Выбор конденсатора для трехфазного двигателя: Расчет емкости конденсатора для трехфазного двигателя

Содержание

Расчет емкости конденсатора для трехфазного двигателя

При подключении асинхронного трехфазного электродвигателя на 380 В в однофазную сеть на 220 В необходимо рассчитать емкость фазосдвигающего конденсатора, точнее двух конденсаторов — рабочего и пускового конденсатора. Онлайн калькулятор для расчета емкости конденсатора для трехфазного двигателя в конце статьи.

Как подключить асинхронный двигатель?

Подключение асинхронного двигателя осуществляется по двум схемам: треугольник (эффективнее для 220 В) и звезда (эффективнее для 380 В).

На картинке внизу статьи вы увидите обе эти схемы подключения. Здесь, я думаю, описывать подключение не стоит, т.к. это описано уже тысячу раз в Интернете.

Во основном, у многих возникает вопрос, какие нужны емкости рабочего и пускового конденсаторов.

Пусковой конденсатор

Ознакомьтесь также с этими статьями

Стоит отметить, что на небольших электродвигателях, используемых для бытовых нужд, например, для электроточила на 200-400 Вт, можно не использовать пусковой конденсатор, а обойтись одним рабочим конденсатором, я так делал уже не раз — рабочего конденсатора вполне хватает. Другое дело, если электродвигатель стартует со значительной нагрузкой, то тогда лучше использовать и пусковой конденсатор, который подключается параллельно рабочему конденсатору нажатием и удержанием кнопки на время разгона электродвигателя, либо с помощью специального реле. Расчет емкости пускового конденсатора осуществляется путем умножения емкостей рабочего конденсатора на 2-2.5, в данном калькуляторе используется 2.5.

При этом стоит помнить, что по мере разгона асинхронному двигателю требуется меньшая емкость конденсатора, т.е. не стоит оставлять подключенным пусковой конденсатор на все время работы, т.к. большая емкость на высоких оборотах вызовет перегрев и выход из строя электродвигателя.

Как подобрать конденсатор для трехфазного двигателя?

Конденсатор используется неполярный, на напряжение не менее 400 В. Либо современный, специально на это рассчитанный (3-й рисунок), либо советский типа МБГЧ, МБГО и т.п. (рис.4).

Итак, для расчета емкостей пускового и рабочего конденсаторов для асинхронного электродвигателя введите данные в форму ниже, эти данные вы найдете на шильдике электродвигателя, если данные неизвестны, то для расчета конденсатора можно использовать средние данные, которые подставлены в форму по умолчанию, но мощность электродвигателя нужно указать обязательно.

Онлайн калькулятор расчета емкости конденсатора

Советуем к прочтению другие наши статьи

Расчет емкости конденсатора22:

 

Как подобрать конденсатор для однофазного электродвигателя или трехфазного

Что делать, если требуется подключить двигатель к источнику, рассчитанному на другой тип напряжения (например, трехфазный двигатель к однофазной сети)? Такая необходимость может возникнуть, в частности, если нужно подключить двигатель к какому-либо оборудованию (сверлильному или наждачному станку и пр.). В этом случае используются конденсаторы, которые, однако, могут быть разного типа. Соответственно, надо иметь представление о том, какой емкости нужен конденсатор для электродвигателя, и как ее правильно рассчитать.

Что такое конденсатор

Конденсатор состоит из двух пластин, расположенных друг напротив друга. Между ними помещается диэлектрик. Его задача – снимать поляризацию, т.е. заряд близкорасположенных проводников.

Существует три вида конденсаторов:

  • Полярные. Не рекомендуется использовать их в системах, подключенных к сети переменного тока, т.к. вследствие разрушения слоя диэлектрика происходит нагрев аппарата, вызывающий короткое замыкание.
  • Неполярные. Работают в любом включении, т.к. их обкладки одинаково взаимодействуют с диэлектриком и с источником.
  • Электролитические (оксидные). В роли электродов выступает тонкая оксидная пленка. Считаются идеальным вариантом для электродвигателей с низкой частотой, т.к. имеют максимально возможную емкость (до 100000 мкФ).

Как подобрать конденсатор для трехфазного электродвигателя

Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.

Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:

  • k – специальный коэффициент, равный 4800 для подключения «треугольник» и 2800 для «звезды»;
  • Iф – номинальное значение тока статора, это значение обычно указывается на самом электродвигателе, если же оно затерто или неразборчиво, то его измеряют специальными клещами;
  • U сети – напряжение питания сети, т.е. 220 вольт.

Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.

Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора. Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.

В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой. Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения. Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.

Как подобрать конденсатор для однофазного электродвигателя

Асинхронные двигатели, рассчитанные на работу в однофазной сети, обычно подключаются на 220 вольт. Однако если в трехфазном двигателе момент подключения задается конструктивно (расположение обмоток, смещение фаз трехфазной сети), то в однофазном необходимо создать вращательный момент смещения ротора, для чего при запуске применяется дополнительная пусковая обмотка. Смещение ее фазы тока осуществляется при помощи конденсатора.

Итак, как подобрать конденсатор для однофазного электродвигателя?

Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.

Есть несколько режимов работы двигателей подобного типа:

  • Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
  • Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
  • Рабочий конденсатор + пусковой конденсатор (подключены параллельно).

Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.

Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.


Расчет конденсатора для трехфазного двигателя в однофазной сети

Для включения трехфазного электродвигателя (что такое электродвигатель ➠) в однофазную сеть обмотки статора могут быть соединены в звезду или треугольник.

Напряжение сети подводят к началам двух фаз. К началу третьей фазы и одному из зажимов сети присоединяют рабочий конденсатор 1 и отключаемый (пусковой) конденсатор 2, который необходим для увеличения пускового момента.

Пусковая емкость конденсаторов

Сп = Ср + Со,

где Ср — рабочая емкость,
Со — отключаемая емкость.

После пуска двигателя конденсатор 2 отключают.

Рабочую емкость конденсаторного двигателя для частоты 50 Гц определяют по формулам:

для схемы на рис. а: Ср = 2800 Iном / U;
для схемы на рис. б: Ср = 4800 Iном / U;
для схемы на рис. в: Ср = 1600 Iном / U;

для схемы на рис. г: Ср = 2740 Iном / U,

где Ср — рабочая емкость при номинальной нагрузке, мкФ;
Iном — номинальный ток фазы двигателя, А;
U — напряжение сети, В.

Нагрузка двигателя с конденсатором не должна превышать 65—85% номинальной мощности, указанной на щитке трехфазного двигателя.

Если пуск двигателя происходит без нагрузки, то пусковая емкость не требуется — рабочая емкость будет в то же время пусковой. В этом случае схема включения упрощается.

При пуске двигателя под нагрузкой, близкой к номинальному моменту необходимо иметь пусковую емкость Сп = (2,5 ÷ 3) Ср.

Выбор конденсаторов по номинальному напряжению производят по соотношениям:

для схемы на рис. а, б: Uк = 1,15 U;
для схемы на рис. в: Uк = 2,2 U;
для схемы на рис. г: Uк = 1,3 U,

где Uк и U — напряжения на конденсаторе и в сети.

Купить конденсаторы для запуска двигателя:
CBB60 3/4/5/6/10/12/14/16 мкФ 500 В;
CBB60 20 мкФ 450 В;
CBB60 25 мкФ 450 В;
CBB60 35 мкФ 450 В;
CBB60 50 мкФ 450 В;
CBB60 60 мкФ 450 В;
CBB60 80 мкФ 450 В;
CD60 100 мкФ 450 В;
CBB60 120 мкФ 450 В.

Основные технические данные некоторых конденсаторов приведены в таблице.

Если трехфазный электродвигатель, включенный в однофазную сеть, не достигает номинальной частоты вращения, а застревает на малой скорости, следует увеличить сопротивление клетки ротора проточкой короткозамыкающих колец или увеличить воздушный зазор шлифовкой ротора на 15—20%.

В том случае, если конденсаторы отсутствуют, можно использовать резисторы, которые включаются по тем же схемам, что и при конденсаторном пуске. Резисторы включаются вместо пусковых конденсаторов (рабочие конденсаторы отсутствуют).

Сопротивление (Ом) резистора может быть определено по формуле

,

где R — сопротивление резистора;
κ и I— кратность пускового тока и линейный ток в трехфазном режиме.

Пример расчета рабочей емкости конденсатора для двигателя

Определить рабочую емкость для двигателя АО 31/2, 0.6 кВт, 127/220 В, 4.2/2.4 А, если двигатель включен по схеме, изображенной на рис. а, а напряжение сети равно 220 В. Пуск двигателя без нагрузки.

Решение

1. Рабочая емкость Ср = 2800 x 2.4 / 220 ≈ 30 мкФ.

2. Напряжение на конденсаторе при выбранной схеме Uк = 1,15 x U = 1,15 x 220 = 253 В.

По таблице выбираем три конденсатора МБГО-2 по 10 мкФ каждый с рабочим напряжением 300 В. Конденсаторы включать параллельно.

Источник: В.И. Дьяков. Типовые расчеты по электрооборудованию.

Видео о том, как подключить электродвигатель на 220 вольт:

Помощь студентам

Трёхфазный двигатель — в однофазную сеть

Автор Светозар Тюменский На чтение 3 мин. Просмотров 21.4k. Опубликовано Обновлено

Пожалуй, наиболее распространённый и простой способ подключения трехфазного электродвигателя в однофазную сеть при отсутствии питающего напряжения ~ 380 в – это способ с применением фазосдвигающего конденсатора, через который запитывается третья обмотка электродвигателя. Перед тем, как подключать трехфазный электродвигатель в однофазную сеть убедитесь, что его обмотки соединены “треугольником” (см. рис. ниже, вариант 2), т. к. именно это соединение даст минимальные потери мощности 3х-фазного двигателя при включении его в сеть ~ 220 в.

Мощность, развиваемая трехфазным электродвигателем, включенным в однофазную сеть с такой схемой соединения обмоток может составлять до 75% его номинальной мощности. При этом частота вращения двигателя практически не отличается от его частоты при работе в трёхфазном режиме.

На рисунке показаны клеммные колодки электродвигателей и соответствующие им схемы соединения обмоток. Однако, исполнение клеммной коробки электродвигателя может отличаться от показанного ниже –  вместо клеммных колодок, в коробке может располагаться два разделённых  пучка проводов (по три в каждом).

Эти пучки проводов представляют собой “начала” и “концы” обмоток двигателя. Их необходимо «прозвонить», чтобы разделить обмотки друг от друга и соединить по нужной нам схеме “треугольник” – последовательно, когда конец одной обмотки соединяется с началом другой т. д (С1-С6, С2-С4, С3-С5).

При включении трёхфазного электродвигателя в однофазную сеть, в схему “треугольник” добавляются пусковой конденсатор Сп, который используется кратковременно (только для запуска) и рабочий конденсатор Ср.

В качестве кнопки SB для запуска эл. двигателя небольшой мощности (до 1,5 кВт) можно использовать обычную кнопку “ПУСК”, применяемую в цепях управления магнитных пускателей.

Для двигателей большей мощности стоит заменить её на коммутационный аппарат помощнее – напр, автомат. Единственным неудобством в этом случае будет необходимость ручного отключения конденсатора Сп автоматом после того как электродвигатель наберёт обороты.

Таким образом, в схеме реализована возможность двухступенчатого управления электродвигателем, уменьшая общую ёмкость конденсаторов при “разгоне” двигателя.

Если мощность двигателя невелика (до 1 кВт), то запустить его можно будет и без пускового конденсатора, оставив в схеме лишь рабочий конденсатор Ср.

Рассчитать ёмкость рабочего конденсатора можно формулой:

  • С раб = 4800 • I / U, мкФ – для двигателей, включенных в однофазную сеть с соединением обмоток “треугольник”.
  • С раб = 2800 • I / U, мкФ – для двигателей, включенных в однофазную сеть с соединением обмоток “звезда”.

Это наиболее точный способ, требующий, однако, измерения тока в цепи электродвигателя. Зная номинальную мощность двигателя, для определения ёмкости рабочего конденсатора лучше воспользоваться следующей формулой:

С раб = 66·Р ном, мкФ, где Р ном – номинальная мощность двигателя.

Упростив формулу, можно сказать, что для работы трёхфазного электродвигателя в однофазной сети, ёмкость конденсатора на каждые 0,1 кВт его мощности должна составлять около 7 мкФ.

Так, для двигателя мощностью 1,1 кВт ёмкость конденсатора должна составлять 77 мкФ. Такую ёмкость можно набрать несколькими конденсаторами, соединёнными друг с другом параллельно (общая ёмкость в этом случае будет равна суммарной), используя следующие типы: МБГЧ, БГТ, КГБ с рабочим напряжением, превышающим напряжение в сети в 1,5 раза.

Рассчитав ёмкость рабочего конденсатора можно определить ёмкость пускового – она должна превышать ёмкость рабочего в 2-3 раза. Применять конденсаторы для запуска следует тех-же типов, что и рабочие, в крайнем случае и при условии очень кратковременного запуска можно применить электролитические – типов К50-3, КЭ-2, ЭГЦ-М, рассчитанных на напряжение не менее 450 в.

Как подключить трёхфазный двигатель к однофазной сети.


подключение двигателя 380 на 220 вольт


правильный подбор конденсаторов для электродвигателя


Определение емкостей фазосдвигающих конденсаторов. Рабочий и пусковой конденсаторы

Самый простой способ включения трехфазного электродвигателя в однофазную сеть, это с помощью одного фазосдвигающего конденсатора. В качестве такого конденсатора нужно использовать только неполярные конденсаторы, а не полевые (электролитические).

Фазосдвигающий конденсатор.

При подключении трехфазного электродвигателя к трехфазной сети пуск обеспечивается за счет переменного магнитного поля. А при подключении двигателя к однофазной сети достаточный сдвиг магнитного поля не создается, поэтому нужно использовать фазосдвигающий конденсатор.

Емкость фазосдвигающего конденсатора нужно рассчитать так:

  • для соединения «треугольником»: Сф=4800•I/U;
  • для соединения «звездой»: Сф=2800•I/U.

Об этих типах соединения можно подробнее ознакомиться тут: 

В этих формулах: Сф – емкость фазосдвигающего конденсатора, мкФ; I– номинальный ток, А; U– напряжение сети, В.

Номинальный ток, тоже можно высчитать, так: I=P/(1,73•U•n•cosф).

В этой формуле такие сокращения: P – мощность электродвигателя, обязательно в кВт; cosф – коэффициент мощности; n – КПД двигателя.

Коэффициент мощности или смещения тока к напряжению, а также КПД электродвигателя указывается в паспорте или в табличке (шильдике) на двигателе. Значения эти двух показателей часто бывают одинаковыми и чаще всего равны 0,8-0,9.

Грубо можно определить емкость фазосдвигающего конденсатора так: Сф=70•P. Получается так, что на каждые 100 Вт нужно по 7мкФ емкости конденсатора, но это не точно.

В конечном итоге правильность определения емкости конденсатора покажет работа электродвигателя. Если двигатель не будет запускаться, значит, емкости мало. В случае, когда двигатель при работе сильно нагревается, значит, емкости много.

Рабочий конденсатор.

Найденной по предложенным формулам емкости фазосдвигающего конденсатора достаточно только для пуска трехфазного электродвигателя, не нагруженного. То есть, когда на валу двигателя нет никаких механических передач.

Рассчитанный конденсатор будет обеспечивать работу электродвигателя и когда он выйдет на рабочие обороты, поэтому такой конденсатор еще называется рабочим.

Пусковой конденсатор.

Ранее было сказано, что ненагруженный электродвигатель, то есть небольшой вентилятор, шлифовальный станок можно запустить от одного фазосдвигающего конденсатора. А вот, запустить сверлильный станок, циркулярную пилу, водяной насос уже не получиться запустить от одного конденсатора.

Чтобы запустить нагруженный электродвигатель нужно к имеющемуся фазосдвигающему конденсатору кратковременно добавить емкости. А конкретно, нужно уже к подсоединенному рабочему конденсатору подключить параллельно еще один фазосдвигающий конденсатор. Но только на короткое время на 2 – 3 секунды. Потому что когда электродвигатель наберет высокие обороты, через обмотку, к торой подключены два фазосдвигающих конденсатора, будет протекать завышенный ток. Большой ток нагреет обмотку электродвигателя, и разрушит ее изоляцию.

Подключенный дополнительно и параллельно конденсатор к уже имеющемуся фазосдвигающему (рабочему) конденсатору называется пусковым.

Для слабонагруженных электродвигателей вентиляторов, циркулярных пил, сверлильных станков емкость пускового конденсатора выбирается равной емкости рабочего конденсатора.

Для нагруженных двигателей водяных насосов, циркулярных пил нужно выбирать емкость пускового конденсатора в два раза больше, чем у рабочего.

Очень удобно, для точного подбора нужных емкостей фазосдвигающих конденсаторов (рабочего и пускового) собрать батарею параллельно соединенных конденсаторов. Конденсаторы соединенные вместе нужно взять небольшими емкостями 2, 4, 10, 15 мкФ.

При выборе по напряжению любого конденсатора нужно пользоваться универсальным правилом. Напряжение, на которое конденсатор рассчитан должно быть в 1,5 раз выше того напряжения, куда он будет подключен.

Как подобрать конденсатор для трехфазного двигателя

К каждому объекту изначально подается трехфазный ток. Основная причина заключается в использовании на электростанциях генераторов с трехфазными обмотками, сдвинутыми по фазе между собой на 120 градусов и вырабатывающими три синусоидальных напряжения. Однако при дальнейшем распределении тока потребителю подводится только одна фаза, к которой и подключается все имеющееся электрооборудование. Иногда возникает необходимость в использовании нестандартных устройств, например как подобрать конденсатор для трехфазного двигателя. Как правило, требуется рассчитать емкость данного элемента, обеспечивающего устойчивую работу агрегата.

Принцип подключения трехфазного устройства к одной фазе

Во всех квартирах и большинстве частных домов все внутреннее энергоснабжение осуществляется по однофазным сетям. В этих условиях иногда необходимо выполнить подключение трехфазного двигателя к однофазной сети. Эта операция вполне возможна с физической точки зрения, поскольку отдельно взятые фазы различаются между собой лишь сдвигом по времени.

Подобный сдвиг легко организовать путем включения в цепь любых реактивных элементов – емкостных или индуктивных. Именно они выполняют функцию фазосдвигающих устройств когда используются рабочего и пускового элементов.

Следует учитывать то обстоятельство, что обмотка статора сама по себе обладает индуктивностью. В связи с этим, вполне достаточно снаружи двигателя подключить конденсатор с определенной емкостью. Одновременно, обмотки статора соединяются таким образом, чтобы первая из них сдвигала фазу другой обмотки в одну сторону, а в третьей обмотке конденсатор выполняет эту же процедуру, только в другом направлении. В итоге образуются требуемые фазы в количестве трех, добытые из однофазного питающего провода.

Таким образом, трехфазный двигатель выступает в качестве нагрузки лишь для одной фазы подключенного питания. В результате, в потребляемой энергии образуется дисбаланс, отрицательно влияющий на общую работу сети. Поэтому такой режим рекомендуется использовать в течение непродолжительного времени для электродвигателей небольшой мощности. Подключение обмоток в однофазную сеть может быть выполнено двумя способами – звездой или треугольником.

Схемы подключения трехфазного двигателя к однофазной сети

Когда трехфазный электродвигатель планируется включать в однофазную сеть, рекомендуется отдавать предпочтение соединению треугольником. Об этом предупреждает информационная табличка, закрепленная на корпусе. В некоторых случаях здесь стоит обозначение «Y», что означает соединение звездой. Рекомендуется переподключить обмотки по схеме треугольника, чтобы избежать больших потерь мощности.

Электродвигатель включается в одну из фаз однофазной сети, а две другие фазы создаются искусственным путем. Для этого используется рабочий (Ср) и пусковой конденсатор (Сп). В самом начале запуска двигателя необходим высокий уровень стартового тока, который не может быть обеспечен одним лишь рабочим конденсатором. На помощь приходит стартовый или пусковой конденсатор, подключаемый параллельно с рабочим конденсатором. При незначительной мощности двигателя их показатели равны между собой. Специально выпускаемые стартовые конденсаторы имеют маркировку «Starting».

Эти устройства работают только в периоды пуска, для того чтобы разогнать двигатель до нужной мощности. В дальнейшем он выключается с помощью кнопочного или двойного выключателя.

Виды пусковых конденсаторов

Небольшие электродвигатели, мощность которых не превышает 200-400 ватт, могут работать без пускового устройства. Для них вполне достаточно одного рабочего конденсатора. Однако при наличии значительных нагрузок на старте, обязательно используются дополнительные пусковые конденсаторы. Он подключается параллельно с рабочим конденсатором и в период разгона удерживается во включенном положении с помощью специальной кнопки или реле.

Для расчета емкости пускового элемента необходимо умножить емкость рабочего конденсатора на коэффициент, равный 2 или 2,5. В процессе разгона двигатель требует емкость все меньше и меньше. В связи с этим, не стоит держать пусковой конденсатор постоянно включенным. Высокая емкость при больших оборотах приведет к перегреву и выходу из строя агрегата.

В стандартную конструкцию конденсатора входят две пластины, расположенные напротив друг друга и разделенные слоем диэлектрика. При выборе того или иного элемента, необходимо учитывать его параметры и технические характеристики.

Все конденсаторы представлены тремя основными видами:

  • Полярные. Не могут работать с электродвигателями, подключенными к переменному току. Разрушающийся слой диэлектрика может привести к нагреву агрегата и последующему короткому замыканию.
  • Неполярные. Получили наибольшее распространение. Могут работать в любых вариантах включения за счет одинакового взаимодействия обкладок с диэлектриком и источником тока.
  • Электролитические. В этом случае электроды представляют собой тонкую оксидную пленку. Они могут достигать максимально возможной емкости до 100 тыс. мкФ, идеально подходят к двигателям с низкой частотой.

Выбор конденсатора для трехфазного двигателя

Конденсаторы, предназначенные для трехфазного мотора, должны иметь достаточно высокую емкость – от десятков до сотен микрофарад. Электролитические конденсаторы не годятся для этих целей, поскольку для них требуется однополярное подключение. То есть, специально для этих устройств потребуется создание выпрямителя с диодами и сопротивлениями.

Постепенно в таких конденсаторах происходит высыхание электролита, что приводит к потере емкости. Кроме того, в процессе эксплуатации данные элементы иногда взрываются. Если все же решено использовать электролитические устройства, нужно обязательно учитывать эти особенности.

Классическим примеров служат элементы, представленные на рисунке. Слева изображен рабочий конденсатор, а справа – пусковой.

Подбор конденсатора для трехфазного двигателя выполняется опытным путем. Емкость рабочего устройства выбирается из расчета 7 мкФ на 100 Вт мощности. Следовательно, 600 Вт будет соответствовать 42 мкФ. Пусковой конденсатор как минимум в 2 раза превышает емкость рабочего. Таким образом 2 х 45 = 90 мкФ будет наиболее подходящим показателем.

Выбор осуществляется постепенно, исходя из работы двигателя, поскольку его реальная мощность напрямую зависит от емкости используемых конденсаторов. Кроме того, это можно сделать по специальной таблице. При недостатке емкости двигатель будет терять свою мощность, а при ее избытке наступит перегрев от чрезмерного тока. Если конденсатор выбран правильно, то двигатель будет работать нормально, без рывков и посторонних шумов. Более точно подбираем устройство путем расчетов, выполняемых по специальным формулам.

Расчет емкости

Емкость конденсатора для электродвигателя рассчитывается исходя из схемы соединения обмоток – звездой или треугольником.

В обоих случаях применяется общая расчетная формула: Сраб = к х Iф/Uсети, к которой все параметры имеют следующие обозначения:

  • к – является специальным коэффициентом. Его значение составляет 2800 для схемы «звезда» и 4800 для схемы «треугольник».
  • Iф – номинальный ток статора, указанный на информационной табличке. При невозможности прочтения, выполняются измерения с помощью специальных измерительных клещей.
  • Uсети – напряжение питающей сети, величиной в 220 вольт.

Подставив все необходимые значения, можно легко рассчитать, какая емкость будет у рабочего конденсатора (мкФ). Во время расчетов необходимо учитывать ток, поступающий к фазной обмотке статора. Он не должен превышать номинальное значение, точно так же, как нагрузка двигателя с конденсатором должна быть не выше 60-80% номинальной мощности, обозначенной на информационной табличке.

Как подключить пусковой и рабочий конденсаторы

На рисунке указана простейшая схема подключения пускового и рабочего элементов. Первый из них устанавливается сверху, а второй – снизу. Одновременно к двигателю подключается кнопка включения и выключения. Самое главное – внимательно разобраться с проводами, чтобы не перепутать концы.

Данная схема позволяет выполнить предварительную проверку с неточной прикидкой. Она же используется и после окончательного выбора наиболее оптимального значения.

Такой подбор осуществляется экспериментальным путем с использованием нескольких конденсаторов разной емкости. При параллельном подключении их суммарная мощность будет увеличиваться. В это время нужно контролировать работу двигателя. Если работа устойчивая и ровная, в этом случае можно покупать конденсатор с емкостью, равной сумме емкостей проверочных элементов.

Подбор рабочего конденсатора к трехфазному электродвигателю


Для ответа на вопрос, как подобрать конденсатор для асинхронных двигателей и чем конденсаторы отличаются друг от друга, соберем стенд из обычного трехфазного двигателя мощностью 250 Вт. В качестве нагрузки используем стандартный генератор от автомобиля ВАЗ.

Подключим через автоматы три разных конденсатора. Включение/отключение автоматов даст возможность проверить возможности конденсаторов.

Подбираем конденсатор


Для эксперимента выберем три конденсатора емкостью 10, 20 и 50 микрофарад. Наша задача заключается в попытке запуска электродвигателя с каждого конденсатора по очереди.

Конденсатор на 10 мкФ


При подключении к сети 220 В и включения первого конденсатора емкостью 10 микрофарад электродвигатель включается только после толчка рукой. Автоматического запуска не происходит.

Вывод: для электродвигателя мощностью 250 Вт емкости конденсатора в 10 микрофарад недостаточно.

Конденсатор на 20 мкФ


При попытке запустить электродвигатель от конденсатора емкостью 20 МкФ включение двигателя в работу происходит автоматически.

Вывод: при емкости конденсатора 20 микрофарад электродвигатель запустился без проблем.

Конденсатор на 50 мкФ



При продолжении эксперимента с конденсатором емкостью 50 микрофарад электродвигатель запускается автоматически, однако работает с высоким уровнем шума и просто трясется.
Вывод: емкость последнего испытанного конденсатора велика для установленного электродвигателя.
Подбирая конденсатор для маломощного трехфазного электродвигателя, отдавайте предпочтение устройству с номинальной емкостью (как в нашем эксперименте), соответствующей мощности двигателя. Конденсатор малой емкости электродвигатель не запускает, слишком большой емкости – вызывает нагрев двигателя и большой шум в работе. Оптимально себя в эксперименте зарекомендовал конденсатор емкостью 20 МкФ, который сразу запустил двигатель и не вызвал его перегрева.

Заключение


Для запуска трехфазного электродвигателя в сети 220 В рабочий конденсатор подбирается исходя из мощности двигателя. При возрастании мощности на каждые 100 Вт емкость должна возрастать на 7-10 микрофарад. Например, для двигателя мощностью 0,5 КВт можно подобрать конденсатор емкостью в пределах 35-50 МкФ.
Также нужно учитывать такой параметр, как номинальное напряжение устройства (то есть то напряжение, которое способен выдержать конденсатор). В работе рекомендуется применять конденсаторы с параметрами, на 100% превышающими реальное напряжение, прилагаемое к устройству. Для данного примера это 450 В.

Смотрите подробное видео


Как найти размер конденсатора в кВАр и фарадах для коррекции коэффициента мощности

Как найти правильное значение емкости конденсатора в кВАр и микрофарадах для коррекции коэффициента мощности — 3 метода

Поскольку мы получили много электронных писем и сообщений от аудитории для составьте пошаговое руководство, в котором показано, как рассчитать надлежащий размер конденсаторной батареи в кВАр и микрофарадах для коррекции коэффициента мощности и улучшения как в однофазных, так и в трехфазных цепях.

В этой статье будет показано, как найти конденсаторную батарею подходящего размера как в микрофарадах, так и в кВАр, чтобы улучшить существующие «i.е. отставание »P.F от целевого« т. е. желаемый », поскольку скорректированный коэффициент мощности имеет множество преимуществ. Ниже мы показали три различных метода с решенными примерами для определения точного значения емкости конденсатора для коррекции коэффициента мощности.

Теперь давайте начнем и рассмотрим следующие примеры…

Как рассчитать значение конденсатора в кВАр?

Пример: 1

Трехфазный асинхронный двигатель мощностью 5 кВт имеет P.F (коэффициент мощности) 0,75 с запаздыванием. Какой размер конденсатора в кВАр требуется для повышения коэффициента мощности до 0,90?

Решение № 1 (простой метод с использованием табличного умножителя)

Потребляемая мощность двигателя = 5 кВт

Из таблицы множитель для улучшения коэффициента мощности с 0,75 до 0,90 составляет 0,398

Требуемый кВАр конденсатора для повышения коэффициента мощности с 0,75 до 0,90

Требуемый конденсатор, кВАр = кВт x Таблица 1, множитель 0,75 и 0,90

= 5 кВт x 0,398

= 1.99 кВАр

И номинал конденсаторов, подключенных в каждой фазе

= 1,99 кВАр / 3

= 0,663 кВАр

Решение № 2 (классический метод расчета)

Входная мощность двигателя = P = 5 кВт

Исходный коэффициент мощности = Cosθ 1 = 0,75

Конечный коэффициент мощности = Cosθ 2 = 0,90

θ 1 = Cos -1 = (0,75) = 41 ° 0,41; Tan θ 1 = Tan (41 ° .41) = 0,8819

θ 2 = Cos -1 = (0.90) = 25 ° 0,84; Tan θ 2 = Tan (25 ° .50) = 0,4843

Требуемый конденсатор, кВАр для улучшения коэффициента мощности с 0,75 до 0,90

Требуемый конденсатор, кВАр = P (Tan θ 1 — Tan θ 2 )

= 5 кВт (0,8819 — 0,4843)

= 1,99 кВАр

И номинал конденсаторов, подключенных в каждой фазе

1,99 кВАр / 3 = 0,663 кВАр

Примечание: Таблицы размеров конденсатора в кВАр и микрофарад

Следующие таблицы (приведенные в конце этого поста) были подготовлены для упрощения расчета кВАр для улучшения коэффициента мощности.Размер конденсатора в кВАр — это мощность в кВт, умноженная на коэффициент в таблице для улучшения существующего коэффициента мощности до предлагаемого коэффициента мощности. Ознакомьтесь с другими решенными примерами ниже.

Пример 2:

Генератор выдает нагрузку 650 кВт при коэффициенте мощности 0,65. Какой размер конденсатора в кВАр требуется, чтобы повысить коэффициент мощности (P.F) до единицы (1)? И сколько еще кВт может выдать генератор при той же нагрузке в кВА, когда коэффициент мощности улучшится.

Решение № 1 (Простой метод таблицы с использованием Таблица Несколько )

Подача кВт = 650 кВт

Из таблицы 1, множитель для улучшения коэффициента мощности с 0.65 к единице (1) составляет 1,169

Требуемый конденсатор кВАр для улучшения коэффициента мощности с 0,65 до единицы (1).

Требуемый конденсатор, кВАр = кВт x Таблица 1, множитель 0,65 и 1,0

= 650 кВт x 1,169

= 759,85 кВАр

Мы знаем, что P.F = Cosθ = кВт / кВА. . .or

кВА = кВт / Cosθ

= 650 / 0,65 = 1000 кВА

Когда коэффициент мощности повышается до единицы (1)

Количество кВт = кВА x Cosθ

= 1000 x 1 = 1000 кВт

Следовательно увеличенная мощность от генератора

1000 кВт — 650 кВт = 350 кВт

Решение № 2 (классический метод расчета)

Подача кВт = 650 кВт

Оригинал P.F = Cosθ 1 = 0,65

Конечная P.F = Cosθ 2 = 1

θ 1 = Cos -1 = (0,65) = 49 ° 0,45; Tan θ 1 = Tan (41 ° .24) = 1,169

θ 2 = Cos -1 = (1) = 0 °; Tan θ 2 = Tan (0 °) = 0

Требуемый конденсатор, кВАр для улучшения коэффициента мощности с 0,75 до 0,90

Требуемый конденсатор, кВАр = P (Tan θ 1 — Tan θ 2 )

= 650 кВт ( 1,169–0)

= 759.85 кВАр

Как рассчитать емкость конденсатора в микрофарадах и кВАр?

Следующие методы показывают, что , как определить требуемую емкость конденсаторной батареи как в кВАр, так и в микрофарадах . Кроме того, решенные примеры также показывают, что как преобразовать емкость конденсатора в микрофарадах в кВАр и кВАр в микрофарады для P.F. Таким образом, конденсаторная батарея нужного размера может быть установлена ​​параллельно каждой стороне фазовой нагрузки для получения заданного коэффициента мощности.

Пример: 3

Однофазный двигатель с напряжением 500 вольт 60 c / с потребляет ток полной нагрузки 50 ампер с запаздыванием по коэффициенту мощности 0,86. Коэффициент мощности двигателя необходимо повысить до 0,94, подключив к нему батарею конденсаторов. Рассчитать требуемую емкость конденсатора как в кВАр, так и в мк-фарадах?

Решение:

(1) Найти требуемую емкость емкости в кВАр для улучшения коэффициента мощности с 0,86 до 0,94 (два метода)

Решение № 1 (метод таблицы)

Двигатель Вход = P = V x I x Cosθ

= 500 В x 50 А x 0.86

= 21,5 кВт

Из таблицы, множитель для повышения коэффициента мощности с 0,86 до 0,94 составляет 0,230

Требуемый конденсатор, кВАр для повышения коэффициента мощности с 0,86 до 0,94

Требуемый конденсатор, кВАр = кВт x табличный множитель 0,86 и 0,94

= 21,5 кВт x 0,230

= 4,9 кВАр

Решение № 2 (метод расчета)

Вход двигателя = P = V x I x Cosθ

= 500 В x 50 A x 0.86

= 21,5 кВт

Фактический или существующий коэффициент мощности = Cosθ 1 = 0,86

Требуемый или целевой коэффициент мощности = Cosθ 2 = 0,94

θ 1 = Cos -1 = (0,86) = 30,68 °; Tan θ 1 = Tan (30,68 °) = 0,593

θ 2 = Cos -1 = (0,95) = 19,94 °; Tan θ 2 = Tan (19,94 °) = 0,363

Требуемый конденсатор, кВАр для улучшения коэффициента мощности с 0,86 до 0,95

Требуемый конденсатор, кВАр = P, кВт (Tan θ 1 — Tan θ 2 )

= 21.5 кВт (0,593 — 0,363)

= 4,954 кВАр

(2) Найти требуемую емкость в фарадах для повышения коэффициента мощности с 0,86 до 0,97 (два метода)

Решение № 1 (метод таблицы)

Мы уже рассчитали требуемую емкость конденсатора в кВАр, поэтому мы можем легко преобразовать ее в фарады с помощью этой простой формулы

Требуемая емкость конденсатора в фарадах / микрофарадах

  • C = кВАр / (2π x f x В 2 ) в Фараде
  • C = кВАр x 10 9 / (2π x f x В 2 ) в Микрофараде

Ввод значений в формулу выше

= (4.954 кВАр) / (2 x π x 60 Гц x 500 2 В)

= 52,56 мкФ

Решение № 2 (метод расчета)

кВАр = 4,954… (i)

Мы знаем который;

I C = V / X C

Тогда как X C = 1 / 2π x f x C

I C = V / (1 / 2π x f x C)

I C = V x 2π x f x C

= (500V) x 2π x (60 Гц) x C

I C = 188495.5 x C

And,

kVAR = (V x I C ) / 1000… [kVAR = (V x I) / 1000]

= 500V x 188495,5 x C

I C = 94247750 x C… (ii)

Приравнивая уравнения (i) и (ii), мы получаем

94247750 x C = 4,954 кВАр x C

C = 4,954 кВАр / 94247750

C = 78,2 мкФ

Пример 4

Какое значение емкости должно быть подключено параллельно с нагрузкой 1 кВт при 70% отстающем коэффициенте мощности от источника 208 В, 60 Гц, чтобы поднять общий коэффициент мощности до 91%.

Решение:

Вы можете использовать метод таблицы или метод простого расчета, чтобы найти требуемое значение емкости в фарадах или кВАр для увеличения коэффициента мощности с 0,71 до 0,97. Итак, в этом случае мы использовали метод таблицы.

P = 1000 Вт

Фактический коэффициент мощности = Cosθ 1 = 0,71

Требуемый коэффициент мощности = Cosθ 2 = 0,97

Из таблицы, множитель для улучшения коэффициента мощности с 0,71 до 0,97 составляет 0,741

Требуемый конденсатор, кВАр до улучшить П.F от 0,71 до 0,97

Требуемый конденсатор, кВАр = кВт x табличный множитель 0,71 и 0,97

= 1 кВт x 0,741

= 741 ВАр или 0,741 кВАр (требуемое значение емкости в кВАр)

Ток в конденсаторе =

I C = Q C / V

= 741 кВАр / 208 В

= 3,56 A

И

X C = V / I C

= 208 В / 3,76 = 58,42 Ом

C = 1 / (2π x f x X C )

C = 1 (2π x 60 Гц x 58.42 Ом)

C = 45,4 мкФ (требуемое значение емкости в фарадах)

Конденсатор кВАр в мкФарад и мкфарад в кВАр Преобразование

Следующие формулы используются для расчета и преобразования конденсатора кВАр в Фарад и наоборот.

Требуемый конденсатор в кВАр

Конденсатор преобразовывает фарады и микрофарады в вар, кВАр и мВАр.

  • VAR = C x 2π x f x V 2 x 10 -6 … VAR
  • VAR = C в мкФ x f x В 2 / (159.155 x 10 3 )… дюйм Вар.
  • кВАр = C x x f x В 2 x 10 -9 … дюйм кВАр
  • кВАр = C в мкФ x f x V 2 ÷ (159,155 x 10 6 )… в кВАр
  • МВАр = C x x f x В 2 x 10 -12 … в МВАр
  • МВАр = C в мкФ x f x В 2 ÷ (159.155 x 10 9 )… в МВАр

Требуемый конденсатор в фарадах / микрофарадах.

Конденсатор преобразователя, кВАр в фарадах и микрофарадах

  • C = кВАр x 10 3 / 2π x f x В 2 … в фарадах
  • 16 x 159,1 Q в кВАр / f x В 2 … в Фарадах
  • C = кВАр x 10 9 / (2π x f x В 2 ) … в микрофарадах
  • C = 159.155 x 10 6 x Q в кВАр / f x В 2 … в микрофарадах

Где:

Полезно знать:

Ниже приведены важные электрические формулы используется при расчете улучшения коэффициента мощности.

Активная мощность (P) в ваттах:

  • кВт = кВА x Cosθ
  • кВт = л.с. x 0,746 или (л.с. x 0,746) / КПД… (л.с. = мощность двигателя в лошадиных силах)
  • кВт = √ (кВА 2 — кВАр 2 )
  • кВт = P = V x I Cosθ… (однофазный)
  • кВт = P = √3x V x I Cosθ… (трехфазный межфазный)
  • кВт = P = 3x V x I Cosθ… (трехфазная фаза)

Полная мощность (S) в ВА:

  • кВА = √ (кВт 2 + кВАр 2 )
  • кВА = кВт / Cosθ

Реактивная мощность (Q) в ВА:

  • кВАр = √ (кВА 2 — кВт 2 )
  • кВАр = C x (2π x f x В 2 )

Коэффициент мощности (от 0.От 1 до 1)

  • Коэффициент мощности = Cosθ = P / VI… (однофазный)
  • Коэффициент мощности = Cosθ = P / (√3x V x I)… (трехфазный межфазный)
  • Коэффициент мощности = Cosθ = P / (3x V x I)… (трехфазная линия на нейтраль)
  • Коэффициент мощности = Cosθ = кВт / кВА… (как однофазный, так и трехфазный)
  • Коэффициент мощности = Cosθ = R / Z… (сопротивление / Импеданс)

And

  • X C = 1 / (2π x f x C)… (X C = емкостное реактивное сопротивление)
  • I C = V / X C … (I = V / R)

Связанные сообщения:

Калькуляторы размера батареи конденсаторов и коррекции коэффициента мощности

Если два вышеупомянутых метода кажутся немного сложными (что не должно быть по крайней мере), вы можете затем использовать следующие Онлайн калькуляторы коэффициента мощности кВАр и микрофарад, сделанные нашей командой для вас.

Таблица размеров конденсаторов и таблица для коррекции коэффициента мощности

Следующая таблица коррекции коэффициента мощности может использоваться, чтобы легко найти правильный размер батареи конденсаторов для желаемого улучшения коэффициента мощности. Например, если вам нужно улучшить существующий коэффициент мощности с 0,6 до 0,98, просто посмотрите на множитель для обоих цифр в таблице, равный 1,030. Умножьте это число на существующую активную мощность в кВт. Вы можете найти реальную мощность, умножив напряжение на ток и существующий отстающий коэффициент мощности i.е. P в ваттах = напряжение в вольтах x ток в амперах x Cosθ 1 . Таким простым способом вы найдете необходимое значение емкости в кВАр, которое необходимо для получения желаемого коэффициента мощности.

Таблица — от 0,01 до 0,25 Таблица — от 0,26 до 0,50 Таблица — от 0,51 до 0,75 Таблица — от 0,76 до 1,0

Вот вся таблица, если вам ее нужно скачать в качестве справки.

Вся таблица — от 0.10 до 1.0 (Щелкните изображение, чтобы увеличить)

Похожие сообщения

Пусковой конденсатор двигателя | Приложения

Конденсаторы моторные

Асинхронные двигатели

переменного тока, также известные как асинхронные двигатели, используют вращающееся магнитное поле для создания крутящего момента.Трехфазные двигатели получили широкое распространение, поскольку они надежны и экономичны. Вращающееся магнитное поле легко достигается в трехфазных асинхронных двигателях, поскольку сдвиг фазового угла между отдельными фазами составляет 120 градусов. Однако однофазные двигатели переменного тока требуют внешней схемы, которая создает сдвиг фазового угла для создания вращающегося магнитного поля. Эта схема может быть реализована с использованием усовершенствованной силовой электроники или, проще говоря, с использованием конденсатора двигателя.

На видео ниже показано простое для понимания объяснение принципа работы асинхронного двигателя переменного тока.

Однофазные асинхронные двигатели переменного тока

Однокатушечные асинхронные двигатели переменного тока

Асинхронные двигатели

переменного тока обычно используют две или более катушек для создания вращающегося магнитного поля, которое создает крутящий момент на роторе. Когда используется одна катушка, она генерирует пульсирующее магнитное поле, которого достаточно для поддержания вращения, но недостаточно для запуска двигателя с места. Двигатели с одной катушкой должны запускаться с использованием внешней силы и могут вращаться в любом направлении.Направление вращения зависит от внешней силы. Если двигатель был запущен по часовой стрелке, он будет продолжать вращаться и набирать скорость по часовой стрелке, пока не достигнет максимальной скорости, которая определяется частотой источника питания. Точно так же он продолжит вращение против часовой стрелки, если первоначальное вращение было против часовой стрелки. Эти двигатели непрактичны из-за невозможности самостоятельно надежно начать вращение.

Пусковой конденсатор асинхронных двигателей переменного тока

Одним из способов улучшения конструкции с одной катушкой является использование вспомогательной катушки последовательно с пусковым конденсатором двигателя.Вспомогательная катушка, также называемая пусковой катушкой, используется для создания начального вращающегося магнитного поля. Чтобы создать вращающееся магнитное поле, ток, протекающий через основную обмотку, должен быть в противофазе по отношению к току, протекающему через вспомогательную обмотку. Роль пускового конденсатора заключается в том, чтобы задерживать ток во вспомогательной обмотке, выводя эти два тока в противофазе. Когда ротор достигает достаточной скорости, вспомогательная катушка отключается от цепи с помощью центробежного переключателя, а двигатель остается запитанным от одной катушки, создающей пульсирующее магнитное поле.В этом смысле вспомогательную катушку в этой конструкции можно рассматривать как пусковую катушку, поскольку она используется только во время запуска двигателя.

Конденсатор пусковой / рабочий, индукционные двигатели переменного тока

Другим способом дальнейшего улучшения конструкции однофазного асинхронного двигателя с одной катушкой является введение вспомогательной катушки, которая остается под напряжением не только во время фазы запуска двигателя, но и во время нормальной работы. В отличие от двигателя переменного тока, использующего только пусковой конденсатор двигателя, который создает пульсирующее магнитное поле во время нормальной работы, двигатели переменного тока, использующие пусковой конденсатор двигателя и рабочий конденсатор двигателя, создают вращающееся магнитное поле во время нормальной работы.Функция пускового конденсатора двигателя остается такой же, как и в предыдущем случае — он отключается от цепи после того, как ротор достигает заданной скорости с помощью центробежного переключателя. После этого вспомогательная обмотка остается запитанной через рабочий конденсатор двигателя. На рисунке ниже показан этот тип конструкции.

Конденсаторы пуска и пуска двигателя

Пусковые конденсаторы

Пусковые конденсаторы двигателя используются во время фазы запуска двигателя и отключаются от цепи, когда ротор достигает заданной скорости, которая обычно составляет около 75% максимальной скорости для этого типа двигателя.Эти конденсаторы обычно имеют емкость более 70 мкФ. Они бывают разных номиналов напряжения, в зависимости от области применения, для которой они предназначены.

Рабочие конденсаторы

В некоторых конструкциях однофазных двигателей переменного тока используются рабочие конденсаторы, которые остаются подключенными к вспомогательной катушке даже после того, как пусковой конденсатор отключен центробежным переключателем. Эти конструкции работают, создавая вращающееся магнитное поле. Конденсаторы для работы двигателя предназначены для непрерывного режима работы и остаются под напряжением при включении двигателя, поэтому вместо электролитических конденсаторов используются полимерные конденсаторы с низкими потерями.Значение емкости рабочих конденсаторов обычно ниже, чем емкость пусковых конденсаторов, и часто находится в диапазоне от 1,5 мкФ до 100 мкФ. Выбор неправильного значения емкости для двигателя может привести к неравномерному магнитному полю, что может проявляться как неравномерная скорость вращения двигателя, особенно под нагрузкой. Это может вызвать дополнительный шум от двигателя, падение производительности и повышенное потребление энергии, а также дополнительный нагрев, который может вызвать перегрев двигателя.

Приложения

Пусковые и пусковые конденсаторы двигателя используются в однофазных асинхронных двигателях переменного тока.Такие двигатели используются, когда однофазный источник питания более практичен, чем трехфазный, например, в бытовых приборах. Однако они не так эффективны, как трехфазные асинхронные двигатели переменного тока. Фактически, однофазные двигатели переменного тока в 2-4 раза менее эффективны, чем трехфазные двигатели переменного тока, поэтому они используются только для менее мощных двигателей. Типичные области применения, в которых используются пусковые и работающие конденсаторы двигателя, включают электроинструменты, стиральные машины, сушильные машины, посудомоечные машины, пылесосы, кондиционеры и компрессоры.

Как использовать трехфазный двигатель в однофазном источнике питания

На этот раз я хотел бы поделиться некоторыми важными знаниями, которые я использовал при возникновении аварийной или критической ситуации. Что вы делаете, если у вас есть только трехфазный двигатель и однофазный источник питания?

Как использовать трехфазный двигатель в однофазном источнике питания? На самом деле трехфазный двигатель может работать в однофазном питании с помощью постоянного КОНДЕНСАТОРА. Эта небольшая вещь (конденсатор) очень полезна для работы трехфазного двигателя в однофазном питании. поставлять.

Согласно нашему последнему обсуждению трехфазного двигателя, обычно у него есть две (2) общие обмотки, соединение ЗВЕЗДА или ТРЕУГОЛЬНИК. В этом посте я объяснил, как подключить конденсатор в трехфазном двигателе, как изменить вращение двигателя, как оценить значение емкости и выбрать подходящий конденсатор.

Как установить и подключить конденсатор для трехфазного двигателя с однофазным питанием?

1) Подключение конденсатора для вращения ВПЕРЕД

-Для вращения ВПЕРЕД, мы должны установить конденсатор в соединение ТРЕУГОЛЬНИК, как показано на рисунке ниже.

* символ -> Изменение клеммы подключения * конденсатора позволяет инвертировать направление вращения двигателя.

2) Подключение конденсатора для ОБРАТНОГО вращения

— Для ОБРАТНОГО вращения мы должны установить конденсатор в любые две фазы обмотки в соединении ЗВЕЗДА (Y), как показано на рисунке ниже.

* символ -> Изменение клеммы подключения * конденсатора позволяет инвертировать направление вращения двигателя.

Мощность двигателя

Мы должны учитывать выходную мощность двигателя при переходе с трехфазного источника питания на однофазный, чтобы соответствовать и подходить для нашего приложения. Но мы не можем получить фактическое значение из-за множества аспектов, которые мы должны вычислить, и это так сложно. можно оценить приблизительное значение мощности двигателя в процентах (%) ниже: —

Как выбрать подходящий конденсатор?

Это очень важное решение, которое мы должны учитывать относительно размера конденсатора при планировании работы трехфазного двигателя от однофазного источника питания.При неправильном выборе это может повлиять на состояние двигателя, а его производительность также может повредить обмотку двигателя.

Ниже приводится приблизительное значение требуемого конденсатора. Мы должны учитывать рабочее напряжение VS напряжение сети, чтобы избежать повреждения обмотки трехфазного двигателя или самого конденсатора. См. Таблицу ниже: —

Коррекция коэффициента мощности асинхронных двигателей

Подключение конденсаторной батареи и уставки защиты

Индивидуальная компенсация двигателя рекомендуется, если мощность двигателя (кВА) больше заявленной мощности установки.

Общие меры предосторожности

Из-за небольшого потребления кВт коэффициент мощности двигателя очень низкий на холостом ходу или при небольшой нагрузке.Реактивный ток двигателя остается практически постоянным при всех нагрузках, так что ряд ненагруженных двигателей составляет потребление реактивной мощности, которое, как правило, наносит ущерб установке по причинам, объясненным в предыдущих разделах.

Таким образом, два хороших общих правила заключаются в том, что ненагруженные двигатели должны быть выключены, а двигатели не должны быть слишком большого размера (поскольку в этом случае они будут слегка нагружены).

Подключение

Конденсаторная батарея должна подключаться непосредственно к клеммам двигателя.

Моторы специальные

Не рекомендуется использовать специальные двигатели (шаговые, пробивные, толчковые, реверсивные и т. Д.).

Влияние на настройки защиты

После применения компенсации к двигателю, ток в комбинации двигатель-конденсатор будет ниже, чем раньше, при тех же условиях нагрузки двигателя. Это связано с тем, что значительная часть реактивной составляющей тока двигателя подается от конденсатора, как показано на Рис. L24.

Если устройства максимальной токовой защиты двигателя расположены перед подключением конденсатора двигателя (а это всегда будет иметь место для конденсаторов, подключенных к клеммам), уставки реле максимального тока должны быть уменьшены в соотношении:

cos ϕ до компенсации / cos ϕ после компенсации

Для двигателей, компенсированных в соответствии со значениями квар, указанными в Рисунок L25 (максимальные значения, рекомендуемые для предотвращения самовозбуждения стандартных асинхронных двигателей, как описано в разделе «Как избежать самовозбуждения асинхронного двигателя»), выше: упомянутое соотношение будет иметь значение, аналогичное значению, указанному для соответствующей скорости двигателя на фиг. , фиг. L26.

Рис. L24 — Перед компенсацией трансформатор выдает всю реактивную мощность; после компенсации конденсатор выдает большую часть реактивной мощности

Рис. L25 — Максимальная квар коррекция коэффициента мощности, применимая к клеммам двигателя без риска самовозбуждения

Трехфазные двигатели 230/400 В
Номинальная мощность квар к установке
Скорость вращения (об / мин)
кВт лс 3000 1500 1000 750
22 30 6 8 9 10
30 40 7.5 10 11 12,5
37 50 9 11 12,5 16
45 60 11 13 14 17
55 75 13 17 18 21
75 100 17 22 25 28
90 125 20 25 27 30
110 150 24 29 33 37
132 180 31 36 38 43
160 218 35 41 44 52
200 274 43 47 53 61
250 340 52 57 63 71
280 380 57 63 70 79
355 482 67 76 86 98
400 544 78 82 97 106
450 610 87 93 107 117

Фиг.L26 — Понижающий коэффициент для максимальной токовой защиты после компенсации

Скорость в об / мин Коэффициент уменьшения
750 0,88
1000 0,90
1500 0,91
3000 0,93

Как избежать самовозбуждения асинхронного двигателя

Когда конденсаторная батарея подключена к клеммам асинхронного двигателя, важно убедиться, что размер батареи меньше того, при котором может происходить самовозбуждение.

Когда двигатель приводит в движение высокоинерционную нагрузку, двигатель будет продолжать вращаться (если не будет специально заторможен) после отключения питания двигателя.

«Магнитная инерция» цепи ротора означает, что ЭДС будет генерироваться в обмотках статора в течение короткого периода после выключения и обычно снижается до нуля после 1 или 2 циклов в случае двигателя без компенсации.

Компенсационные конденсаторы представляют собой трехфазную реактивную нагрузку для этой затухающей ЭДС, которая вызывает протекание емкостных токов через обмотки статора. Эти токи статора будут создавать вращающееся магнитное поле в роторе, которое действует точно вдоль той же оси и в том же направлении, что и затухающее магнитное поле.

Следовательно, поток ротора увеличивается; увеличиваются токи статора; и напряжение на выводах мотора увеличивается; иногда до опасно высокого уровня. Это явление известно как самовозбуждение и является одной из причин, по которой генераторы переменного тока обычно не работают с ведущими факторами мощности, т.е. существует тенденция к самовозбуждению (и неконтролируемому) самовозбуждению.

Примечания:

1. Характеристики двигателя, приводимого в действие инерцией нагрузки, не полностью идентичны его характеристикам без нагрузки.Однако это предположение достаточно точно для практических целей.

2. Когда двигатель действует как генератор, циркулирующие токи в значительной степени являются реактивными, так что эффект торможения (замедления) на двигатель в основном обусловлен только нагрузкой, представленной охлаждающим вентилятором в двигателе.

3. Ток (запаздывание почти на 90 °), отбираемый от источника питания в нормальных условиях ненагруженным двигателем, и ток (запаздывание почти на 90 °), подаваемый на конденсаторы двигателем, действующим как генератор, оба имеют одинаковое соотношение фаз с напряжением на клеммах.По этой причине две характеристики могут быть наложены на график.

Чтобы избежать самовозбуждения, как описано выше, номинальная мощность квар конденсаторной батареи должна быть ограничена следующим максимальным значением:

Qc≤0,9 × lo × Un × 3 {\ displaystyle Qc \ leq 0,9 \ times lo \ times Un \ times {\ sqrt {3}}}

, где Io = ток холостого хода двигателя, а Un = номинальное межфазное напряжение двигателя в кВ. Рисунок L25 дает соответствующие значения Qc, соответствующие этому критерию.

Пример

Трехфазный двигатель 75 кВт, 3000 об / мин, 400 В может иметь батарею конденсаторов не более 17 квар в соответствии с рисунком , рис. L25. Табличные значения, как правило, слишком малы для адекватной компенсации двигателя до обычно требуемого уровня cos ϕ. Однако дополнительная компенсация может применяться к системе, например к общему банку, установленному для глобальной компенсации ряда более мелких устройств.

Высокоинерционные двигатели и / или нагрузки

В любой установке, где существуют нагрузки с высокоинерционным приводом от двигателя, автоматические выключатели или контакторы, управляющие такими двигателями, должны в случае полной потери питания быстро отключаться.

Если эта мера предосторожности не будет принята, вероятно, произойдет самовозбуждение до очень высоких напряжений, поскольку все другие батареи конденсаторов в установке будут эффективно подключены параллельно с батареями высокоинерционных двигателей.

Таким образом, схема защиты этих двигателей должна включать в себя реле отключения по перенапряжению вместе с контактами проверки обратной мощности (двигатель будет подавать питание на остальную часть установки до тех пор, пока накопленная инерционная энергия не рассеется).

Если батарея конденсаторов, связанная с высокоинерционным двигателем, больше, чем рекомендованная в , рис. L25, то она должна управляться отдельно выключателем или контактором, который срабатывает одновременно с главным автоматическим выключателем, управляющим двигателем, или контактор, как показано на Рисунок L27.

Замыкание главного контактора обычно связано с предварительным замкнутым контактором конденсатора.

Рис. L27 — Подключение конденсаторной батареи к двигателю

Трехфазный двигатель, работающий от однофазного источника питания

Трехфазный асинхронный двигатель переменного тока широко используется в промышленном и сельскохозяйственном производстве благодаря своей простой конструкции, низкой стоимости, простоте обслуживания и эксплуатации.Трехфазный двигатель переменного тока использует трехфазный источник питания (3 фазы 220 В, 380 В, 400 В, 415 В, 480 В и т. Д.), Но в некоторых реальных приложениях у нас есть только однофазные источники питания (1 фаза 110 В, 220 В, 230 В, 240 В и т. Д.). .), особенно в бытовой технике. В случае, если трехфазные машины работают от однофазных источников питания, есть 3 способа сделать это:

  1. Перемотка мотора
  2. Купить GoHz VFD
  3. Купить преобразователь частота / фаза

I: Перемотка двигателя
Необходимо проделать некоторые работы для преобразования работы трехфазного двигателя в однофазное питание.Здесь вы узнаете, как преобразовать трехфазный двигатель 380 В для работы от однофазного источника питания 220 В.

Принцип перемотки
Трехфазный асинхронный двигатель использует три взаимно разделенных угла 120 ° сбалансированного тока через обмотку статора для создания изменяющегося во времени вращающегося магнитного поля для привода двигателя. Прежде чем говорить об использовании трехфазного асинхронного двигателя, переводимого для работы от однофазного источника питания, мы должны пояснить вопрос создания вращающегося магнитного поля однофазного асинхронного двигателя, поскольку однофазный двигатель может быть запущен только после установления вращающегося магнитного поля. .Причина, по которой у него нет начального пускового момента, заключается в том, что однофазная обмотка в магнитном поле не вращается, а пульсирует. Другими словами, он фиксирован относительно статора. В этом случае пульсирующее магнитное поле статора взаимодействует с током в проводнике ротора и не может генерировать крутящий момент, потому что нет вращающегося магнитного поля, поэтому двигатель не может быть запущен. Однако положение двух обмоток внутри двигателя имеет разный угол наклона. Если он пытается произвести ток другой фазы, двухфазный ток имеет определенную разность фаз во времени, чтобы создать вращающееся магнитное поле.Таким образом, статор однофазного двигателя должен иметь не только рабочую обмотку, но и пусковую. В соответствии с этим принципом мы можем использовать трехфазную обмотку трехфазного асинхронного двигателя и сдвинуть одну из катушек обмотки с помощью конденсатора или индуктивности, чтобы две фазы могли проходить через разный ток, чтобы установить вращающееся магнитное поле, чтобы управлять двигателем. Когда трехфазный асинхронный двигатель использует однофазный источник питания, мощность составляет только 2/3 от исходной.

Метод перемотки
Чтобы использовать трехфазный двигатель на однофазном источнике питания, мы можем последовательно соединить любые двухфазные катушки обмотки, а затем подключить к другой фазе. В это время магнитный поток в двух обмотках имеет разность фаз, но рабочая обмотка и пусковая обмотки подключены к одному источнику питания, поэтому ток одинаковый. Поэтому последовательно подключите конденсатор, катушку индуктивности или резистор к пусковой обмотке, чтобы ток имел разность фаз.Для увеличения пускового момента соединения можно использовать автотрансформатор для увеличения напряжения однофазного источника питания с 220 В до 380 В, как показано на Рисунке 1.

Малогабаритные двигатели общего назначения имеют Y-образное соединение. Для трехфазного асинхронного двигателя Y-типа клемма обмотки конденсатора C подключается к клемме пуска автотрансформатора. Если вы хотите изменить направление вращения вала, подключите его, как показано на рисунке 2.

Если вы не хотите повышать напряжение, источник питания 220 В также может использовать это.Поскольку исходная трехфазная обмотка напряжения питания 380 В теперь используется для источника питания 220 В, напряжение слишком низкое, поэтому крутящий момент слишком низкий.

Рисунок 3 Слишком низкий крутящий момент проводки. Если вы хотите увеличить крутящий момент, вы можете подключить конденсатор фазовой синхронизации к двухфазной обмотке в катушке и использовать ее в качестве пусковой обмотки. Одна катушка, напрямую подключенная к источнику питания 220 В, см. Рисунок 4.

На рисунках 3 и 4, если вам нужно изменить направление вращения вала, вы можете просто изменить сквозное направление пусковой обмотки или рабочей обмотки. .

Магнитный момент после того, как две обмотки соединены последовательно (одна из которых является обратной струной), складывается из двух углов магнитного момента 60 ° (Рисунок 5). Магнитный момент намного выше, чем магнитный момент 120 ° (показан на Рисунке 6), поэтому пусковой момент проводки на Рисунке 5 больше, чем на Рисунке 6.

Значение резистора доступа R (рисунок 7) на обмотке пускателя должно быть замкнуто на сопротивление фазы обмотки статора и должно выдерживать пусковой ток, равный 0.1-0,12 пускового момента.

Выбор конденсатора фазового сдвига
Рабочий конденсатор c = 1950 × Ie / Ue × cosφ (микрозакон), Ie, ue, cosφ — это исходный номинальный ток двигателя, номинальное напряжение и значения мощности.
Обычный рабочий конденсатор, используемый в однофазном источнике питания трехфазного асинхронного двигателя (220 В): на каждые 100 Вт используются 4-6 микроконденсаторы. Пусковой конденсатор может быть выбран в соответствии с пусковой нагрузкой, обычно в 1–4 раза превышающей рабочий конденсатор.Когда двигатель достигает 75% ~ 80% номинальной скорости, пусковой конденсатор должен быть отключен, иначе двигатель перегорит.

Емкость конденсатора должна быть правильно выбрана, чтобы токи 11, 12 двух фазных обмоток были равны и равны номинальному току Ie, то есть 11 = 12 = Ie. Если требуется высокий пусковой момент, можно добавить пусковой конденсатор и подключить его к рабочему конденсатору. При нормальном запуске отключите пусковой конденсатор.

Работа трехфазного двигателя от однофазного источника питания дает много преимуществ, перемотка выполняется легко.Однако общая мощность однофазного источника питания слишком мала, он должен выдерживать высокий пусковой ток, поэтому этот метод можно применить только к двигателю мощностью 1 кВт или менее.

II: Купите частотно-регулируемый привод GoHz.
VFD, сокращение от Variable Frequency Drive, это устройство для управления двигателем, работающим с регулируемой скоростью. Однофазный преобразователь частоты в трехфазный — лучший вариант для трехфазного двигателя, работающего от однофазного источника питания (1 фаза 220 В, 230 В, 240 В), он устраняет пусковой ток во время запуска двигателя, заставляя двигатель работать от нулевой скорости до полной. скорость плавная, плюс цена абсолютно доступная.Доступны частотно-регулируемые приводы GoHz мощностью от 1/2 до 7,5 л.с., более мощные частотно-регулируемые приводы могут быть настроены в соответствии с конкретными двигателями.

Видео с подключением однофазного и трехфазного частотно-регулируемого привода с частотой ГГц

Преимущества использования частотно-регулируемого привода с частотой дискретизации 1 ГГц для трехфазного двигателя:

  1. Плавный пуск может быть достигнут путем настройки параметров частотно-регулируемого привода, время пуска может быть установлено на несколько секунд или даже десятки.
  2. Функция бесступенчатого регулирования скорости для обеспечения оптимальной работы двигателя.
  3. Переведите двигатель с индуктивной нагрузкой на емкостную нагрузку, которая может увеличить коэффициент мощности.
  4. ЧРП
  5. имеет функцию самодиагностики, а также функции защиты от перегрузки, перенапряжения, низкого давления, перегрева и более 10 функций.
  6. Может быть легко запрограммирован с клавиатуры для автоматического управления.

III: Купите преобразователь частоты / фазы.
Преобразователь частоты GoHz или преобразователь фазы также можно использовать в таких ситуациях, он может преобразовывать однофазный (110 В, 120 В, 220 В, 230 В, 240 В) в трехфазный (0- 520 В) с чистым синусоидальным выходом, который лучше для характеристик двигателя, чем форма волны ШИМ VFD, они предназначены для лабораторных испытаний, самолетов, военных и других приложений, где требуются высококачественные источники питания, это очень дорого.

Статья по теме: Влияние двигателя 60 Гц (50 Гц) на источник питания 50 Гц (60 Гц)

Как запустить трехфазный двигатель от однофазного источника питания

Как запустить трехфазный двигатель от однофазного источника питания:

В настоящее время количество электродвигателей увеличивается, как и все. Основная причина в том, что, кроме электроэнергии, вся энергия является гораздо более дорогостоящим примером: дизельное топливо. Для всей нашей сельскохозяйственной линейки мы используем трехфазное питание.В Индии для нужд сельского хозяйства правительство предлагает 12-часовую бесплатную подачу электроэнергии.

Оставшиеся 12 часов электрическая панель отключила подачу питания, а это значит, что они отключили одну фазу через GOS (групповые рабочие переключатели). В то же время, 12 часов недостаточно, чтобы залить водой наши сельскохозяйственные угодья.

Итак, нам нужно запустить один и тот же трехфазный двигатель на двух доступных фазах. В этой статье мы увидим, как запустить трехфазный двигатель на однофазном. Давай начнем.

Стартер погружного насоса для сельского хозяйства

Как правило, это действие может быть выполнено путем установки статических преобразователей фазы. Преобразователи статической фазы — это пусковое устройство для трехфазных двигателей от однофазного питания. Статический фазовый преобразователь фактически не вырабатывает трехфазную мощность непрерывно.

Вместо этого он генерирует фазовый сдвиг через конденсатор, который позволяет смещать напряжение во времени от его родительского напряжения. В результате получается напряжение, отличное от двух однофазных линий.Если конденсатор вырабатывает достаточный электрический ток, двигатель будет работать.

Выходное напряжение конденсатора

После запуска трехфазного двигателя схема статического фазового преобразователя отключается. Единственным фактом здесь является то, что двигатель непрерывно работает от одной фазы с двумя обмотками, получающими активную мощность, так что полезная мощность двигателя обычно снижается на 2/3 или от его номинальной мощности.

Пример: если вы планируете использовать трехфазный двигатель мощностью 5 л.с. в однофазном режиме, то общая выходная мощность двигателя будет снижена до 3.3HP. Если вы приложите дополнительные нагрузки к тому же двигателю, обмотка двигателя будет потреблять большой ток. Чтобы избежать этого, вы можете выбрать двигатель с диапазоном на одну ступень выше.

См. Также:

Конденсатор для трехфазного двигателя на однофазном источнике питания:

Как свойство асинхронного двигателя, который потребляет высокий пусковой ток (почему?) (В 4-6 раз превышающий его ток полной нагрузки), поэтому нам нужен конденсатор высокой емкости на несколько секунд для быстрого запуска двигателя. Статический преобразователь фазы состоит из двух конденсаторов.Один из них — пусковой конденсатор, а другой — рабочие конденсаторы.

Пусковой конденсатор требуется только для запуска двигателя, и рабочий конденсатор будет стоять в цепи. Более того, регулировка этих конденсаторов для выравнивания токов, измеренных в трех фазах, позволяет получить наиболее эффективную машину.

Пусковой конденсатор должен быть в 4–5 раз больше, чем рабочий конденсатор, чтобы соответствовать высокому пусковому току асинхронного двигателя.

Пусковой конденсатор = 50-100 мкФ / л.с. Рабочие конденсаторы = 12-16 мкФ / л.

Здесь Конденсатор подает синтетическую фазу примерно на полпути на 90 градусов между выводами однофазного источника питания на 180 градусов для запуска. Во время работы двигатель генерирует приблизительно стандартные 3-φ, как показано на рисунке ниже.

Примечание. Двигатель следует подключать по схеме треугольник, так как одна обмотка двигателя получает полное напряжение. Поэтому, если вы планируете использовать трехфазный двигатель на одной фазе, рекомендуется подключение по схеме треугольника.

Ограничение статических фазовых преобразователей:

  • Выходная мощность ограничена 2/3 -го проектной мощности
  • Не подходит для двигателя, работающего постоянно, может использоваться временно
  • Сокращает срок службы двигателя из-за постоянной нагрузки двух обмоток на одну фазу.

Запустить трехфазный двигатель от однофазного источника питания:

См. Также:
Таблица размеров конденсаторов однофазных двигателей

pdf

Таблица размеров конденсаторов однофазных двигателей Pdf Www.

Электротехнический центр по подбору размеров однофазных конденсаторов.

Выбор пускового конденсатора электродвигателя.

Электротехнический центр по подбору размеров однофазных конденсаторов.

Выбор пускового конденсатора электродвигателя.

Как рассчитать требуемую мощность КВА Рейтинг или.

Выбор пускового конденсатора электродвигателя.

Как определить размер конденсатора в квар F для улучшения Pf.

Электротехнический центр по подбору размеров однофазных конденсаторов.

Высоковольтные конденсаторы и силовые резисторы Johanson.

Пусковой двигатель Обзор Научные темы.

Высоковольтные конденсаторы и силовые резисторы Johanson.

Расчет двигателей Часть 1 Двигатели и ответвление цепи.

Как рассчитать требуемую мощность КВА Рейтинг или.

Таблица размеров самых популярных конденсаторов однофазных двигателей Pdf 2019.

Control Engineering Как правильно управлять трехфазным двигателем.

Pdf Анализ и моделирование инвертора источника Z, питаемого к.

Как определить размер конденсатора в квар F для улучшения Pf.

Pdf Шум однофазного асинхронного двигателя вызван неправильной работой.

Конденсаторы Mkp для работы с двигателями 2 Uncommon Single.

Pdf Двигатель с расщепленной фазой работает как конденсаторный двигатель и.

Фазовая электронная схема Linkdeln.

Трехфазный двигатель, работающий от однофазного источника питания Gohz Com.

Pdf Использование двунаправленного преобразования трехфазного переменного тока в постоянный ток.

Дилеммы выбора конденсатора.

Расчет мощности конденсатора мощностью в кВт для двигателя Hindi.

Выбор пускового конденсатора электродвигателя.

Однофазные асинхронные двигатели Учебник по электронике двигателей переменного тока.

Дилеммы выбора конденсатора.

Как правильно выбрать размер кабеля Пошаговое руководство.

Расчет значений конденсатора для управления потолочным вентилятором.

Электронные таблицы MS Excel.

Пусковой двигатель Обзор Научные темы.

Ремонт повреждений керамический байпасный конденсатор какого размера.

Выбор пускового конденсатора электродвигателя.

Электролитический конденсатор Википедия.

Выбор пускового конденсатора электродвигателя.

Трехфазный двигатель, работающий от однофазного источника питания Gohz Com.

Как выбрать конденсатор Выбор конденсатора пусковой работы Выбор конденсатора двигателя.

Pdf Однофазный двухскоростной асинхронный двигатель с.

Как найти подходящий размер кабельного провода Si.

Расчет пускового тока для трехфазного двигателя.

Тестирование рабочего конденсатора во время работы системы 2017.

Выбор пускового конденсатора электродвигателя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *