- ПРОСТОЙ ЦИФРОВОЙ ТЕРМОМЕТР
- Сделай сам: электронный термометр своими руками
- ПРОСТОЙ ЭЛЕКТРОННЫЙ ТЕРМОМЕТР
- СХЕМА ЦИФРОВОГО ТЕРМОМЕТРА
- РадиоКот :: Банальный цифровой термометр.
- Электронный термометр с выносным датчиком DS18B20 на микроконтроллере Attiny2313
- Делаем цифровой электронный термометр на основе DS18B20.
ПРОСТОЙ ЦИФРОВОЙ ТЕРМОМЕТР
Предлагаю для повторения схему цифрового термометра, который имеет очень малые размеры. Здесь мы рассмотрим создание простого цифрового термометра с использованием в качестве температурного датчика — специальный цифровой датчик температуры от фирмы DАLLAS, а точнее ds18b20 и микроконтроллером ATtiny2313. Характеристики предложенного цифрового термометра: пределы измерения от -55 до +125*С ; точность измерение от 0,1 до 0,5*С.
Фотография датчика ds18b20:
Работает термометр следующим образом: микроонтроллер подает запрос на поиск и запись адресов датчиков ds18b20, подключенных к линии контроллера по интерфейсу 1Wire. Далее производится чтение температуры с датчиков, которые были найдены, после этого микроконтроллер выводит температуру на 3-х символьный LED, хотя при небольшой модификации прошивки можно подключать и 4-х символьный LED. Тогда температура будет выводится с точность до десятичных долей градуса. Опрос датчика составляет где-то 750мс. Схема проста и в печатной плате не нуждается, хотя кому больше нравится на печатной плате — можно нарисовать. Я контроллер ATtiny2313 ставил сзади LED индикатора и всё соединял проводами.
Принципиальная схема цифрового термометра на ATtiny2313:
В архиве на форуме, есть прошивки для индикаторов с общим катодом и общим анодом. Так же все прошивки умеют работать с 8 х датчиками ds18b20. Ещё есть прошивка, которая меряет температуру с точностью до десятичных значений, при этом необходим 4х символьный LED дисплей, анод лишнего сегмента цепляют к PORTD.3 , а запятую цепляют на PORTB.7.
Использовать этот цифровой термометр можно в самом широком спектре устройств. Материал предоставил ansel73.
Форум по микроконтроллерам
Обсудить статью ПРОСТОЙ ЦИФРОВОЙ ТЕРМОМЕТР
radioskot.ru
Сделай сам: электронный термометр своими руками
Сегодня мы расскажем, как своими руками сделать электронный термометр из трех деталей.
Для этого потребуется батарейка и всего две детали.
Температура измеряется датчиком LM 35. Этот интегральный кремниевый датчик включает в себя термочувствительный элемент — первичный преобразователь температуры и схему обработки сигнала, выполненные на одном кристалле и заключенные в пластмассовый корпус, такой, как, например, у КТ 502 (ТО- 92). У датчика LM 35 есть конструктивная разновидность с теми же параметрами, но иной цокалевкой и теплоотводом, что очень удобно для контактных измерений температуры.
Обозначение датчика несколько необычно. Цоколевка приведена на рисунке.
На схеме датчик изображают прямоугольником с обозначением типа прибора и нумерацией выводов.
Схема термометра приведена на рисунке и столь проста, что не требует пояснений.
Собранный термометр должен быть откалиброван.
Включите схему. Датчик LM 35 плотно прижмите к резервуару ртутного градусника, например с помощью изоленты, укутайте место соединения или просто положите все под подушку. Так как любые тепловые процессы инерционны, придется подождать с полчаса или больше, чтобы температуры датчика и градусника выровнялись, затем потенциометром установите стрелку микроамперметра на цифру, соответствующую температуре градусника. Вот и все. Термометром можно пользоваться.
К сожалению, найти такой градусник проблематично. Для грубой тарировки можно просто положить датчик рядом с термометром, измеряющем скажем температуру в помещении, подождать часа два и выставить нужную температуру на шкале микроамперметра.
Для тех, кто хочет ознакомиться с интегральными датчиками подробно- простите сайт kit-e.ru или rcl-radio.ru (искать LM 35).
Автор статьи “Сделай сам: электронный термометр своими руками” Георгий Меньшиков
Смотрите так же:
samodelka.info
ПРОСТОЙ ЭЛЕКТРОННЫЙ ТЕРМОМЕТР
Конструкция простого электронного термометра описана в журнале «Юный техник» №3 за 1985 г. в статье Ю. Пахомова «Электронный термометр» (с. 68 — 71). Тем, кто не имеет пока возможности осилить измерители температуры на микроконтроллерах, рекомендуем собрать такую схемку. Термометр выполнен по мостовой схеме, где термочувствительным элементом являются, включенные последовательно, диоды VD1 и VD2. Когда мост уравновешен напряжение между точками А и Б равно нулю, следовательно микроамперметр PA1 покажет ноль. При повышении температуры, падение напряжения на диодах VD1 и VD2 уменьшается, баланс нарушается, а микроамперметр покажет наличие тока в цепи.
Принципиальная схема простейшего термометра
В качестве датчика температуры можно применять различные диоды, использованы Д220, но в статье указывается, что подойдут КД102-104, Д226. Постоянные резисторы R1, R2, R5, R6 типа МЛТ-0.25 или МЛТ-0,125. В качестве подстроечных резисторов R3 и R4 использованы СП3-39А, это недостаток конструкции, т. к. термометр требует периодической калибровки, для чего приходится разбирать всю конструкцию. Лучшим вариантом было бы использование полноразмерных переменных резисторов с выводом их ручек на переднюю панель прибора. Микроамперметр PA1 любой, с током полного отклонения 50-200 мкА. Выключатель питания SA1 любого типа. Светодиод VD3 служит для индикации включения термометра, он также может быть любым, например мигающим. Желательно, чтобы светодиод был маломощным и не расходовал заряд батареи в пустую.
Корпус самодельного термометра
Собранный прибор требует калибровки. При отключенном микроамперметре PA1 замеряют напряжение между точками А и Б, оно должно быть около 1,0-1,2 В. Если напряжение составляет 4,5 В. то необходимо поменять полярность включения диодов VD1 и VD2. Если напряжение между точками А и Б невелико, то необходимого значения добиваемся регулировкой резистора R4. Затем устанавливаем минимальное сопротивление для резистора R3 и включаем обратно в схему микроамперметр PA1. Резистором R4 добиваемся, чтобы прибор показывал примерно 20 мкА (это соответствует комнатной температуре в 20 градусов). Если датчик зажать в пальцах, то показания должны возрасти примерно до 30-35 мкА (примерно температура человеческого тела).
Прибор калибруется в начале и конце шкалы. Сначала датчик опускают в сосуд, наполненный водой с тающим льдом, как известно температура тающего льда равна 0 градусов. При этом надо перемешивать воду со льдом, так чтобы температура в сосуде была везде одинакова. Подстройкой резистора R4 устанавливаем на микроамперметре 0. Затем берем сосуд с водой температурой около 40 градусов, температуру воды надо контролировать при помощи ртутного термометра (подойдет обычный медицинский термометр).
Соответственно погружаем датчик в теплую воду и подстройкой резистора R3 добиваемся, чтобы показания микроамперметра совпали с показаниями ртутного термометра. Таким образом, получаем термометр для температурного диапазона 0-50 градусов.
Если нет возможности использовать ртутный термометр, то в качестве второй калибровочной точки можно использовать кипящую воду, как известно при нормальном атмосферном давлении температура кипения воду 100 градусов. Тогда температурный диапазон термометра будет 0-100 градусов. Спасибо, за внимание. Автор статьи: Denev.
el-shema.ru
СХЕМА ЦИФРОВОГО ТЕРМОМЕТРА
Часто схемы собирают по остаточному принципу: что-то где-то завалялось — можно что-нибудь спаять. Это как раз тот случай, где ничего покупать не нужно, так как все детали термометра самые распространённые. Использование дешевых микросхем серии 176 (К176ЛА7 и К176ИЕ4), сделало возможным создание цифрового термометра, который при всей своей простоте обладает высокой повторяемостью и достаточной для бытовых целей точностью. Часто в последнее время ставят цифровые датчики температуры, но здесь им является обычный терморезистор с отрицательным ТКС и сопротивлением примерно 100кОм. Часто надо посмотреть на термометр, когда условия освещения плохие — например, посреди ночи. Поэтому ЖК-индикаторы, даже с подсветкой, не подходят. Лучшую читаемость в условиях недостаточного освещения имеют светодиодные индикаторы типа АЛС. Параметры термометра в смысле погрешности измерений всецело определяются настройкой градуирования по образцовому термометру. Схема термометра, вместе со всей страницей из журнала радиоконструктор приводится ниже:
Форум по цифровым микросхемам
Обсудить статью СХЕМА ЦИФРОВОГО ТЕРМОМЕТРА
radioskot.ru
РадиоКот :: Банальный цифровой термометр.
РадиоКот >Схемы >Цифровые устройства >Бытовая техника >Банальный цифровой термометр.
В Интернете полно схем цифровых термометров и эта очередная схема по функциональности ничем не выделяется. Но каждый (или почти каждый) программист микроконтроллеров хотя бы один раз сталкивается с задачей написать цифровой термометр. Это может быть конкретное устройство, а может быть учебный пример.
Предел измерения термометра от -55,0°С до +125,0°С. Датчик DS18B20 оцифровывает температуру с шагом 0,0625°С. На индикаторе результат измерения выводится с точностью 0,1°С. Реально производитель заявляет от погрешности +/- 0,5°С в диапазоне от -10°С до +85°С.
Индикация сделана на 4х разрядах семисегментных индикаторов. Питание термометра автономное, от литиевой батарейки на 12В, которая используется в брелках сигнализации авто. Решение нельзя назвать экономичным, но оцифровка температуры занимает доли секунды и поэтому достаточно кратковременно подать питание и оценить температуру.
Итак, схема устройства.
Схема рисовалась по рисунку печатной платы, т.к. сначала придумывался дизайн, затем разводились электрические соединения, потом писалась программа и т.д.
Конструктивно термометр собран на двух платах: плата индикации и плата контроллера. Платы расположены одна над другой и соединены через межплатные разъемы.
По рисунку печатной платы всё довольно просто, хотя схема выглядит не совсем традиционно. Предполагалось конструкцию одарить корпусом, но с этим напряженно. Датчик DS18B20 подключается через аудио-разъем.
Ниже фото устройства в работе.
Незначащий ноль не гасится, инициализация на +85,0°С не игнорируется (ну не интересно это было делать). В первом разряде в случае отрицательной температуры высвечивается символ «-» (минус).
Для любителей синтетического моделирования собран проект в Proteus Professional 7.2 SP6 .
Файлы:
Печатная плата в формате SL 4.0.
Прошивка МК с исходником.
Проект Proteus.
Вопросы, как всегда в Форум.
Как вам эта статья? | Заработало ли это устройство у вас? |
www.radiokot.ru
Электронный термометр с выносным датчиком DS18B20 на микроконтроллере Attiny2313
В данной статье проведем обзор цифрового термометра, построенного на микроконтроллере Attiny2313, снабженного выносным цифровым датчиком DS18B20. Пределы измерения температуры составляет от -55 до +125 градусов Цельсия, шаг измерения температуры составляет 0,1 градус. Схема очень простая, содержит минимум деталей и ее запросто можно собрать своими руками.
Описание работы схемы термометра
Самодельный электронный термометр с выносным датчиком построен на всем известном микроконтроллере Attiny2313. В роли температурного датчика выступает микросхема DS18B20 фирмы Dallas. В схеме термометра можно применить до 8 цифровых датчиков. Микроконтроллер взаимодействует с DS18B20 по протоколу 1Wire.
Вначале происходит поиск и инициализация всех подключенных датчиков, затем с них происходит считывание температуры с последующим выводом на трехразрядный семисегментный индикатор HL1. Индикатор может быть применен как с общим катодом (ОК), так и с общим анодом (ОА). Подобный индикатор так же был применен в схеме часов на Attiny2313. Под каждый индикатор имеется своя прошивка. Измерять температуру можно как дома, так и на улице, для этого необходимо вынести DS18B20 за окно.
Для прошивки микроконтроллера Attiny2313 необходимо выставить фьюзы следующим образом (для программы CodeVision AVR):
Скачать файлы прошивки и печатной платы (1,0 Mb, скачано: 5 867)
Источник : www.radiokot.ru
www.joyta.ru
Делаем цифровой электронный термометр на основе DS18B20.
В преддверии наступления зимы возник вопрос замера температуры окружающей среды «за бортом», то бишь на улице. Причем хотелось это делать не утруждая себя высматриванием наружного спиртового термометра через заиндевевшее окно, а просто наблюдая дистанционно наружную температуру в комфортных домашних теплых условиях. Для этих целей как нельзя лучше подходит электронный термометр. Вот об этом и пойдет речь в статье….
Собственно, цифровой электронный термометр продается уже собранным , и готовым к эксплуатации.
Данный цифровой электронный термометр собран на микроконтроллере ATtiny 2313. Датчиком температуры служит изделие DS18B20 от компании Dallas Semiconductors. Характеристики термометра видны на фото, поэтому повторять их не будем.
Для проверки работоспособности цифрового термометра подключаем его к лабораторному блоку питания и подаем напряжение, ну скажем, 12В (допустимо от 7 до 15В). Эталонных измерителей температуры у меня нет ( да и не нужны они), поэтому сравниваем показания цифрового термометра с обычным бытовым.
Как видно, показания очень близки- почти 19°С на спиртовом термометре, и 18,8°С на цифровом.
Такой точности цифрового термометра более чем достаточно для бытовых нужд.
Сразу же захотелось проверить работу цифрового термометра и при отрицательных температурах, но, поскольку на улице еще держится температура выше ноля градусов, пришлось искать альтернативный источник отрицательных температур. Им оказалась обычная морозильная камера обычного холодильника. Не долго думая, помещаем датчик температуры в морозильную камеру, выжидаем пару минут для обеспечения стабильности показаний. Термометр показал минус 19 градусов Цельсия.
Отсюда сразу два важных вывода:
- Цифровой термометр в целом, и датчик температуры в частности исправны;
- Морозильная камера в холодильнике обеспечивает заявленную производителем температуру))).
Поскольку испытательный этап успешно закончен, приступим к окончательной сборке термометра.
Для корпуса цифрового термометра был выбран валявшийся без дела пластиковый корпус от советского радиоконструктора ( набора) Старт-7176 « Часы электронные». Сами мною собранные часы из этого набора где-то еще тоже валяются.
Корпус имеет наружные размеры ШхВхГ- 140мм х 90мм х 30мм. Внутренние размеры, соответственно, чуть меньше.
Камнем преткновения оказался выбор источника питания. Имелось три варианта:
- Батарейка на 9В;
- Внешний сетевой источник питания;
- Встроенный во внутрь сетевой источник питания.
От применения батарейки в качестве источника питания отказался сразу, учитывая тот факт, что цифровой термометр потребляет ток до 40 мА. Батарейки надолго не хватит при таком токе.
Тонкий корпус глубиной всего 30 мм казалось бы не позволит разместить внутри него сетевой источник питания. Поэтому , наиболее вероятным выглядел вариант №3-внешний блок питания на понижающем трансформаторе. Этот вариант мне не нравился-хотелось получить моноблок, без всяких дополнительных коробочек-блочков и проводов.
И решение нашлось!
Перебирая свой радиолюбительский хлам обратил внимание на зарядное устройство от старого мобильного телефона Samsung. Шильдик на нем информировал о том, что зарядка выдает напряжение 5В при токе до 1А. По току все было с запасом, а вот пяти вольт напряжения было недостаточно. Пришлось вскрывать корпус зарядного устройства, с целью посмотреть- а нельзя ли как-нибудь повысить выходное напряжение…
Половинки корпуса были склеены, поэтому корпус был попросту разломан. Внутри оказалась платка импульсного источника питания и, что и как тут делать поначалу казалось непонятным. Габариты платки оказались подходящими для размещения в выбранном корпусе.
Вид со стороны элементов.
Видна маркировка микросхемы, на которой собрана зарядка- SC1009PN. Обратите внимание, что у этой микросхемы отсутствует ножка №6. Это сделано для того чтобы высокое напряжения на ножке №5 не прошивало на рядом расположенные другие ножки микросхемы (это сказал Гугл).
С обратной стороны на платке размещены пара десятков элементов в SMD исполнении, среди которых выделяется своими размерами оптрон РС817 и шестиногая микросхема с двухбуквенной маркировкой.
Поиск даташита на SC1009PN ничего не дал. Знающие люди пишут что это-специфическая заказная микросхема. Есть аналог-TNY264P.
Удалось найти принципиальную схему на подобное зарядное устройство
И вот тут мы видим, что работой импульсного источника питания через оптрон РС817 управляет микросхема типа TSM1051. Это и есть вот та шестиногая SMD микросхема с непонятным обозначением.
А вот на TSM1051 даташит имеется в сети. Можно видеть типовую схему включения
Из даташит’а следует, что данная микросхема специально разработана для применения в подобных устройствах. Но, самое важное, выходное напряжения источника питания на данной микросхеме можно менять в некоторых пределах, изменяя номиналы резисторов делителя R1 и R2(см. типовую схему включения), или R10 и R11, R14 ( см. схему зарядки выше).Это как раз то, что нам нужно.
Поиск резисторов делителя напряжения на конкретной плате показал, что искомый резистор имеет маркировку R15 рядом с микросхемой TSM1051 и соответствует резистору R1 на типовой схеме включения.
Номинал данного резистора был 820 Ом. Методом подбора номинала данного резистора в сторону увеличения ( кажется, до 1,8 кОм) выходное напряжения было поднято с 5 до 8,5 В.
Как раз то, что нужно!! Пробная проверка питания цифрового термометра от модернизированной зарядки была успешной. Осталось поместить все это в корпус. Внутри корпуса закрепляем плату термометра, плату источника питания, на задней стенке размещаем разьем для подключения датчика температуры наружного воздуха.
Сборка почти закончена
В ходе работ появилось желание сделать возможность замера температуры воздуха не только снаружи , но и в помещении.
Для этого был использован еще один датчик DS18B20, который установлен прямо на задней стенке корпуса. Для переключения датчиков использован обычный тумблер, который закреплен на передней панели.
Схема переключения выглядит вот так.
Для защиты датчика наружной температуры от механических повреждений делаем вот такой контейнер из кусочка трубки. К трубке прикреплен кронштейн для закрепления контейнера на стене ( либо где удобно) в месте защищенном от прямых солнечных лучей и атмосферных осадков.
Датчик DS18B20 помещаем внутрь трубки
Выключатель питания закреплен на боковой стенке
Осталось проверить в работе…
Температура наружного воздуха
Температура внутри помещения
Данное устройство было собрано в начале октября 2016 года и на момент написания статьи ( конец октября) прошло, так сказать, полный цикл испытаний. Все работает безотказно.
Единственный важный момент: нет данных о том, допускается ли длительная круглосуточная эксплуатация зарядок от мобильных телефонов. Поэтому , во избежание перегрева и воспламенения не рекомендую оставлять без присмотра источник питания на базе зарядного устройства от мобильного телефона. Я выключаю устройство на ночь. Ради эксперимента-гонял термометр без выключении больше суток-все абсолютно нормально, никакого нагрева элементов не наблюдалось.
P.S. Когда наступят морозы-добавлю фото замера отрицательной температуры наружного воздуха.
Обновление от 30 ноября 2016 года. Утро, мороз…Вот как отображает термометр отрицательную температуру:
www.myhomehobby.net