых нервными клетками или нейронами, которые обрабатывают и проводят множество сигналов, ответственных за регуляцию многих функций организма. Мозг, спинной мозг и сенсорные / двигательные органы в теле функционируют вместе, позволяя ему чувствовать, двигаться, реагировать, думать и запоминать.

Нервные клетки взаимодействуют друг с другом, действуя как «преобразователи», создавая электрические сигналы (очень малые напряжения и токи) в ответ на ввод определенных химических соединений, называемых нейротрансмиттерами , и высвобождая эти нейротрансмиттеры при стимуляции электрическими сигналами. Если электрический ток достаточной силы проходит через живое существо (человека или другое), его эффектом будет подавление крошечных электрических импульсов, обычно генерируемых нейронами, перегрузка нервной системы и предотвращение способности рефлекторных и волевых сигналов действовать. задействовать мышцы.Мышцы, вызванные внешним (шоковым) током, непроизвольно сокращаются, и жертва ничего не может с этим поделать.

Эта проблема особенно опасна, если пострадавший касается руками проводника под напряжением. Мышцы предплечья, отвечающие за сгибание пальцев, как правило, лучше развиты, чем мышцы, отвечающие за разгибание пальцев, и поэтому, если оба набора мышц будут пытаться сокращаться из-за электрического тока, проводимого через руку человека, «сгибающие» мышцы выиграют, сжимая пальцы в кулак.Если проводник, подающий ток к пострадавшему, обращен к ладони его или ее руки, это сжимающее действие заставит руку крепко ухватиться за провод, тем самым ухудшив ситуацию, обеспечивая отличный контакт с проводом. Пострадавший совершенно не сможет отпустить проволоку.

С медицинской точки зрения это состояние непроизвольного сокращения мышц называется столбняком . Электрики, знакомые с этим эффектом поражения электрическим током, часто называют обездвиженную жертву поражения электрическим током «зависшей в цепи».Вызванный током столбняк можно прервать, только отключив ток через пострадавшего.

Даже когда ток прекращается, жертва может не восстанавливать добровольный контроль над своими мышцами в течение некоторого времени, поскольку химический состав нейротрансмиттера находится в беспорядке. Этот принцип был применен в устройствах «электрошокера», таких как электрошокеры, которые основаны на принципе мгновенного поражения жертвы высоковольтным импульсом, передаваемым между двумя электродами. Правильно нанесенный электрошокер временно (на несколько минут) обездвиживает жертву.

Однако электрический ток может воздействовать не только на скелетные мышцы жертвы электрошока. Мышца диафрагмы, контролирующая легкие, и сердце, которое само по себе является мышцей, также могут быть «заморожены» в состоянии столбняка электрическим током. Даже токи, слишком слабые для того, чтобы вызвать столбняк, часто способны перебивать сигналы нервных клеток настолько, что сердце не может биться должным образом, что приводит к состоянию, известному как фибрилляция . Фибриллирующее сердце скорее трепещет, чем бьется, и не может перекачивать кровь к жизненно важным органам тела.В любом случае смерть от удушья и / или остановки сердца обязательно наступит из-за достаточно сильного электрического тока, проходящего через тело. По иронии судьбы, медицинский персонал использует сильный разряд электрического тока, прикладываемый к груди жертвы, чтобы «подтолкнуть» фибриллирующее сердце к нормальному ритму биений.

Эта последняя деталь подводит нас к другой опасности поражения электрическим током, свойственной коммунальным энергосистемам. Хотя наше первоначальное исследование электрических цепей будет сосредоточено почти исключительно на постоянном токе (постоянном токе или электричестве, которое движется в непрерывном направлении в цепи), современные энергетические системы используют переменный ток или переменный ток.Технические причины этого предпочтения переменного тока перед постоянным током в энергосистемах не имеют отношения к этому обсуждению, но особые опасности каждого вида электроэнергии очень важны для темы безопасности.

Воздействие переменного тока на организм во многом зависит от частоты. Низкочастотный (от 50 до 60 Гц) переменный ток используется в домашних хозяйствах США (60 Гц) и Европы (50 Гц); он может быть опаснее высокочастотного переменного тока и в 3-5 раз опаснее постоянного тока того же напряжения и силы тока. Низкочастотный переменный ток вызывает длительное сокращение мышц (тетанию), которое может прижать руку к источнику тока, продлевая воздействие.Постоянный ток, скорее всего, вызовет одиночное судорожное сокращение, которое часто заставляет жертву отойти от источника тока.

Переменный характер

AC имеет большую тенденцию приводить нейроны кардиостимулятора в состояние фибрилляции, тогда как DC имеет тенденцию просто останавливать сердце. Как только ток разряда прекращается, у «замороженного» сердца больше шансов восстановить нормальный ритм сердечных сокращений, чем у фибриллирующего сердца. Вот почему «дефибриллирующее» оборудование, используемое врачами скорой помощи, работает: электрический разряд, подаваемый дефибриллятором, — это постоянный ток, который останавливает фибрилляцию и дает сердцу шанс восстановиться.

В любом случае электрические токи, достаточно высокие, чтобы вызвать непроизвольное мышечное действие, опасны, и их следует избегать любой ценой. В следующем разделе мы рассмотрим, как такие токи обычно входят в тело и выходят из него, а также рассмотрим меры предосторожности против таких случаев.

  • Электрический ток может вызвать глубокие и серьезные ожоги тела из-за рассеяния мощности через электрическое сопротивление тела.
  • Столбняк — это состояние, при котором мышцы непроизвольно сокращаются из-за прохождения внешнего электрического тока через тело.Когда непроизвольное сокращение мышц, управляющих пальцами, приводит к тому, что жертва не может отпустить проводник, находящийся под напряжением, жертва считается «замороженной в цепи».
  • Диафрагма (легкие) и сердечные мышцы одинаково подвержены воздействию электрического тока. Даже токи, слишком слабые, чтобы вызвать столбняк, могут быть достаточно сильными, чтобы мешать работе нейронов кардиостимулятора, заставляя сердце трепетать, а не сильно биться.
  • Постоянный ток (DC) с большей вероятностью может вызвать столбняк в мышцах, чем переменный ток (AC), поэтому постоянный ток с большей вероятностью «заморозит» жертву в случае шока.Однако переменный ток с большей вероятностью вызовет фибрилляцию сердца жертвы, что является более опасным состоянием для жертвы после прекращения действия электрического тока.

Электричество требует полного пути (цепи) для непрерывного потока. Вот почему удар, полученный от статического электричества, является только мгновенным толчком: течение тока обязательно кратковременно, когда статические заряды уравниваются между двумя объектами. Подобные самоограниченные шоки редко бывают опасными.

Без двух точек контакта на теле для входа и выхода тока, соответственно, опасность поражения электрическим током отсутствует. Вот почему птицы могут спокойно отдыхать на высоковольтных линиях электропередачи, не подвергаясь электрошоку: они контактируют с цепью только в одной точке.

Рис. 1.1

Для того, чтобы ток протекал по проводнику, должно присутствовать напряжение, которое его мотивирует. Напряжение, как вы должны помнить, всегда составляет относительно двух точек . Нет такой вещи, как напряжение «на» или «в» одной точке цепи, и поэтому птица, контактирующая с одной точкой в ​​вышеуказанной цепи, не имеет напряжения, приложенного к ее телу, чтобы установить ток через нее.Да, хотя они опираются на две ноги , обе ноги касаются одного и того же провода, что делает их электрически общими . С точки зрения электричества, обе птичьи лапы соприкасаются с одной и той же точкой, поэтому между ними нет напряжения, которое могло бы стимулировать ток через тело птицы.

Это может привести к мысли, что невозможно получить поражение электрическим током, прикоснувшись только к одному проводу. Как птицы, если мы будем касаться только одного провода за раз, мы будем в безопасности, верно? К сожалению, это не так.В отличие от птиц, при контакте с «живым» проводом люди обычно стоят на земле. Часто одна сторона энергосистемы будет намеренно подключена к заземлению, и поэтому человек, касающийся одного провода, фактически устанавливает контакт между двумя точками в цепи (провод и заземление):

Рис. 1.2

Значок земли представляет собой набор из трех горизонтальных полос уменьшающейся ширины, расположенных в нижнем левом углу показанной схемы, а также у ступни человека, подвергающегося электрошоку.В реальной жизни заземление энергосистемы представляет собой какой-то металлический проводник, закопанный глубоко в землю для обеспечения максимального контакта с землей. Этот проводник электрически подключен к соответствующей точке соединения в цепи толстым проводом. Заземление жертвы осуществляется через ноги, которые касаются земли.

В этот момент в уме ученика обычно возникает несколько вопросов:

  • Если наличие точки заземления в цепи обеспечивает легкую точку контакта для кого-то, чтобы получить удар током, зачем вообще она в цепи? Разве схема без заземления не была бы безопаснее?
  • Человек, которого шокирует, вероятно, не ходит босиком.Если резина и ткань являются изоляционными материалами, то почему их обувь не защищает их, предотвращая образование цепи?
  • Насколько хорошим проводником может быть грязь ? Если вы можете быть поражены током, протекающим через землю, почему бы не использовать землю в качестве проводника в наших силовых цепях?

В ответ на первый вопрос, наличие преднамеренной точки «заземления» в электрической цепи должно гарантировать, что одна сторона будет безопасна для контакта с ней.Обратите внимание, что если бы наша жертва на приведенной выше диаграмме коснулась нижней стороны резистора, ничего бы не произошло, даже если бы их ноги все еще соприкасались с землей:

Рис. 1.3

Поскольку нижняя сторона цепи надежно соединена с землей через точку заземления в нижнем левом углу цепи, нижний провод цепи является электрически общим с заземлением. Поскольку между электрически общими точками не может быть напряжения, на человека, контактирующего с нижним проводом, не будет напряжения, и они не получат удара током.По той же причине провод, соединяющий цепь с заземляющим стержнем / пластинами, обычно остается оголенным (без изоляции), так что любой металлический объект, о который он задевает, будет электрически общим с землей.

Заземление цепи гарантирует, что по крайней мере одна точка в цепи будет безопасна для прикосновения. Но как насчет того, чтобы оставить цепь полностью незаземленной? Разве это не сделало бы человека, касающегося только одного провода, таким же безопасным, как птица, сидящая только на одном? В идеале да. Практически нет.Посмотрите, что происходит без земли:

Рисунок 1.4

Несмотря на то, что ноги человека все еще соприкасаются с землей, любая точка в цепи должна быть безопасной для прикосновения. Поскольку не существует полного пути (цепи), образованного через тело человека от нижней стороны источника напряжения к верхней, нет возможности установить ток через человека. Однако все это может измениться из-за случайного заземления, такого как ветвь дерева, касающаяся линии электропередачи и обеспечивающая соединение с землей.Такое случайное соединение проводника энергосистемы с землей (землей) называется замыканием на землю .

Рисунок 1.5

Замыкания на землю

Замыкания на землю могут быть вызваны многими причинами, в том числе скоплением грязи на изоляторах линий электропередач (создание пути грязной воды для тока от проводника к полюсу и к земле во время дождя), проникновением грунтовых вод в подземные проводники линии электропередачи. , и птицы, приземляющиеся на линии электропередачи, перемыкая линию к полюсу своими крыльями.Учитывая множество причин замыканий на землю, они, как правило, непредсказуемы. В случае с деревьями никто не может гарантировать , с каким проводом могут касаться их ветви. Если бы дерево задело верхний провод в цепи, это сделало бы верхний провод безопасным для прикосновения, а нижний опасным — как раз противоположность предыдущему сценарию, когда дерево касается нижнего провода:

Рисунок 1.6

Когда ветвь дерева соприкасается с верхним проводом, этот провод становится заземленным проводом в цепи, электрически общим с заземлением.Следовательно, между этим проводом и землей нет напряжения, а есть полное (высокое) напряжение между нижним проводом и землей. Как упоминалось ранее, ветви деревьев являются лишь одним потенциальным источником замыканий на землю в энергосистеме. Рассмотрим незаземленную энергосистему без соприкосновения деревьев с деревьями, но на этот раз с двумя людьми , касающимися отдельных проводов:

Рис. 1.7

Когда каждый человек стоит на земле и соприкасается с разными точками цепи, путь для электрического тока проходит через одного человека, через землю и через другого человека.Несмотря на то, что каждый человек думает, что он в безопасности, только коснувшись одной точки в цепи, их совместные действия создают смертельный сценарий. Фактически, один человек действует как замыкание на землю, что делает его небезопасным для другого человека. Именно поэтому незаземленные энергосистемы опасны: напряжение между любой точкой цепи и землей (землей) непредсказуемо, потому что замыкание на землю может возникнуть в любой точке цепи в любое время. Единственный персонаж, который гарантированно будет в безопасности в этих сценариях, — это птица, которая вообще не связана с землей! Надежно подключив обозначенную точку цепи к заземлению («заземлив» цепь), по крайней мере, безопасность может быть обеспечена в этой точке.Это большая гарантия безопасности, чем полное отсутствие заземления.

Отвечая на второй вопрос, обувь на резиновой подошве действительно обеспечивает некоторую электрическую изоляцию, чтобы помочь защитить кого-то от проведения электрического тока через ступни. Однако наиболее распространенные конструкции обуви не являются электрически «безопасными», поскольку их подошва слишком тонкая и не из подходящего материала. Кроме того, любая влага, грязь или токопроводящие соли из пота тела на поверхности подошвы или проникающие через нее могут поставить под угрозу ту небольшую изоляционную ценность, которая должна была изначально иметь обувь.Есть обувь, специально предназначенная для опасных электромонтажных работ, а также толстые резиновые коврики, на которых можно стоять во время работы с цепями под напряжением, но эти специальные детали должны быть в абсолютно чистом и сухом состоянии, чтобы быть эффективными. Достаточно сказать, что обычной обуви недостаточно, чтобы гарантировать защиту от поражения электрическим током от электросети.

Исследования контактного сопротивления между частями человеческого тела и точками контакта (например, с землей) показывают широкий диапазон цифр (информацию об источнике этих данных см. В конце главы):

  • Контакт для рук или ног, с резиновой изоляцией: обычно 20 МОм.
  • Контакт ступни через кожаную подошву обуви (сухую): от 100 кОм до 500 кОм
  • Контакт ступни через кожаную подошву обуви (мокрая): от 5 кОм до 20 кОм

Как видите, резина не только является гораздо лучшим изоляционным материалом, чем кожа, но и присутствие воды в пористом веществе, таком как кожа , значительно снижает электрическое сопротивление.

Отвечая на третий вопрос, грязь — не очень хороший проводник (по крайней мере, когда она сухая!). У него слишком плохой проводник, чтобы поддерживать постоянный ток для питания нагрузки.Однако, как мы увидим в следующем разделе, требуется очень мало тока, чтобы ранить или убить человека, поэтому даже плохой проводимости грязи достаточно, чтобы обеспечить путь для смертельного тока при наличии достаточного напряжения, как обычно находится в энергосистемах.

Некоторые шлифованные поверхности лучше изолируют, чем другие. Например, асфальт на масляной основе имеет гораздо большее сопротивление, чем большинство видов грязи или камней. Бетон, с другой стороны, имеет довольно низкое сопротивление из-за внутреннего содержания воды и электролита (проводящего химического вещества).

  • Поражение электрическим током может произойти только при контакте между двумя точками цепи; когда на тело жертвы подается напряжение.
  • Цепи питания
  • обычно имеют обозначенную точку, которая «заземлена»: прочно соединена с металлическими стержнями или пластинами, закопанными в грязь, чтобы гарантировать, что одна сторона цепи всегда находится под потенциалом земли (нулевое напряжение между этой точкой и землей).
  • Замыкание на землю — это случайное соединение проводника цепи с землей (землей).
  • Специальная изолированная обувь и коврики предназначены для защиты людей от ударов через заземление, но даже эти части снаряжения должны быть в чистом, сухом состоянии, чтобы быть эффективными. Обычная обувь недостаточно хороша, чтобы обеспечить защиту от ударов, изолируя ее владельца от земли.
  • Хотя грязь — плохой проводник, она может проводить достаточно тока, чтобы ранить или убить человека.

Распространенная фраза в отношении электробезопасности звучит примерно так: « Убивает не напряжение, а ток ! «Хотя в этом есть доля правды, об опасности поражения электрическим током нужно понимать больше, чем эта простая пословица.Если бы напряжение не представляло опасности, никто бы никогда не распечатал и не вывесил надписи: ОПАСНО — ВЫСОКОЕ НАПРЯЖЕНИЕ!

Принцип «убивает текущее» по сути верен. Это электрический ток, который сжигает ткани, замораживает мышцы и вызывает фибрилляцию сердца. Однако электрический ток не возникает сам по себе: должно быть доступное напряжение, чтобы побудить ток протекать через жертву. Тело человека также оказывает сопротивление току, что необходимо учитывать.

Взяв закон Ома для напряжения, тока и сопротивления и выразив его через ток для заданных напряжения и сопротивления, мы получим следующее уравнение:

[латекс] \ textbf {закон Ома} [/ латекс]

[латекс] Ток = \ frac {Напряжение} {Сопротивление} [/ латекс] [латекс] I = \ frac {E} {R} [/ латекс]

Величина тока, протекающего через тело, равна величине напряжения, приложенного между двумя точками этого тела, деленному на электрическое сопротивление, оказываемое телом между этими двумя точками.Очевидно, что чем больше напряжения доступно для протекания тока, тем легче он будет проходить через любое заданное сопротивление. Следовательно, существует опасность высокого напряжения, которое может генерировать ток, достаточный для получения травмы или смерти. И наоборот, если тело имеет более высокое сопротивление, меньший ток будет протекать при любом заданном напряжении. Насколько опасно напряжение, зависит от общего сопротивления цепи, препятствующего прохождению электрического тока.

Сопротивление тела не является фиксированной величиной.Это варьируется от человека к человеку и время от времени. Существует даже метод измерения содержания жира в организме, основанный на измерении электрического сопротивления между пальцами рук и ног. Различное процентное содержание жира в организме обеспечивает разное сопротивление: одна переменная влияет на электрическое сопротивление в организме человека. Чтобы методика работала точно, человек должен регулировать потребление жидкости за несколько часов до теста, что указывает на то, что гидратация тела является еще одним фактором, влияющим на электрическое сопротивление тела.

Сопротивление тела также зависит от того, как происходит контакт с кожей: от руки к руке, от руки к ноге, от ступни к ступне, от руки к локтю и т. Д. Пот, богатый солью и минералами. , являясь жидкостью, является отличным проводником электричества. То же самое и с кровью с таким же высоким содержанием проводящих химикатов. Таким образом, контакт с проводом потной рукой или открытой раной будет оказывать гораздо меньшее сопротивление току, чем контакт с чистой сухой кожей.

Измеряя электрическое сопротивление чувствительным измерителем, я измеряю примерно 1 миллион Ом (1 МОм) на руках, держась за металлические щупы измерителя между пальцами.Измеритель показывает меньшее сопротивление, когда я плотно сжимал щупы, и большее сопротивление, когда я держу их свободно. Я сижу за компьютером и печатаю эти слова, мои руки чистые и сухие. Если бы я работал в жаркой, грязной промышленной среде, сопротивление между моими руками, вероятно, было бы намного меньше, представляя меньшее сопротивление смертельному току и большую опасность поражения электрическим током.

Насколько опасен электрический ток?

Ответ на этот вопрос также зависит от нескольких факторов.Химический состав тела человека оказывает значительное влияние на то, как электрический ток влияет на человека. Некоторые люди очень чувствительны к току, испытывая непроизвольное сокращение мышц из-за разряда статического электричества. Другие могут получить большие искры от разряда статического электричества и почти не почувствовать его, не говоря уже о мышечном спазме. Несмотря на эти различия, с помощью тестов были разработаны приблизительные руководящие принципы, которые показывают, что для проявления вредных эффектов требуется очень небольшой ток (опять же, информацию об источнике этих данных см. В конце главы).Все текущие значения даны в миллиамперах (миллиампер равен 1/1000 ампер):

ТЕЛО ВЛИЯНИЕ МУЖЧИНЫ / ЖЕНЩИНЫ ПРЯМОЙ ТОК (ПОСТОЯННЫЙ ТОК) 60 Гц 100 кГц
Легкое ощущение под рукой Мужчины 1,0 мА 0,4 ​​мА 7 мА
Женщины 0,6 мА 0,3 мА 5 мА
Порог боли Мужчины 5.2 мА 1,1 мА 12 мА
Женщины 3,5 мА 0,7 мА 8 мА
Болезненный, но произвольный контроль мышц сохраняется Мужчины 62 мА 9 мА 55 мА
Женщины 41 мА 6 мА 37 мА
Болезненно, провода не отпускаются Мужчины 76 мА 16 мА 75 мА
Женщины 60 мА 15 мА 63 мА
Сильная боль, затрудненное дыхание Мужчины 90 мА 23 мА 94 мА
Женщины 60 мА 15 мА 63 мА
Возможная фибрилляция сердца через 3 секунды Мужчины и женщины 500 мА 100 мА

«Гц» означает блок Гц .Это мера того, насколько быстро меняется переменный ток, иначе известный как частота . Таким образом, столбец цифр, обозначенный «60 Гц переменного тока», относится к току, который меняется с частотой 60 циклов (1 цикл = период времени, когда ток течет в одном направлении, а затем в другом) в секунду. Последний столбец, обозначенный «10 кГц переменного тока», относится к переменному току, который совершает десять тысяч (10 000) возвратно-поступательных циклов каждую секунду.

Имейте в виду, что эти цифры являются приблизительными, поскольку люди с разным химическим составом тела могут реагировать по-разному.Было высказано предположение, что ток через грудную клетку всего 17 мА переменного тока достаточно, чтобы вызвать фибрилляцию у человека при определенных условиях. Большинство наших данных относительно индуцированной фибрилляции получены в результате испытаний на животных. Очевидно, что проводить тесты индуцированной фибрилляции желудочков на людях непрактично, поэтому имеющиеся данные отрывочны. О, и если вам интересно, я понятия не имею, почему женщины, как правило, более восприимчивы к электрическому току, чем мужчины! Предположим, я положил руки на клеммы источника переменного напряжения с частотой 60 Гц (60 циклов в секунду).Какое напряжение потребуется на этой чистой, сухой коже, чтобы получить ток в 20 миллиампер (достаточно, чтобы я не мог отпустить источник напряжения)? Мы можем использовать закон Ома, чтобы определить это:

[латекс] E = IR [/ латекс]

[латекс] E = (20 мА) (1 M \ Omega) [/ латекс]

[латекс] \ textbf {E = 20 000 вольт или 20 кВ} [/ латекс]

Имейте в виду, что это «лучший случай» (чистая, сухая кожа) с точки зрения электробезопасности и что это значение напряжения представляет собой величину, необходимую для индукции столбняка.Чтобы вызвать болезненный шок, потребуется гораздо меньше! Кроме того, имейте в виду, что физиологические эффекты любой конкретной силы тока могут значительно отличаться от человека к человеку, и что эти расчеты являются приблизительными оценками только .

Обрызгав пальцы водой для имитации пота, я смог измерить сопротивление рук в руках всего 17 000 Ом (17 кОм). Имейте в виду, что это касается только одного пальца каждой руки, касающегося тонкой металлической проволоки. Пересчитав напряжение, необходимое для возникновения тока в 20 мА, мы получим эту цифру:

[латекс] E = IR [/ латекс]

[латекс] E = (20 мА) (17 кОмега) [/ латекс]

[латекс] \ textbf {E = 340 V} [/ латекс]

В этих реальных условиях потребуется всего 340 вольт потенциала от одной моей руки к другой, чтобы вызвать ток 20 миллиампер.Тем не менее, все еще возможно получить смертельный удар от меньшего напряжения, чем это. При условии гораздо более низкого сопротивления тела, увеличенного за счет контакта с кольцом (полоса золота, обернутая по окружности пальца, является отличной точкой контакта для поражения электрическим током) или полного контакта с большим металлическим предметом, таким как труба или металл рукоятки инструмента сопротивление корпуса может упасть до 1000 Ом (1 кОм), что приведет к тому, что даже более низкое напряжение может представлять потенциальную опасность.

[латекс] E = IR [/ латекс]

[латекс] E = (20 мА) (1 кОм) [/ латекс]

[латекс] \ textbf {E = 20 V} [/ латекс]

Обратите внимание, что в этом состоянии 20 вольт достаточно, чтобы произвести ток в 20 миллиампер через человека; достаточно, чтобы вызвать столбняк. Помните, было высказано предположение, что сила тока всего 17 миллиампер может вызвать фибрилляцию желудочков (сердца). При сопротивлении рукопашной в 1000 Ом для создания этого опасного состояния потребуется всего 17 вольт.

[латекс] E = IR [/ латекс]
[латекс] E = (17 мА) (1 кВт) [/ латекс]
[латекс] \ textbf {E = 17 V} [/ латекс]

Семнадцать вольт — это не очень много для электрических систем. Конечно, это «наихудший» сценарий с напряжением переменного тока 60 Гц и отличной проводимостью тела, но он действительно показывает, насколько низкое напряжение может представлять серьезную угрозу при определенных условиях.

Условия, необходимые для создания сопротивления тела 1000 Ом, не должны быть такими экстремальными, как то, что было представлено (потная кожа при контакте с золотым кольцом).Сопротивление тела может уменьшаться при приложении напряжения (особенно если столбняк заставляет пострадавшего крепче держать проводник), так что при постоянном напряжении удар может усилиться после первого контакта. То, что начинается как легкий шок — ровно настолько, чтобы «заморозить» жертву, чтобы она не могла отпустить ее, может перерасти в нечто достаточно серьезное, чтобы убить ее, поскольку сопротивление их тела уменьшается, а сила тока соответственно увеличивается.

Research предоставило примерный набор цифр для электрического сопротивления точек контакта человека в различных условиях:

Ситуация Сухой мокрый
Проволока касалась пальцем 40 000 Ом — 1 000 000 Ом 4000 Ом — 15000 Ом
Проволока в руке 15 000 Ом — 50 000 Ом 3000 Ом — 5000 Ом
Ручные плоскогубцы по металлу 5000 Ом — 10 000 Ом 1000 Ом — 3000 Ом
Контакт ладонью 3000 Ом — 8000 Ом 1000 Ом — 2000 Ом
1.5-дюймовая металлическая труба с захватом одной рукой 1000 Ом — 3000 Ом 500 Ом — 1500 Ом
Металлическая труба 1,5 дюйма, удерживаемая двумя руками 500 Ом — 1500 кОм 250 Ом — 750 Ом
Рука погружена в проводящую жидкость 200 Ом — 500 Ом
Опора, погруженная в проводящую жидкость 100 Ом — 300 Ом

Обратите внимание на значения сопротивления для двух состояний с 1.5-дюймовая металлическая труба. Сопротивление, измеренное при захвате трубы двумя руками, составляет ровно половину сопротивления при захвате трубы одной рукой.

Рисунок 1.8

Двумя руками площадь контакта с телом вдвое больше, чем с одной рукой. Это важный урок: электрическое сопротивление между любыми контактирующими объектами уменьшается с увеличением площади контакта при прочих равных условиях. Если держать трубу двумя руками, ток будет иметь два параллельных пути, по которым протекает от трубы к телу (или наоборот).

Рисунок 1.9.

Как мы увидим в более поздней главе, параллельный путь цепи всегда приводит к меньшему общему сопротивлению, чем любой отдельный путь, рассматриваемый отдельно.

В промышленности 30 вольт обычно считается консервативным пороговым значением для опасного напряжения. Осторожный человек должен рассматривать любое напряжение выше 30 вольт как опасное, не полагаясь на нормальное сопротивление тела для защиты от поражения электрическим током. Тем не менее, при работе с электричеством все же отличной идеей является держать руки чистыми и сухими и снимать все металлические украшения.Даже при более низком напряжении металлические украшения могут представлять опасность, поскольку проводят ток, достаточный для ожога кожи, при контакте между двумя точками в цепи. Металлические кольца, в частности, были причиной более чем нескольких ожогов пальцев из-за замыкания между точками в низковольтной и сильноточной цепи.

Кроме того, напряжение ниже 30 может быть опасным, если его достаточно, чтобы вызвать неприятное ощущение, которое может вызвать вздрагивание и случайное соприкосновение с более высоким напряжением или другую опасность.Я вспоминаю, как однажды жарким летним днем ​​работал над автомобилем. На мне были шорты, моя голая нога касалась хромового бампера автомобиля, когда я затягивал контакты аккумулятора. Когда я прикоснулся металлическим ключом к положительной (незаземленной) стороне 12-вольтовой батареи, я почувствовал покалывание в том месте, где моя нога касалась бампера. Сочетание плотного контакта с металлом и моей вспотевшей кожи позволило почувствовать шок всего лишь с 12 вольт электрическим потенциалом.

К счастью, ничего плохого не произошло, но если бы двигатель работал и удар ощущался в моей руке, а не ноге, я мог бы рефлекторно толкнуть руку на пути вращающегося вентилятора или уронить металлический ключ на клеммы аккумулятора (производя большой ток через гаечный ключ с большим количеством искр).Это иллюстрирует еще один важный урок, касающийся электробезопасности; этот электрический ток сам по себе может быть косвенной причиной травмы, заставляя вас подпрыгивать или спазмировать части вашего тела в опасную для вас сторону.

Ток, проходящий через человеческое тело, имеет значение, насколько он опасен. Ток будет влиять на все мышцы, находящиеся на его пути, а поскольку мышцы сердца и легких (диафрагмы), вероятно, являются наиболее важными для выживания, пути удара, проходящие через грудную клетку, являются наиболее опасными.Это делает путь электрического тока из рук в руки очень вероятным способом получения травм и летального исхода.

Во избежание подобных ситуаций рекомендуется работать с цепями под напряжением, находящимися под напряжением, только одной рукой, а вторую руку держать в кармане, чтобы случайно ни к чему не прикоснуться. Конечно, всегда безопаснее работать в цепи, когда она отключена, но это не всегда практично или возможно. При работе одной рукой, как правило, предпочтение отдается правой руке по двум причинам: большинство людей правши (что обеспечивает дополнительную координацию при работе), а сердце обычно находится слева от центра в грудной полости.

Для левшей этот совет может быть не лучшим. Если такой человек недостаточно скоординирован с правой рукой, он может подвергнуть себя большей опасности, используя руку, с которой ему меньше всего комфортно, даже если электрический ток, протекающий через эту руку, может представлять большую опасность для его сердца. Относительная опасность между сотрясением одной рукой или другой, вероятно, меньше, чем опасность работы с менее чем оптимальной координацией, поэтому выбор руки для работы лучше всего оставить на усмотрение человека.

Лучшая защита от ударов цепи под напряжением — это сопротивление, а сопротивление может быть добавлено к телу с помощью изолированных инструментов, перчаток, обуви и другого снаряжения. Ток в цепи — это функция доступного напряжения, деленная на общее сопротивление на пути потока. Как мы рассмотрим более подробно позже в этой книге, сопротивления имеют аддитивный эффект, когда они сложены так, что ток может течь только по одному пути:

Рисунок 1.10

Человек, находящийся в прямом контакте с источником напряжения: ток ограничен только сопротивлением тела.

[латекс] I = \ frac {E} {R_ {boot}} [/ латекс]

Теперь мы рассмотрим эквивалентную схему для человека в изолированных перчатках и ботинках:

Рисунок 1.11

Лицо в изоляционных перчатках и сапогах;

Ток теперь ограничен сопротивлением цепи:

[латекс] I = \ frac {E} {R_ {glove} + R_ {body} + R_ {boot} +} [/ latex]

Поскольку электрический ток должен проходить через ботинок и тело и перчатку, чтобы замкнуть цепь обратно к батарее, общая сумма ( сумма ) этих сопротивлений противодействует протеканию тока в большей степени, чем любое другое. сопротивлений рассматривается индивидуально.

Безопасность — одна из причин, по которой электрические провода обычно покрывают пластиковой или резиновой изоляцией: чтобы значительно увеличить сопротивление между проводником и тем или иным предметом, который может с ним контактировать. К сожалению, было бы слишком дорого изолировать проводники линии электропередач из-за недостаточной изоляции для обеспечения безопасности в случае случайного контакта. Таким образом, безопасность обеспечивается за счет того, что эти стропы должны находиться достаточно далеко вне досягаемости, чтобы никто не мог случайно прикоснуться к ним.

Если возможно, отключите питание цепи перед выполнением каких-либо работ с ней.Вы должны обезопасить все источники вредной энергии, прежде чем систему можно будет считать безопасной для работы. В промышленности обеспечение безопасности цепи, устройства или системы в этом состоянии обычно называют переводом в состояние с нулевой энергией . В центре внимания этого урока, конечно же, электробезопасность. Однако многие из этих принципов применимы и к неэлектрическим системам.

  • Вред для тела зависит от силы электрического тока. Более высокое напряжение позволяет производить более высокие и опасные токи.Сопротивление противостоит току, поэтому высокое сопротивление является хорошей защитой от ударов.
  • Обычно считается, что любое напряжение выше 30 может создавать опасные ударные токи. Металлические украшения определенно плохо носить при работе с электрическими цепями. Кольца, ремешки для часов, ожерелья, браслеты и другие подобные украшения обеспечивают отличный электрический контакт с вашим телом и сами могут проводить ток, достаточный для возникновения ожогов кожи даже при низком напряжении.
  • Низкое напряжение может быть опасным, даже если оно слишком низкое, чтобы напрямую вызвать поражение электрическим током.Их может быть достаточно, чтобы напугать жертву, заставив ее отпрянуть и коснуться чего-то более опасного в непосредственной близости.
  • Когда необходимо работать в «живой» цепи, лучше всего выполнять работу одной рукой, чтобы предотвратить смертельный путь электрического тока из рук в руки (через грудную клетку).
  • Если возможно, отключите питание цепи перед выполнением каких-либо работ с ней.

При работе с оборудованием отключите все источники питания перед выполнением любых работ.В промышленности удаление этих источников питания из схемы, устройства или системы обычно называется переводом в состояние с нулевым энергопотреблением . В центре внимания этого урока, конечно же, электробезопасность. Однако многие из этих принципов применимы и к неэлектрическим системам.

Обеспечение безопасности чего-либо в состоянии нулевой энергии означает избавление от любого вида потенциальной или накопленной энергии, включая, помимо прочего:

  • Опасное напряжение
  • Давление пружины
  • Гидравлическое давление (жидкость)
  • Пневматическое (воздушное) давление
  • Подвес
  • Химическая энергия (легковоспламеняющиеся или иным образом реагирующие вещества)
  • Ядерная энергия (радиоактивные или делящиеся вещества)

Напряжение по своей природе является проявлением потенциальной энергии.В первой главе я даже использовал приподнятую жидкость в качестве аналогии для потенциальной энергии напряжения, имеющей способность (потенциал) производить ток (поток), но не обязательно осознавая этот потенциал, пока не будет установлен подходящий путь для потока. и сопротивление потоку преодолевается. Пара проводов с высоким напряжением между ними не выглядит и не кажется опасной, даже если между ними содержится достаточно потенциальной энергии, чтобы протолкнуть смертоносное количество тока через ваше тело. Несмотря на то, что это напряжение в настоящее время ничего не делает, у него есть потенциал, и этот потенциал необходимо нейтрализовать, прежде чем можно будет физически контактировать с этими проводами.

Все правильно спроектированные схемы имеют механизмы отключения для снятия напряжения в цепи. Иногда эти «разъединения» служат двойной цели: автоматически размыкаются в условиях чрезмерного тока, и в этом случае мы называем их «автоматическими выключателями». В других случаях выключатели-разъединители представляют собой устройства с ручным управлением без автоматической функции. В любом случае они существуют для вашей защиты и должны использоваться должным образом. Обратите внимание, что устройство отключения должно быть отдельно от обычного выключателя, используемого для включения и выключения устройства.Это предохранительный выключатель, который должен использоваться только для защиты системы в состоянии нулевого потребления энергии:

Рисунок 1.12

Когда выключатель находится в «разомкнутом» положении, как показано (нет непрерывности), цепь разомкнута, и ток не будет существовать. На нагрузке будет нулевое напряжение, а полное напряжение источника будет падать на разомкнутые контакты выключателя. Обратите внимание, что в нижнем проводе цепи нет необходимости в размыкающем выключателе. Поскольку эта сторона цепи надежно соединена с землей (землей), она электрически является общей с землей, и ее лучше оставить таким образом.Для максимальной безопасности персонала, работающего с нагрузкой этой цепи, можно установить временное заземление на верхней стороне нагрузки, чтобы исключить падение напряжения на нагрузке:

Рисунок 1.13

При наличии временного заземляющего соединения обе стороны проводки нагрузки соединяются с землей, обеспечивая нулевое состояние энергии на нагрузке.

Поскольку заземление, выполненное с обеих сторон нагрузки, электрически эквивалентно короткому замыканию через нагрузку с помощью провода, это еще один способ достижения той же цели максимальной безопасности:

Рисунок 1.14

В любом случае обе стороны нагрузки будут электрически общими с землей, с учетом отсутствия напряжения (потенциальной энергии) между обеими сторонами нагрузки и землей, на которой стоят люди. Этот метод временного заземления проводов в обесточенной энергосистеме очень распространен при техническом обслуживании систем распределения электроэнергии высокого напряжения.

Еще одним преимуществом этой меры предосторожности является защита от возможности включения размыкающего переключателя (включения, чтобы обеспечить непрерывность цепи), когда люди все еще контактируют с нагрузкой.Временный провод, подключенный к нагрузке, создавал бы короткое замыкание, когда выключатель был замкнут, немедленно отключая любые устройства защиты от перегрузки по току (автоматические выключатели или предохранители) в цепи, что снова отключает питание. Если это произойдет, разъединитель вполне может получить повреждение, но рабочие на нагрузке находятся в безопасности.

Здесь было бы хорошо упомянуть, что устройства максимального тока не предназначены для защиты от поражения электрическим током.Скорее, они существуют исключительно для защиты проводников от перегрева из-за чрезмерных токов. Только что описанные временные закорачивающие провода действительно могли бы вызвать «срабатывание» любых устройств перегрузки по току в цепи, если бы выключатель был замкнут, но следует понимать, что защита от поражения электрическим током не является предполагаемой функцией этих устройств. Их основная функция будет просто использоваться для защиты рабочего с установленным перемычкой.

Структурированные системы безопасности: блокировка / маркировка

Поскольку очевидно, что важно иметь возможность закрепить любые отключающие устройства в разомкнутом (выключенном) положении и убедиться, что они остаются в этом положении во время работы в цепи, существует потребность в структурированной системе безопасности, которая должна быть введена в место.Такая система обычно используется в промышленности и называется Lock-out / Tag-out .

Процедура блокировки / маркировки работает следующим образом: все люди, работающие в защищенной цепи, имеют свой собственный замок или кодовый замок, который они устанавливают на рычаге управления устройства отключения перед работой с системой. Кроме того, они должны заполнить и подписать ярлык, который они вешают на свой замок, с описанием характера и продолжительности работы, которую они собираются выполнять в системе.Если есть несколько источников энергии, которые необходимо «заблокировать» (несколько отключений, как электрические, так и механические источники энергии должны быть защищены, и т. Д.), Рабочий должен использовать столько своих замков, сколько необходимо для обеспечения питания от системы. до начала работы. Таким образом, система поддерживается в состоянии нулевого энергопотребления до тех пор, пока не будет снята каждая последняя блокировка со всех устройств отключения и отключения, а это означает, что каждый последний работник даст согласие, сняв свои личные блокировки. Если будет принято решение повторно активировать систему, а замок (и) одного человека все еще остается на месте после того, как все присутствующие снимают свои, метка (и) покажет, кто этот человек и что он делает.

Даже при наличии хорошей программы безопасности по блокировке / маркировке все еще необходимы усердие и меры предосторожности, основанные на здравом смысле. Это особенно актуально в промышленных условиях, когда над устройством или системой может одновременно работать множество людей. Некоторые из этих людей могут не знать о надлежащей процедуре блокировки / маркировки или могут знать о ней, но слишком самоуверенны, чтобы ей следовать. Не думайте, что все соблюдают правила безопасности!

После того, как электрическая система была заблокирована и помечена вашим личным замком, вы должны дважды проверить, действительно ли напряжение зафиксировано в нулевом состоянии.Один из способов проверить — увидеть, запустится ли машина (или что-то еще, над чем она работает), если будет задействован переключатель или кнопка start . Если он запускается, значит, вы знаете, что не смогли обеспечить от него электрическую энергию.

Кроме того, вы должны всегда проверять на наличие опасного напряжения с помощью измерительного устройства, прежде чем касаться каких-либо проводов в цепи. Для большей безопасности вы должны выполнить следующую процедуру проверки, использования, а затем проверки вашего глюкометра:

  • Убедитесь, что ваш измеритель правильно показывает на известном источнике напряжения.
  • Используйте свой измеритель, чтобы проверить цепь блокировки на наличие опасного напряжения.
  • Еще раз проверьте свой глюкометр на известном источнике напряжения, чтобы убедиться, что он по-прежнему показывает, как должен.

Хотя это может показаться чрезмерным или даже параноидальным, это проверенный метод предотвращения поражения электрическим током. Однажды у меня был счетчик, который не смог показать напряжение, когда он должен был, при проверке цепи, чтобы убедиться, что она «мертва». Если бы я не использовал другие средства для проверки наличия напряжения, меня бы сегодня не было в живых, чтобы написать это.Всегда есть шанс, что ваш вольтметр окажется неисправным именно тогда, когда он понадобится вам для проверки на наличие опасного состояния. Следуя этим инструкциям, вы никогда не попадете в смертельную ситуацию из-за поломки счетчика.

Наконец, электромонтажник прибудет к тому моменту процедуры проверки безопасности, когда будет считаться безопасным прикосновение к проводнику (проводам). Имейте в виду, что после принятия всех мер предосторожности возможно (хотя и очень маловероятно) наличие опасного напряжения.Последней мерой предосторожности, которую следует предпринять на этом этапе, является кратковременный контакт проводника (проводов) тыльной стороной руки перед тем, как схватить его или металлический инструмент, соприкасающийся с ним. Почему? Если по какой-то причине между этим проводником и заземлением все еще присутствует напряжение, движение пальца в результате реакции удара (сжатие в кулак) приведет к разрыву контакта с проводником. Обратите внимание, что это абсолютно последний шаг , который должен выполнить любой электрик перед началом работы с энергосистемой, и никогда не следует использовать в качестве альтернативного метода проверки опасного напряжения.Если у вас когда-либо будут основания сомневаться в надежности вашего глюкометра, воспользуйтесь другим глюкометром, чтобы получить «второе мнение».

  • Состояние нулевой энергии: Когда цепь, устройство или система защищены таким образом, что отсутствует потенциальная энергия, которая могла бы нанести вред кому-либо, работающему с ними.
  • Разъединительные переключающие устройства
  • должны присутствовать в правильно спроектированной электрической системе, чтобы обеспечить удобную готовность к состоянию нулевого энергопотребления.
  • К обслуживаемой нагрузке могут быть подключены временные заземляющие или закорачивающие провода для дополнительной защиты персонала, работающего с этой нагрузкой.
  • Блокировка / маркировка
  • работает следующим образом: при работе с системой в состоянии нулевого энергопотребления рабочий помещает личный замок или кодовый замок на каждое устройство отключения энергии, имеющее отношение к его или ее задаче в этой системе. Кроме того, на каждый из этих замков навешивается тег, описывающий характер и продолжительность работы, которую необходимо выполнить, и того, кто ее выполняет.
  • Всегда проверяйте, чтобы цепь была зафиксирована в состоянии нулевого потребления энергии с помощью испытательного оборудования после «блокировки». Обязательно проверьте свой глюкометр до и после проверки цепи, чтобы убедиться, что она работает правильно.
  • Когда придет время действительно вступить в контакт с проводником (ами) предположительно мертвой энергосистемы, сделайте это сначала тыльной стороной руки, чтобы в случае удара током мышечная реакция оттолкнула пальцы от проводника. .

Безопасное и эффективное использование электросчетчика — это, пожалуй, самый ценный навык, которым может овладеть электронщик, как ради собственной безопасности, так и для профессионального мастерства. Поначалу может быть сложно использовать счетчик, зная, что вы подключаете его к цепям под напряжением, которые могут содержать опасные для жизни уровни напряжения и тока.Это опасение небезосновательно, и всегда лучше действовать осторожно при использовании счетчиков. Небрежность больше, чем какой-либо другой фактор, является причиной несчастных случаев с электричеством у опытных технических специалистов.

Мультиметры

Самым распространенным электрическим испытательным оборудованием является мультиметр . Мультиметры названы так потому, что они могут измерять множество переменных: напряжение, ток, сопротивление и часто многие другие, некоторые из которых не могут быть описаны здесь из-за их сложности.В руках обученного техника мультиметр является одновременно эффективным рабочим инструментом и защитным устройством. Однако в руках невежественного и / или неосторожного человека мультиметр может стать источником опасности при подключении к «действующей» цепи.

Существует много разных марок мультиметров, причем каждый производитель выпускает несколько моделей с разными наборами функций. Мультиметр, показанный здесь на следующих иллюстрациях, представляет собой «универсальную» конструкцию, не специфичную для какого-либо производителя, но достаточно общую, чтобы научить основным принципам использования:

Рисунок 1.15

Вы заметите, что дисплей этого измерителя имеет «цифровой» тип: числовые значения отображаются с использованием четырех цифр аналогично цифровым часам. Поворотный селекторный переключатель (теперь установлен в положение Off ) имеет пять различных положений измерения, в которых он может быть установлен: два значения «V», два значения «A» и одно положение посередине с забавной «подковой». Символ на нем, представляющий «сопротивление». Символ «подкова» — это греческая буква «Омега» (Ω), которая является общим символом для электрической единицы измерения Ом.

Из двух настроек «V» и двух настроек «A» вы заметите, что каждая пара разделена на уникальные маркеры либо парой горизонтальных линий (одна сплошная, одна пунктирная), либо пунктирной линией с волнистой кривой над ней. . Параллельные линии представляют «постоянный ток», а волнистая кривая — «переменный ток». «V», конечно, означает «напряжение», а «A» означает «сила тока» (ток). В измерителе для измерения постоянного тока используются другие методы, чем для измерения переменного тока, поэтому пользователю необходимо выбрать тип напряжения (В) или тока (А) для измерения.Хотя мы не обсуждали переменный ток (AC) в каких-либо технических деталях, это различие в настройках счетчика важно помнить.

Мультиметр Розетки

На лицевой панели мультиметра есть три разных гнезда, к которым мы можем подключить наши измерительные провода . Измерительные провода — это не что иное, как специально подготовленные провода, используемые для подключения измерителя к тестируемой цепи. Провода покрыты гибкой изоляцией с цветовой кодировкой (черной или красной), чтобы руки пользователя не касались оголенных проводов, а концы зондов представляют собой острые жесткие кусочки провода:

Рисунок 1.16

Черный измерительный провод всегда подключается к черному разъему на мультиметре: тот, который помечен «COM» для «общего». Красные измерительные провода подключаются либо к красному разъему с маркировкой напряжения и сопротивления, либо к красному разъему с маркировкой тока, в зависимости от того, какое количество вы собираетесь измерить с помощью мультиметра.

Чтобы увидеть, как это работает, давайте посмотрим на пару примеров, показывающих, как используется измеритель. Сначала мы настроим измеритель для измерения постоянного напряжения от батареи:

Рисунок 1.17

Обратите внимание, что два измерительных провода подключены к соответствующим гнездам на измерителе для измерения напряжения, а селекторный переключатель установлен на «V» постоянного тока. Теперь рассмотрим пример использования мультиметра для измерения напряжения переменного тока от бытовой электрической розетки (настенной розетки):

Рисунок 1.18

Единственное отличие в настройке счетчика — это расположение селекторного переключателя: теперь он установлен на переменный ток «V». Поскольку мы все еще измеряем напряжение, измерительные провода останутся подключенными к тем же гнездам.В обоих этих примерах настоятельно необходимо, чтобы не позволяли наконечникам щупов соприкасаться друг с другом, пока они оба находятся в контакте со своими соответствующими точками в цепи. Если это произойдет, образуется короткое замыкание, вызывающее искру и, возможно, даже шар пламени, если источник напряжения способен обеспечить достаточный ток! Следующее изображение иллюстрирует потенциальную опасность:

Рис. 1.19.

Это лишь один из способов, которым счетчик может стать источником опасности при неправильном использовании.

Измерение напряжения, пожалуй, самая распространенная функция, для которой используется мультиметр. Это, безусловно, первичное измерение, выполняемое в целях безопасности (часть процедуры блокировки / маркировки), и оно должно быть хорошо понято оператором счетчика. Поскольку напряжение между двумя точками всегда является относительным, измеритель должен быть надежно подключен к двум точкам в цепи, прежде чем он будет обеспечивать надежное измерение. Обычно это означает, что оба щупа должны быть схвачены руками пользователя и прижаты к правильным точкам контакта источника напряжения или цепи во время измерения.

Поскольку путь электрического тока из рук в руки является наиболее опасным, удерживание измерительных щупов в двух точках высоковольтной цепи таким образом всегда представляет потенциальную опасность . Если защитная изоляция на датчиках изношена или потрескалась, пальцы пользователя могут соприкоснуться с проводниками датчика во время испытания, что приведет к сильному удару. Если можно использовать только одну руку для захвата зондов, это более безопасный вариант. Иногда можно «защелкнуть» один наконечник щупа на контрольной точке цепи, чтобы его можно было отпустить, а другой установить на место, используя только одну руку.Для облегчения этого можно прикрепить специальные аксессуары для наконечников зонда, такие как пружинные зажимы.

Помните, что измерительные провода измерителя являются частью всего комплекта оборудования и что с ними следует обращаться так же осторожно и уважительно, как и с самим измерителем. Если вам нужен специальный аксессуар для ваших измерительных проводов, такой как пружинный зажим или другой специальный наконечник зонда, обратитесь к каталогу продукции производителя измерителя или другого производителя испытательного оборудования. Не пытайтесь проявить изобретательность и делать свои собственные пробники , так как вы можете подвергнуть себя опасности в следующий раз, когда будете использовать их в цепи под напряжением.

Также следует помнить, что цифровые мультиметры обычно хорошо справляются с различением измерений переменного и постоянного тока, поскольку они настраиваются на одно или другое при проверке напряжения или тока. Как мы видели ранее, как переменное, так и постоянное напряжение и ток могут быть смертельными, поэтому при использовании мультиметра в качестве устройства проверки безопасности вы всегда должны проверять наличие как переменного, так и постоянного тока, даже если вы не ожидаете найти и то, и другое. ! Кроме того, при проверке наличия опасного напряжения вы должны обязательно проверить всех пар рассматриваемых точек.

Например, предположим, что вы открыли шкаф с электропроводкой и обнаружили три больших проводника, подающих питание переменного тока на нагрузку. Автоматический выключатель, питающий эти провода (предположительно), был отключен, заблокирован и помечен. Вы дважды проверили отсутствие питания, нажав кнопку Start для нагрузки. Ничего не произошло, поэтому теперь вы переходите к третьему этапу проверки безопасности: проверке измерителя напряжения.

Сначала вы проверяете свой измеритель на известном источнике напряжения, чтобы убедиться, что он работает правильно.Любая ближайшая электрическая розетка должна обеспечивать удобный источник переменного напряжения для проверки. Вы делаете это и обнаруживаете, что счетчик показывает как следует. Затем вам нужно проверить напряжение между этими тремя проводами в шкафу. Но напряжение измеряется между и двумя точками , так где же проверить?

Рисунок 1.20

Ответ — проверить все комбинации этих трех точек. Как видите, на рисунке точки обозначены буквами «A», «B» и «C», поэтому вам нужно будет взять мультиметр (установленный в режиме вольтметра) и проверить его между точками A и B, B и C, а также A и C.Если вы обнаружите напряжение между любой из этих пар, цепь не находится в состоянии нулевой энергии. Но ждать! Помните, что мультиметр не будет регистрировать напряжение постоянного тока, когда он находится в режиме переменного напряжения, и наоборот, поэтому вам необходимо проверить эти три пары точек в в каждом режиме , в общей сложности шесть проверок напряжения для завершения!

Однако, даже несмотря на все эти проверки, мы еще не охватили все возможности. Помните, что опасное напряжение может появиться между одиночным проводом и землей (в этом случае металлический каркас шкафа будет хорошей точкой отсчета заземления) в энергосистеме.Итак, чтобы быть в полной безопасности, мы не только должны проверять между A и B, B и C, и A и C (как в режимах переменного, так и постоянного тока), но мы также должны проверять между A и землей, B и землей, и C & заземление (как в режимах переменного, так и постоянного тока)! Это дает в общей сложности двенадцать проверок напряжения для этого, казалось бы, простого сценария всего с тремя проводами. Затем, конечно же, после того, как мы завершили все эти проверки, нам нужно взять мультиметр и повторно проверить его с помощью известного источника напряжения, такого как розетка, чтобы убедиться, что он по-прежнему в хорошем рабочем состоянии.

Использование мультиметра для проверки сопротивления

Использование мультиметра для проверки сопротивления — гораздо более простая задача. Измерительные провода будут оставаться подключенными к тем же розеткам, что и для проверки напряжения, но селекторный переключатель необходимо повернуть, пока он не укажет на символ сопротивления «подкова». Касаясь щупами устройства, сопротивление которого необходимо измерить, измеритель должен правильно отображать сопротивление в омах:

Рисунок 1.21

При измерении сопротивления следует помнить, что это нужно делать только на обесточенных компонентах! Когда измеритель находится в режиме «сопротивления», он использует небольшую внутреннюю батарею для генерации крошечного тока через измеряемый компонент. Путем определения того, насколько сложно пропустить этот ток через компонент, можно определить и отобразить сопротивление этого компонента. Если в контуре измерителя-вывод-компонент-вывод-измеритель имеется дополнительный источник напряжения, который либо помогает, либо противодействует току измерения сопротивления, производимому измерителем, это приведет к ошибочным показаниям.В худшем случае счетчик может даже выйти из строя из-за внешнего напряжения.

Режим «Сопротивление» мультиметра

Режим «сопротивления» мультиметра очень полезен для определения целостности проводов, а также для точных измерений сопротивления. Когда между наконечниками пробников имеется хорошее, прочное соединение (моделируется путем их соприкосновения), измеритель показывает почти нулевое сопротивление. Если бы в измерительных проводах не было сопротивления, он показывал бы ровно ноль:

Рисунок 1.22

Если выводы не контактируют друг с другом или не касаются противоположных концов разорванного провода, измеритель покажет бесконечное сопротивление (обычно путем отображения пунктирных линий или сокращения «O.L.», что означает «разомкнутый контур»):

Рисунок 1.23

Измерение тока с помощью мультиметра

Безусловно, наиболее опасным и сложным применением мультиметра является измерение тока. Причина этого довольно проста: для того, чтобы измеритель мог измерять ток, измеряемый ток должен проходить через счетчика.Это означает, что измеритель должен быть частью цепи тока, а не просто подключаться к какой-либо стороне, как в случае измерения напряжения. Чтобы сделать измеритель частью пути тока цепи, исходная цепь должна быть «разорвана», а измеритель должен быть подключен к двум точкам разомкнутого разрыва. Чтобы настроить измеритель на это, селекторный переключатель должен указывать на переменный или постоянный ток «A», а красный измерительный провод должен быть вставлен в красную розетку с маркировкой «A». На следующем рисунке показан измеритель, полностью готовый к измерению тока, и проверяемая цепь:

Рисунок 1.24

Сейчас цепь разомкнута при подготовке к подключению счетчика:

Рисунок 1.25

Следующий шаг — вставить измеритель в линию со схемой, подключив два наконечника щупа к разомкнутым концам цепи, черный щуп к отрицательной (-) клемме 9-вольтовой батареи и красный щуп. щуп к свободному концу провода, ведущему к лампе:

Рисунок 1.26

Этот пример показывает очень безопасную схему для работы. 9 вольт вряд ли представляют опасность поражения электрическим током, поэтому не стоит бояться разомкнуть эту цепь (не голыми руками, не меньше!) И подключить счетчик параллельно с током.Однако с цепями более высокой мощности это действительно может быть опасным занятием. Даже если напряжение в цепи было низким, нормальный ток мог быть достаточно высоким, чтобы возникла опасная искра в момент установления последнего подключения датчика измерителя.

Другой потенциальной опасностью использования мультиметра в режиме измерения тока («амперметр») является невозможность правильно вернуть его в конфигурацию измерения напряжения перед измерением напряжения с его помощью. Причины этого зависят от конструкции и работы амперметра.При измерении тока в цепи путем размещения измерителя непосредственно на пути тока, лучше всего, чтобы измеритель оказывал небольшое сопротивление току или не оказывал никакого сопротивления. В противном случае дополнительное сопротивление изменит работу схемы. Таким образом, мультиметр спроектирован таким образом, чтобы сопротивление между наконечниками измерительного щупа было практически нулевым, когда красный щуп был вставлен в красное гнездо «А» (для измерения тока). В режиме измерения напряжения (красный провод вставлен в красное гнездо «V») между наконечниками измерительных щупов имеется большое количество мегаомов сопротивления, потому что вольтметры имеют сопротивление, близкое к бесконечному (так что они не работают). t потребляет значительный ток от тестируемой цепи).

При переключении мультиметра из режима измерения тока в режим измерения напряжения легко повернуть селекторный переключатель из положения «A» в положение «V» и забыть, соответственно, переключить положение разъема красного измерительного провода с «A» на положение «V». «V». В результате — если счетчик затем подключить к источнику значительного напряжения — произойдет короткое замыкание счетчика!

Рисунок 1.27

Чтобы предотвратить это, у большинства мультиметров есть функция предупреждения, с помощью которой они издают звуковой сигнал, если когда-либо в гнездо «A» вставлен провод, а селекторный переключатель установлен в положение «V».Однако какими бы удобными ни были эти функции, они по-прежнему не заменяют ясного мышления и осторожности при использовании мультиметра.

Все качественные мультиметры содержат внутри предохранители, которые спроектированы так, чтобы «перегорать» в случае чрезмерного тока через них, как в случае, показанном на последнем изображении. Как и все устройства максимальной токовой защиты, эти предохранители в первую очередь предназначены для защиты оборудования (в данном случае самого счетчика) от чрезмерного повреждения и только во вторую очередь для защиты пользователя от повреждений.Мультиметр можно использовать для проверки собственного предохранителя, установив селекторный переключатель в положение сопротивления и создав соединение между двумя красными гнездами следующим образом:

Рисунок 1.28.

. Исправный предохранитель будет указывать на очень низкое сопротивление, в то время как перегоревший предохранитель всегда показывает «O.L.» (или любое другое указание, которое эта модель мультиметра использует для обозначения отсутствия непрерывности). Фактическое количество Ом, отображаемое для исправного предохранителя, не имеет большого значения, пока оно является произвольно низким.

Итак, теперь, когда мы увидели, как использовать мультиметр для измерения напряжения, сопротивления и тока, что еще нужно знать? Множество! Ценность и возможности этого универсального испытательного прибора станут более очевидными по мере того, как вы приобретете навыки и познакомитесь с ним.Ничто не заменит регулярных занятий со сложными инструментами, такими как эти, поэтому не стесняйтесь экспериментировать с безопасными схемами с батарейным питанием.

  • Измеритель, способный проверять напряжение, ток и сопротивление, называется мультиметром .
  • Поскольку напряжение между двумя точками всегда относительное, измеритель напряжения («вольтметр») должен быть подключен к двум точкам в цепи, чтобы получить хорошие показания. Будьте осторожны, не касайтесь оголенных наконечников щупов вместе при измерении напряжения, так как это приведет к короткому замыканию!
  • Не забывайте всегда проверять напряжение переменного и постоянного тока при использовании мультиметра для проверки наличия опасного напряжения в цепи.Убедитесь, что вы проверяете напряжение между всеми комбинациями пар проводников, в том числе между отдельными проводниками и землей!
  • В режиме измерения напряжения («вольтметр») мультиметры имеют очень высокое сопротивление между выводами.
  • Никогда не пытайтесь измерить сопротивление или целостность цепи с помощью мультиметра в цепи, которая находится под напряжением. В лучшем случае показания сопротивления, полученные от глюкометра, будут неточными, а в худшем случае глюкометр может быть поврежден, а вы можете получить травму.
  • Измерители тока («амперметры») всегда включены в цепь, поэтому электроны должны проходить через через счетчик .
  • В режиме измерения тока («амперметр») мультиметры практически не имеют сопротивления между выводами. Это сделано для того, чтобы электроны могли проходить через счетчик с наименьшими трудностями. Если бы это было не так, измеритель добавлял бы дополнительное сопротивление в цепи, тем самым влияя на ток.

Как мы видели ранее, энергосистема без надежного соединения с землей непредсказуема с точки зрения безопасности.Невозможно гарантировать, какое или как мало будет напряжения между любой точкой цепи и землей. Заземлив одну сторону источника напряжения энергосистемы, по крайней мере, одна точка в цепи может быть электрически соединена с землей и, следовательно, не представляет опасности поражения электрическим током. В простой двухпроводной системе электропитания проводник, соединенный с землей, называется нейтраль , а другой провод — горячий , также известный как под напряжением или активный :

Рисунок 1.29 Двухпроводная система электропитания

Что касается источника напряжения и нагрузки, заземление не имеет никакого значения. Он существует исключительно ради личной безопасности, гарантируя, что по крайней мере одна точка в цепи будет безопасна для прикосновения (нулевое напряжение относительно земли). «Горячая» сторона цепи, названная в честь ее потенциальной опасности поражения электрическим током, будет опасна прикасаться, если напряжение не будет обеспечено путем надлежащего отключения от источника (в идеале, с использованием процедуры систематической блокировки / маркировки).

Этот дисбаланс опасностей между двумя проводниками в простой силовой цепи важно понимать. Следующая серия иллюстраций основана на распространенных бытовых системах электропроводки (для простоты с использованием источников постоянного напряжения, а не переменного тока).

Если мы посмотрим на простой бытовой электроприбор, такой как тостер с проводящим металлическим корпусом, мы увидим, что при правильной работе не должно быть опасности поражения электрическим током. Провода, передающие питание на нагревательные элементы тостера, изолированы от соприкосновения с металлическим корпусом (и друг с другом) резиной или пластиком.

Рисунок 1.30 Отсутствие напряжения между корпусом и землей

Однако, если один из проводов внутри тостера случайно войдет в контакт с металлическим корпусом, корпус станет электрически общим для провода, и прикосновение к корпусу будет так же опасно, как прикосновение к оголенному проводу. Представляет ли это опасность поражения электрическим током, зависит от , к которому случайно прикоснется провод :

Рисунок 1.31 случайное контактное напряжение между корпусом и землей

Если «горячий» провод касается корпуса, это подвергает опасности пользователя тостера.С другой стороны, если нейтральный провод касается корпуса, нет опасности поражения электрическим током:

Рисунок 1.32 Случайное отсутствие напряжения между корпусом и землей

Чтобы гарантировать, что первый отказ менее вероятен, чем второй, инженеры стараются проектировать устройства таким образом, чтобы свести к минимуму контакт горячего проводника с корпусом. В идеале, конечно, вы не хотите, чтобы какой-либо из проводов случайно соприкасался с токопроводящим корпусом прибора, но обычно есть способы спроектировать расположение частей, чтобы сделать случайный контакт менее вероятным для одного провода, чем для другого.

Однако эта профилактическая мера эффективна только в том случае, если может быть гарантирована полярность вилки питания. Если вилку можно перевернуть, то проводник с большей вероятностью соприкоснется с корпусом вполне может быть «горячим»:

Рисунок 1.33 Напряжение между корпусом и землей

Устройства, разработанные таким образом, обычно поставляются с «поляризованными» вилками, причем один контакт вилки немного уже, чем другой. Розетки питания также имеют такую ​​же конструкцию, причем один слот уже другой.Следовательно, вилку нельзя вставить «задом наперед», и можно гарантировать идентичность проводника внутри устройства. Помните, что это никак не влияет на основные функции устройства: это делается исключительно ради безопасности пользователя.

Некоторые инженеры решают проблему безопасности, просто делая внешний корпус прибора непроводящим. Такие приборы называются с двойной изоляцией, , поскольку изолирующий кожух служит вторым слоем изоляции над и за пределами самих проводов.Если провод внутри устройства случайно войдет в контакт с корпусом, это не представляет опасности для пользователя устройства.

Другие инженеры решают проблему безопасности, поддерживая проводящий корпус, но используя третий провод для надежного соединения этого корпуса с землей:

Рис. 1.34 Нулевое напряжение корпуса заземления между корпусом и землей

Третий контакт на шнуре питания обеспечивает прямое электрическое соединение корпуса устройства с землей, делая две точки электрически общими друг с другом.Если они электрически общие, то между ними не может быть падения напряжения. По крайней мере, так оно и должно работать. Если горячий провод случайно коснется металлического корпуса прибора, он вызовет прямое короткое замыкание обратно на источник напряжения через заземляющий провод, сработав любые устройства защиты от перегрузки по току. Пользователь устройства останется в безопасности.

Вот почему так важно никогда не отрезать третий контакт вилки питания, когда пытаетесь вставить его в розетку с двумя контактами.Если это будет сделано, не будет заземления корпуса прибора для обеспечения безопасности пользователя (ей). Устройство по-прежнему будет функционировать должным образом, но если возникнет внутренняя неисправность, в результате которой горячий провод соприкасается с корпусом, результаты могут быть смертельными. Если необходимо использовать двухконтактную розетку , можно установить двухконтактный переходник розетки с заземляющим проводом, прикрепленным к винту заземляющей крышки. Это обеспечит безопасность заземленного прибора, подключенного к розетке этого типа.

Однако электрически безопасное проектирование не обязательно заканчивается нагрузкой. Последнюю защиту от поражения электрическим током можно установить на стороне источника питания цепи, а не на самом приборе. Эта мера защиты называется , обнаружение замыкания на землю , и работает она следующим образом:

В правильно функционирующем приборе (показанном выше) ток, измеренный через провод под напряжением, должен быть точно равен току через нейтральный проводник, потому что существует только один путь для прохождения электронов в цепи.При отсутствии неисправности внутри устройства нет соединения между проводниками цепи и человеком, касающимся корпуса, и, следовательно, нет удара.

Если, однако, горячая проволока случайно коснется металлического корпуса, через человека, прикоснувшегося к корпусу, пройдет ток. Наличие ударного тока будет проявляться как разница тока между двумя силовыми проводниками в розетке:

Рисунок 1.35 Разница в токе между двумя силовыми проводниками в розетке

Эта разница в токе между «горячим» и «нейтральным» проводниками будет существовать только в том случае, если есть ток через заземление, что означает, что в системе есть неисправность.Следовательно, такая разница тока может использоваться как способ обнаружения неисправного состояния. Если устройство настроено для измерения этой разницы в токах между двумя силовыми проводниками, обнаружение дисбаланса токов можно использовать для запуска размыкания выключателя, тем самым отключая питание и предотвращая серьезный удар:

Рисунок 1.36 Прерыватели тока замыкания на землю

Такие устройства называются прерывателями тока замыкания на землю , или сокращенно GFCI. За пределами Северной Америки GFCI известен как предохранительный выключатель, устройство защитного отключения (RCD), RCBO или RCD / MCB в сочетании с миниатюрным автоматическим выключателем или выключателем утечки на землю (ELCB).Они достаточно компактны, чтобы их можно было встроить в розетку. Эти розетки легко идентифицировать по их характерным кнопкам «Тест» и «Сброс». Большим преимуществом использования этого подхода для обеспечения безопасности является то, что он работает независимо от конструкции устройства. Конечно, использование прибора с двойной изоляцией или заземлением в дополнение к розетке GFCI было бы еще лучше, но приятно знать, что можно что-то сделать для повышения безопасности, помимо конструкции и состояния прибора.

Прерыватель цепи дугового замыкания (AFCI) , автоматический выключатель, предназначенный для предотвращения пожаров, предназначен для размыкания при прерывистых резистивных коротких замыканиях. Например, нормальный выключатель на 15 А предназначен для быстрого размыкания цепи при нагрузке, значительно превышающей номинальную 15 А, или медленнее, немного превышающей номинальную. Хотя это защищает от прямого короткого замыкания и нескольких секунд перегрузки, соответственно, он не защищает от дуги — аналогично дуговой сварке. Дуга представляет собой сильно изменяющуюся нагрузку, периодически достигающую максимума более 70 А, разомкнутую цепь с переходами через ноль переменного тока.Хотя среднего тока недостаточно для срабатывания стандартного выключателя, его достаточно, чтобы разжечь пожар. Эта дуга может быть создана из-за металлического короткого замыкания, которое сжигает металл, оставляя резистивную распыляющую плазму ионизированных газов.

AFCI содержит электронную схему для обнаружения этого прерывистого резистивного короткого замыкания. Он защищает как от дуги от горячего к нейтральному, так и от горячего к заземлению. AFCI не защищает от опасности поражения электрическим током, как GFCI. Таким образом, GFCI по-прежнему необходимо устанавливать на кухне, в ванной и на открытом воздухе.Поскольку AFCI часто срабатывает при запуске больших двигателей и, в более общем смысле, щеточных двигателей, его установка ограничена электрическими цепями в спальнях согласно Национальному электротехническому кодексу США. Использование AFCI должно уменьшить количество электрических пожаров. Однако неприятные срабатывания при работе приборов с двигателями в цепях AFCI представляют собой проблему.

  • В энергосистемах одна сторона источника напряжения часто подключается к заземлению для обеспечения безопасности в этой точке.
  • «Заземленный» провод в энергосистеме называется нейтральным проводом , а незаземленный провод — горячим проводом .
  • Заземление в энергосистемах существует для личной безопасности, а не для работы нагрузки (ей).
  • Электробезопасность прибора или других нагрузок может быть улучшена с помощью хорошей инженерии: поляризованные вилки, двойная изоляция и трехконтактные вилки с «заземлением» — все это способы повышения безопасности на стороне нагрузки.
  • Прерыватели тока замыкания на землю (GFCI) работают, определяя разницу в токе между двумя проводниками, подающими питание на нагрузку.Никакой разницы в токе быть не должно. Любое различие означает, что ток должен входить в нагрузку или выходить из нее каким-либо образом, кроме двух основных проводников, что нехорошо. Значительная разница в токе автоматически откроет размыкающий механизм выключателя, полностью отключив питание.

Обычно допустимая токовая нагрузка проводника — это предел конструкции схемы, который нельзя намеренно превышать, но есть приложение, в котором ожидается превышение допустимой токовой нагрузки: в случае предохранителей .

Что такое предохранитель?

A Предохранитель — это устройство электробезопасности, построенное вокруг проводящей полосы, которая предназначена для плавления и разделения в случае чрезмерного тока. Предохранители всегда подключаются последовательно с компонентами, которые должны быть защищены от перегрузки по току, так что, когда предохранитель перегорает (размыкается), он размыкает всю цепь и останавливает ток через компонент (ы). Плавкий предохранитель, включенный в одну ветвь параллельной цепи, конечно, не повлияет на ток через любую из других ветвей.

Обычно тонкий кусок плавкой проволоки помещается в защитную оболочку, чтобы свести к минимуму опасность возникновения дугового разряда в случае прорыва проволоки с большой силой, как это может произойти в случае сильных перегрузок по току. В случае небольших автомобильных предохранителей оболочка прозрачна, так что плавкий элемент может быть визуально осмотрен. В бытовой электропроводке обычно используются ввинчиваемые предохранители со стеклянным корпусом и тонкой узкой полосой из металлической фольги посередине. Фотография, на которой показаны оба типа предохранителей, представлена ​​здесь:

Рисунок 1.37 Типы предохранителей

Предохранители картриджного типа популярны в автомобилях и в промышленности, если они изготовлены из материалов оболочки, отличных от стекла. Поскольку предохранители рассчитаны на «отказ» срабатывания при превышении их номинального тока, они обычно предназначены для легкой замены в цепи. Это означает, что они будут вставлены в какой-либо тип держателя, а не припаиваться или прикрепляться болтами к проводникам схемы. Ниже приведена фотография, на которой изображена пара предохранителей со стеклянным картриджем в держателе с несколькими предохранителями:

Рисунок 1.38 Стеклянный патрон с предохранителями Держатель нескольких предохранителей

Предохранители удерживаются пружинными металлическими зажимами, причем сами зажимы постоянно соединены с проводниками цепи. Основной материал держателя предохранителя (или блока предохранителей , как их иногда называют) выбран как хороший изолятор.

Другой тип держателя предохранителей патронного типа обычно используется для установки в панелях управления оборудованием, где желательно скрыть все точки электрического контакта от контакта с человеком.В отличие от только что показанного блока предохранителей, где все металлические зажимы открыты, этот тип держателя предохранителя полностью закрывает предохранитель в изолирующем корпусе:

Рисунок 1.39 Патрон предохранителя закрывает изолирующий корпус

Наиболее распространенным устройством защиты от перегрузки по току в сильноточных цепях сегодня является автоматический выключатель .

Что такое автоматический выключатель?

Автоматические выключатели — это специально разработанные переключатели, которые автоматически размыкаются для отключения тока в случае перегрузки по току.Малые автоматические выключатели, например, используемые в жилых, коммерческих и легких промышленных предприятиях, имеют термическое управление. Они содержат биметаллическую полосу (тонкую полоску из двух металлов, соединенных взаимно), по которой проходит ток цепи, которая изгибается при нагревании. Когда биметаллическая полоса создает достаточную силу (из-за чрезмерного нагрева полосы), срабатывает механизм отключения, и прерыватель размыкается. Автоматические выключатели большего размера автоматически активируются силой магнитного поля, создаваемого токонесущими проводниками внутри выключателя, или могут срабатывать для отключения от внешних устройств, контролирующих ток цепи (эти устройства называются защитными реле ).

Поскольку автоматические выключатели не выходят из строя в условиях перегрузки по току — скорее, они просто размыкаются и могут быть повторно включены путем перемещения рычага — они с большей вероятностью будут обнаружены подключенными к цепи более надежным образом, чем предохранители. Фотография маленького автоматического выключателя приведена здесь:

Рисунок 1.40. Малый автоматический выключатель

Снаружи он выглядит не более чем выключателем. Действительно, его можно было использовать как таковое. Однако его истинная функция — работать как устройство защиты от перегрузки по току.

Следует отметить, что в некоторых автомобилях используются недорогие устройства, известные как плавкие вставки , для защиты от перегрузки по току в цепи зарядки аккумулятора из-за стоимости предохранителя и держателя соответствующего номинала. Плавкая вставка — это примитивный предохранитель, представляющий собой не что иное, как короткий кусок провода с резиновой изоляцией, предназначенный для плавления в случае перегрузки по току, без какой-либо твердой оболочки. Такие грубые и потенциально опасные устройства никогда не используются в промышленности или даже в жилых помещениях, в основном из-за встречающихся более высоких уровней напряжения и тока.По мнению автора, их применение даже в автомобильных схемах вызывает сомнения.

Обозначение на электрической схеме для предохранителя представляет собой S-образную кривую:

Рисунок 1.41 S-образная кривая

Номиналы предохранителей

Предохранители

, как и следовало ожидать, в основном рассчитаны на ток: ампер. Хотя их работа зависит от самовыделения тепла в условиях чрезмерного тока за счет собственного электрического сопротивления предохранителя, они спроектированы так, чтобы вносить незначительное дополнительное сопротивление в цепи, которые они защищают.Это в значительной степени достигается за счет того, что плавкий провод делается как можно короче. Точно так же, как допустимая токовая нагрузка обычного провода не связана с его длиной (сплошной медный провод 10 калибра выдерживает ток 40 ампер на открытом воздухе, независимо от длины или короткого отрезка), плавкий провод из определенного материала и калибра будет дуть при определенном токе независимо от того, как долго он длится. Поскольку длина не является фактором в текущем рейтинге, чем короче она может быть сделана, тем меньшее сопротивление будет между концом и концом.

Однако разработчик предохранителя также должен учитывать, что происходит после сгорания предохранителя: оплавленные концы сплошного провода будут разделены воздушным зазором с полным напряжением питания между концами.Если предохранитель недостаточно длинный в цепи высокого напряжения, искра может перескочить с одного из концов расплавленного провода на другой, снова замкнув цепь:

Рисунок 1.42 Принципиальная схема конструктора предохранителей Рисунок 1.43 Принципиальная схема конструктора предохранителей

Следовательно, предохранители рассчитываются с точки зрения их допустимого напряжения, а также уровня тока, при котором они сработают.

Некоторые большие промышленные предохранители имеют сменные проволочные элементы для снижения затрат. Корпус предохранителя представляет собой непрозрачный картридж многоразового использования, защищающий провод предохранителя от воздействия и экранирующий окружающие предметы от провода предохранителя.

Номинальный ток предохранителя — это нечто большее, чем просто цифра. Если через предохранитель на 30 ампер пропускается ток в 35 ампер, он может внезапно перегореть или с задержкой перед перегоранием, в зависимости от других аспектов его конструкции. Некоторые предохранители предназначены для очень быстрого срабатывания, в то время как другие рассчитаны на более скромное время «открытия» или даже на замедленное срабатывание в зависимости от области применения. Последние предохранители иногда называют плавкими предохранителями из-за их преднамеренной выдержки времени.

Классическим примером применения плавкого предохранителя с задержкой срабатывания является защита электродвигателя, где пусковых импульсов токов, в десять раз превышающих нормальный рабочий ток, обычно возникают каждый раз, когда двигатель запускается с полной остановки. Если бы в таком приложении использовались быстродействующие предохранители, двигатель никогда бы не запустился, потому что при нормальных уровнях пускового тока плавкий предохранитель (и) немедленно перегорел бы! Конструкция плавкого предохранителя такова, что элемент плавкого предохранителя имеет большую массу (но не большую допустимую нагрузку), чем эквивалентный быстродействующий плавкий предохранитель, что означает, что он будет нагреваться медленнее (но до той же конечной температуры) при любом заданном количестве. тока.

На другом конце диапазона действия предохранителей находятся так называемые полупроводниковые предохранители , предназначенные для очень быстрого размыкания в случае перегрузки по току. Полупроводниковые устройства, такие как транзисторы, как правило, особенно нетерпимы к условиям перегрузки по току и, как таковые, требуют быстродействующей защиты от сверхтоков в мощных приложениях.

Предохранители всегда должны размещаться на «горячей» стороне нагрузки в заземленных системах. Это сделано для того, чтобы нагрузка была полностью обесточена во всех отношениях после срабатывания предохранителя.Чтобы увидеть разницу между плавлением «горячей» стороны и «нейтральной» стороны нагрузки, сравните эти две схемы:

Рисунок 1.44 Принципиальная схема конструктора предохранителей Рисунок 1.45 Принципиальная схема конструктора предохранителей

В любом случае предохранитель успешно прервал ток в нагрузке, но нижняя цепь не может прервать потенциально опасное напряжение с обеих сторон нагрузки на землю, где может стоять человек. . Первая схема намного безопаснее.

Как было сказано ранее, предохранители — не единственный используемый тип устройства защиты от сверхтоков.Переключатели, называемые выключателями , часто (и чаще) используются для размыкания цепей с чрезмерным током, их популярность связана с тем, что они не разрушают себя в процессе размыкания цепи, как предохранители. В любом случае, размещение устройства защиты от сверхтока в цепи будет соответствовать тем же общим рекомендациям, перечисленным выше: а именно, «предохранить» сторону источника питания , а не , подключенную к земле.

Хотя размещение защиты от перегрузки по току в цепи может определять относительную опасность поражения электрическим током в этой цепи при различных условиях, следует понимать, что такие устройства никогда не предназначались для защиты от поражения электрическим током.Ни предохранители, ни автоматические выключатели не предназначены для срабатывания в случае поражения электрическим током; скорее, они предназначены для открытия только в условиях потенциального перегрева проводника. Устройства максимального тока в первую очередь защищают проводники цепи от повреждения при перегреве (и опасности возгорания, связанной с чрезмерно горячими проводниками) и, во вторую очередь, защищают определенные части оборудования, такие как нагрузки и генераторы (некоторые быстродействующие предохранители предназначены для защиты особенно чувствительных электронных устройств. к скачкам тока).Поскольку уровни тока, необходимые для поражения электрическим током или поражения электрическим током, намного ниже, чем нормальные уровни тока обычных силовых нагрузок, состояние перегрузки по току не указывает на возникновение удара током. Существуют и другие устройства, предназначенные для обнаружения определенных условий удара (детекторы замыкания на землю являются наиболее популярными), но эти устройства строго служат этой единственной цели и не связаны с защитой проводов от перегрева.

  • Предохранитель представляет собой небольшой тонкий проводник, предназначенный для плавления и разделения на две части с целью разрыва цепи в случае чрезмерного тока.
  • Автоматический выключатель — это специально разработанный переключатель, который автоматически размыкается для прерывания тока цепи в случае перегрузки по току. Они могут срабатывать (размыкаться) термически, магнитными полями или внешними устройствами, называемыми «реле защиты», в зависимости от конструкции выключателя, его размера и области применения.
  • Предохранители
  • в первую очередь рассчитаны на максимальный ток, но также рассчитаны на то, какое падение напряжения они будут безопасно выдерживать после прерывания цепи.
  • Предохранители
  • могут быть сконструированы так, чтобы срабатывать быстро, медленно или где-то посередине при одинаковом максимальном уровне тока.
  • Лучшее место для установки предохранителя в заземленной энергосистеме — на пути незаземленного проводника к нагрузке. Таким образом, при сгорании предохранителя к нагрузке останется только заземленный (безопасный) провод, что сделает безопаснее для людей находиться рядом.
Технология

SIMCO | Часто задаваемые вопросы

Подробнее об ионизации здесь


Ионизация воздуха все чаще используется для контроля или нейтрализации статического заряда в критических средах.Ионизаторы фактически делают воздух достаточно проводящим, чтобы рассеивать статический заряд как на изоляторах, так и на изолированных проводниках. Все системы ионизации воздуха работают, наполняя атмосферу положительными и отрицательными ионами. Когда ионизированный воздух соприкасается с заряженной поверхностью, она притягивает ионы противоположной полярности. В результате статическое электричество, накопленное на изделиях и оборудовании, нейтрализуется. Аэроионы могут образовываться в результате явления, называемого «коронным разрядом», когда высокое напряжение прикладывается к острой части или длине провода.Вокруг острия или провода создается электростатическое поле, которое может перемещать ионы в рабочую зону, или, наоборот, для более эффективного перемещения ионов может использоваться какой-либо тип воздушного потока. Ионизация коронным разрядом обычно бывает 3-х различных форм: переменного тока (AC), установившегося постоянного тока (DC) и импульсного постоянного тока. Каждый из этих методов используется в различных продуктах и ​​приложениях ионизации.

Некоторым ионизационным устройствам для правильной работы требуется поток воздуха, а другим — нет.Если выбраны ионизаторы, требующие воздушного потока, они должны зависеть от доступного воздушного потока или включать вентиляторы в свою конструкцию. Необходимо определить, совместимы ли вентиляторы для распределения аэроионов с рабочей средой. Для ионизаторов сжатого газа потребуется источник газа (обычно воздух или азот) и фильтрация, совместимые с областью их использования.

Содержание влаги в воздухе влияет на проводимость некоторых изоляционных материалов и их способность удерживать статический заряд. Чем выше относительная влажность (> 50%), тем выше проводимость этих материалов.И наоборот, чем ниже влажность (<30%), тем более изоляционными становятся эти материалы и тем больше заряда они удерживают.

Из этого логически следует, что высокая влажность была бы эффективным средством контроля статического электричества. Однако даже при высокой относительной влажности может возникать недопустимый уровень статического заряда, который сохраняется в течение длительного периода времени. Кроме того, высокая влажность может способствовать возникновению других проблем, включая проблемы с окислением и пайкой. Использование высокой влажности как средства контроля статического заряда — медленное, неудобное, дорогое и часто неэффективное занятие.

Не существует единого метода управления всеми статическими проблемами. Правильное использование оборудования и лечебные процедуры помогают избавиться от большинства статических проблем.

Заземление :
Статику на проводнике можно легко контролировать, если объект заземлен. Заземление обеспечивает путь, по которому заряд может перейти на землю, эффективно нейтрализуя заряд. Однако заземлить изолятор не получится, потому что заряды не перемещаются по изоляторам.

Антистатические материалы или материалы, рассеивающие статическое электричество :
Изоляционные материалы, обычно пластмассы, которые делают проводящими с добавлением углеродных или металлических наполнителей.Проводящую дисперсию можно регулировать в зависимости от количества добавленных наполнителей для обеспечения удельного сопротивления в диапазоне от полностью проводящего до рассеивающего.

Ионизация :
Ионизаторы воздуха работают, заполняя атмосферу положительными и отрицательными ионами. Эти ионы притягиваются к ионам противоположной полярности на заряженной поверхности. В результате статическое электричество, накопившееся на изделиях, оборудовании и поверхностях, нейтрализуется.

Образование :
Обучение персонала и информирование его об электростатических проблемах и необходимости использования антистатических перчаток, костюмов, халатов и ремешков для запястий и пяток может существенно повлиять на количество проблем, возникающих на производственном предприятии.

Наиболее распространенным методом генерации заряда является трибоэлектрическая зарядка. Когда материалы находятся в тесном контакте, между поверхностями двух материалов может происходить перезарядка. Величина этой перезарядки будет зависеть от ряда факторов, но в результате при разделении материалов возникают два противоположно заряженных объекта.

Второй распространенный метод создания статического заряда известен как индукционная зарядка. Это происходит, когда заряд «индуцируется» на изолированном проводящем объекте, который попадает в поле, созданное зарядом на другом объекте.

Не существует «лучшей ионизирующей технологии» для всех приложений. Приложение определит подходящий тип для использования. Вы можете начать с изучения консультативного документа Ассоциации ESD ADV3.2-1995, который охватывает многие вопросы, связанные с процессом выбора. Обложка тем:

  • Нейтрализация заряда. Насколько эффективно ионизатор снижает статический заряд?
  • Воздействие на статику. Ионизатор помогает уменьшить или устранить проблему статического электричества?
  • Соображения по охране окружающей среды.Используется ли в окружающей среде ламинарный, турбулентный или даже нулевой поток воздуха?
  • Чистое помещение какого класса у вас есть?
  • Рекомендации по установке: расстояние, распределение мощности и управление.
  • Эксплуатация: соображения безопасности, выбросы твердых частиц, техническое обслуживание, надежность и гарантия, стоимость.

Электростатический заряд вызывает электростатическое притяжение (ESA), электростатический разряд (ESD) и электромагнитные помехи (EMI). Наличие этих проблем в производственной среде приводит к разрушению чувствительных устройств, блокировке или неисправности микропроцессоров, проблемам с потоком продукта или работы оборудования и загрязнению частицами.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *