Подключение пожарных извещателей – Схема подключения пожарных извещателей в шлейф сигнализации

Содержание

Схема подключения пожарных извещателей в шлейф сигнализации

Монтаж пожарных извещателей, безусловно подразумевает их соединение в шлейф пожарной сигнализации. Схема подключения пожарных извещателей приводится ниже. Рассматриваются двухпроводные (наиболее часто используемые)

  • извещатели пожарные дымовые (ДИП),
  • извещатели пожарные тепловые (ИП),
  • извещатели пожарные ручные (ИПР).

Схема подключения охранных извещателей приведена на другой странице.

Шлейф пожарной сигнализации может одновременно содержать извещатели одного или нескольких (комбинированный шлейф сигнализации) указанных типов. Кроме того, схема подключения пожарных извещателей может предусматривать срабатывание приемно контрольного прибора пожарной сигнализации (формирование извещения «пожар») при срабатывании только одного датчика шлейфа пожарной сигнализации или при срабатывании двух и более пожарных извещателей. (такая организация шлейфа пожарной сигнализации после срабатывания одного извещателя формирует сигнал «внимание»).

Адресные пожарные извещатели также имеют свою схему подключения. Хочу заметить- схема подключения датчиков пожарной сигнализации может варьироваться (зависит от типа приемно контрольного прибора), однако, различия незначительны, главным образом затрагивают номиналы (значения) дополнительных (балластных), оконечных (выносных) резисторов.

Кроме того, различные типы приемно контрольных приборов допускают подключение различного максимального количества дымовых пожарных извещателей в один шлейф сигнализации- эта величина обуславливается суммарным током потребления датчиков. Помните- ток потребления дымового извещателя зависит от его типа.

Все типы неадресных дымовых двухпроводных извещателей используют одинаковую нумерацию выводов:(1,2,3,4).

Схемы подключения выводов дымовых извещателей различных производителей визуально могут несколько отличаться (варианты 1,2), но, с точки зрения электрики, являются идентичными, ибо внутри корпуса извещателя выводы 3,4- короткозамкнуты.

Однако, второй вариант имеет серьезный недостаток — при извлечении извещателя из розетки приемно — контрольный прибор не обнаружит его отсутствия и не сформирует сигнал «неисправность». Поэтому лучше его не использовать.

Обратите внимание!

  • Даже для одного конкретного типа приемно контрольного прибора пожарной сигнализации резисторы Rдоп. могут иметь различные значения (определяется током потребления различных типов дымовых извещателей, читайте паспорт прибора внимательно).
  • Приведенная схема подключения пожарного ручного извещателя справедлива когда его исполнительным элементом являются нормально замкнутые электрические контакты. Например, для ИПР 3 СУ эта схема подключения не подойдет.
  • Тепловые пожарные извещатели подключаются по приведенной схеме если имеют нормально замкнутые контакты (таких большинство).
  • Может возникнуть ситуация, когда ИПР, подключенный по приведенной (рекомендованной паспортом прибора) схеме для шлейфа сигнализации, предусматривающего сработку по двум датчикам, срабатывая вызывает формирование приемно контрольным прибором сигнала «внимание» вместо «пожар». Попробуйте тогда уменьшить номинал резистора (Rдоп), через который этот ИПР подключается в шлейф сигнализации.
  • Перед подключением (установкой) адресных извещателей, их адрес должен быть предварительно запрограммирован.
  • Подключение дымовых пожарных извещателей требует соблюдения полярности шлейфа сигнализации.

© 2010-2019 г.г.. Все права защищены.
Материалы, представленные на сайте, имеют ознакомительно-информационный характер и не могут использоваться в качестве руководящих документов

labofbiznes.ru

Схемы подключения пожарных извещателей

Здравствуйте. Сегодня я хотел бы поговорить о тех схемах подключения пожарных извещателей которые применяются при монтаже.

Различные пожарные извещатели имеют несколько схем подключения.  На один шлейф сигнализации подключается ограниченное количество дымовых и ручных пожарных извещателей. Это связано с тем, что пожарные извещатели данных видов питаются непосредственно от шлейфа сигнализации. Максимальное количество подключаемых извещателей можно узнать в руководстве пользователя на приемо-контрольный прибор, к которому производится подключение

пожарных извещателей.Дымовые пожарные извещатели в прочем, как и ручные, имеют 4 вывода. Третий и четвертый выводы замкнуты на схеме. Это связано с возможностью контроля пожарного шлейфа сигнализации. Т.е. если произвести подключение дымового извещателя через третий и четвертый выводы, то при снятии извещателя на приемо-контрольном приборе будет формироваться событие «Неисправность».

Схема подключения дымовых извещателей

Необходимо обратить внимание на то, что пожарные извещатели подключаются с соблюдением полярности. На выводе 2 всегда плюс на выводах 3 и 4 минус, вывод 1 используется для подключения конечного светодиода для визуального контроля шлейфа сигнализации и, как правило, не используется.

 

На схеме подключения тепловых извещателей присутствуют три резистора  Rок.,  Rдоп. и Rбал. Номинал резистора Rок. указан в руководстве пользователя и, как правило, поставляется в комплекте с приемо-контрольным прибором. Rдоп. имеет то же предназначение что и Rбал, только необходим для ручных и дымовых извещателей

. Rдоп. и Rбал не комплектуются с приемо-контрольным прибором, необходимо приобретать дополнительно.

Схема подключения тепловых пожарных извещателей

Т.к. тепловые извещатели в дежурном режиме коротко замкнуты то Rбал как бы отсутствует в схеме до сработки теплового извещателя. После сработки теплового извещателя происходит размыкание контактов извещателя и в шлейф сигнализации добавляется номинал резистора Rбал. Тем самым возможно подобрать R бал. Таким образом, чтобы сигнал «Тревога» формировался после сработки одного

теплового извещателя или двух. Если вы произведете подключение по схеме, когда сигнал «Тревога» будет формироваться после срабатывания двух извещателей, то после сработки первого извещателя будет сформирован сигнал «Внимание», а уже после сработки второго извещателя будет формироваться сигнал «Тревога».

Это актуально как для тепловых извещателей, так и дымовых.

Схема подключения дымовых пожарных извещателей

 

Схема подключения дымовых пожарных извещателей

При подключении дымовых извещателей с добавлением резистора Rдоп. Сигнал «Тревога» будет формироваться после сработки двух извещателей. При сработке первого дымового извещателя будет сформирован сигнал «Внимание».

При подключении дымовых извещателей без резистора Rдоп. сигнал «Тревога» будет сформирован сразу после сработки дымового извещателя.

Ручные извещатели необходимо подключать только так чтобы сигнал «Тревога» формировался после сработки одного ручного извещателя т.к. служит для немедленной подачи сигнала «Тревога».

Описание принципов работы

пожарных извещателей можно почитать здесь.

На сегодня все, если вам понравилась статья вы можете поделиться ею с друзьями нажав на соответствующую кнопку социальной сети или подписаться на обновления блога.

 

sigadoma.ru

Подключение пожарных извещателей

Сегодня в комментариях к статье «Схемы подключения пожарных извещателей», ранее опубликованной на этом блоге был задан хоть и не точный, но довольно интересный вопрос.

Сам вопрос звучит так: «Скажите, пожалуйста, как можно настроить дымовые датчики так чтобы они срабатывали по разному одно помещение сработка по одному извещателю, а второе помещение сработка по двум извещателям на приборе С2000

».

Не знаю для чего человеку необходима именно такая тактика работы пожарной сигнализации, но давайте попробуем для начала разобраться в неточностях самого вопроса для того, чтобы понять какое оборудование в дальнейшем использовать.Во-первых «С2000» — это пульт управления охранно-пожарной сигнализацией, в данной системе для контроля шлейфов используются приборы «Сигнал-20» видимо человеку необходимо чтобы «Сигнал-20» обрабатывал, таким образом, сигналы как ему необходимо.

В принципе, что здесь будет написано про «Сигнал-20» то же самое будет справедливо и для других приемо-контрольных приборов используемых в

охранно-пожарной сигнализации.

И так как ранее уже описывалось для того чтобы приемо-контрольный прибор в нашем случае выдавал сигнал «Тревога пожар» при сработке двух и более пожарных извещателей необходимо установить дополнительные резисторы.

Теперь давайте обратимся к инструкции на прибор «Сигнал-20», которую можно скачать здесь.

В инструкции нам необходимо найти «Сопротивление ШС в различных состояниях».

Из таблицы мы видим, что для шлейфа сигнализации, в котором используются дымовые извещатели необходимо добиться сопротивления шлейфа сигнализации от 100 Ом  до 1,56 кОм и выбор сопротивления зависит от того нагрузки в шлейфе сигнализации.

Для того чтобы использовать комбинированный шлейф сигнализации т.е. такой шлейф пожарной сигнализации в котором используются как дымовые так и тепловые пожарные извещатели нам необходимо для того чтобы получить сигнал «Внимание» необходимо добиться сопротивления при сработке дымовых извещателей от 100 Ом до 1,8 кОм, а при срабатывании тепловых извещателей от 6,6 кОм до 14,4 кОм.

При выборе тактики пожарный тепловой таким же образом необходимо добиться сопротивления в шлейфе сигнализации от 12,5 кОм до 22,5 кОм.

Так же в инструкции имеется перечень сопротивлений для различных пожарных извещателей.

Так же в инструкции имеется множество схем подключения охранных и пожарных извещателей, в которых при желании вы можете разобраться сами. Если возникнут вопросы можете написать их в комментариях к этой статье. Постараюсь всем ответить по мере возможности.

Для примера будем использовать пожарные извещатели типа «ИП212-41М» как самые распространенные и хорошо зарекомендовавшие себя на рынке пожарной сигнализации.

Теперь нам необходим условный план помещения, для это просто разделим квадрат на четыре части и таким образом у нас получится четыре помещения два из которых мы будем оборудовать дымовыми извещателями, а оставшиеся два тепловыми.

Схема пожарной сигнализации

Некоторые пояснения к схеме. В комнатах 2 и 3 применяются дымовые и тепловые извещатели соответственно, в этих комнатах извещатели подключены таким образом, чтобы формировать сигнал «Тревога пожар» при сработке двух и более извещателей.

Рассмотрим комнату №2 при сработке пожарного извещателя в шлейфе сигнализации сопротивление станет равно 2,2 кОм. Как известно ток течет по пути наименьшего сопротивления. После того как сопротивление станет равно 2,2 кОм прибор сформирует сигнал «Внимание» после сработки второго извещателя в шлейфе сигнализации сопротивление шлейфа станет 1,1 кОм.

Смотрим закон Ома параллельное соединение резисторов.

В комнате же №1 добавочный резистор сразу имеет номинал 1,1 кОм, что при сработке извещателя сразу приведет к появлению в шлейфе сигнализации сопротивления равного 1,1 кОм. Тем самым сразу будет сформирован сигнал «Тревога пожар».

При использовании принцип тот же что и с дымовыми извещателями только за счет добавочного резистора сопротивление в шлейфе увеличивается.

Надеюсь, я ответил на заданный вопрос. Хотел бы еще обратить внимание свих читателей на такой момент после того как пожарная сигнализация будет готова необходимо проверить каждый извещатель на корректность сработок. Мною  в статье было взяты условные номиналы, которые подходят в идеальных условиях. В вашем же случае, возможно придется какие-то резисторы поменять на номиналы больше или меньше. При расчетах мною не учитывался ток потребления.

sigadoma.ru

Подключение пожарной сигнализации к шлейфу центрального управления

Главным элементом системы противопожарного оборудования являются специальные датчики, которые улавливают продукты горения. К таким устройствам относятся извещатели, предупреждающие о появлении возгорания. Подключение пожарных извещателей является несложной, но довольно кропотливой работой.

Что необходимо знать для грамотного подключения?

Подключение пожарного шлейфа сигнализации напрямую имеет связь с извещателями, так как соединение датчиков происходит по специально проложенной линии. По видам сложности подключения различают двухпроводные и четырехпроводные варианты соединения.

В большинстве современных пожарных сигнализациях применяется двухпроводной метод соединения, как самый простой и надежный.

Извещатели по типам функционирования подразделяются на тепловые, ручные и дымовые. К шлейфу можно одновременно присоединить несколько видов извещателей, благодаря скомбинированной структуре провода, что довольно удобно, так как не нужно прокладывать дополнительных линий.

На видео – пример настройки пожарной сигнализации:

Принцип монтажа линии сигнализаторов

Вопрос, как подключить пожарный извещатель, сегодня имеет все большую актуальность, так как многие владельцы частных домов хотят осуществить монтаж самостоятельно. Извещатели можно подключать с расчетом, что система будет срабатывать как от сигнала одного датчика, так и если одновременно будут включаться два устройства оповещения.

В одну пожарную ветку можно подсоединить различное количество датчиков – и система будет работать без дополнительных сбоев. Единственная загвоздка может быть в количестве потребляемой энергии каждым устройством. Современные приборы созданы с учетом минимального количества потребления энергии.

В большинстве случаев принцип подключения оповещателей от разных производителей ничем не отличается, что создает удобство в соединении цепи. С каждым набором пожарной сигнализации идет и схема подсоединения всего оборудования. Опираясь на схему, подключите все компоненты по следующему алгоритму:

  • Датчики монтируются в потолок;
  • От центрального ПКП протягиваются и закрепляются провода;
  • Подключение осуществляется последовательно, с соблюдением полярности;
  • После объединения проводов с оповещателями производится проверка каждого датчика по отдельности и всей системы целиком.

Необходимо помнить, что подключать узлы следует при выключенном электричестве, чтобы избежать ударов током. Все контакты должны быть жестко прижаты, так как это обеспечит стабильную работу всего оборудования, без замыканий. Принцип соединения двух оповещателей отличается только установкой дополнительных резисторов для контроля над работой каждого датчика по отдельности.

Самостоятельный монтаж оборудования является более экономичным, но требует больше времени, да и за качество установки отвечает только сам владелец жилья. В случае неправильного соединения полюсов можно испортить всю систему в целом, поэтому установку лучше доверить специалистам, что поможет избежать лишних повреждений.

camafon.ru

Подключение тепловых извещателей с индикаторами — ОРБИТА-СОЮЗ

Обеспечение работоспособности ППКП в двухпороговом режиме с формированием сигналов «Пожар 1», «Пожар 2» по одному и двум извещателям в настоящее время активно обсуждаются в отраслевой печати и на специализированных форумах. Проблемы согласования изначально определены отсутствием в документации информации о параметрах режимов шлейфов сигнализации ППКП. По п. 7.2.1.5 ГОСТ Р 53325 – 2009 «Техника пожарная. Технические средства. Пожарной автоматики. Общие технические требования. Методы испытаний» в технической документации на приемно-контрольные приборы должны быть указаны «диапазоны тока в неадресном шлейфе сигнализации, в том числе максимальный ток питания извещателей, при котором ППКП регистрирует все предусмотренные виды извещений и диапазон питающих напряжений»

Проблемы согласования ИП с ППКП

В настоящее время производители ППКП указывают пороги шлейфа в виде его сопротивления, которые могут использоваться на практике только при подключении пассивных контактных пожарных извещателей с дополнительными резисторами. При использовании активных пожарных извещателей данная информация мало что дает, так как ввиду нелинейной вольт-амперной характеристики их внутреннее сопротивление в разы изменяется при различных напряжениях шлейфа. В свою очередь, напряжение шлейфа зависит от его нагрузки, то есть от сопротивления извещателей в режиме «Пожар». Таким образом, определение номиналов дополнительных резисторов проводится экспериментальным путем по двум образцам извещателей и одному образцу ППКП без учета разброса их параметров от образца к образцу и тем более в процессе эксплуатации.

Как под копирку в технических характеристиках на ДИПы указывается, что «выходной сигнал срабатывания извещателя формируется уменьшением внутреннего сопротивления до величины не более 500 Ом при величине тока через извещатель 20 мА». Слова «не более» означают, что типовое значение сопротивления может значительно отличаться от 500 Ом, а с учетом того, что достаточно много приборов имеет ток короткого замыкания порядка 20 мА, теряют смысл окончательно. Эта характеристика в паспортах ДИПов сохранилась с времен однопороговых знакопеременных шлейфов с допустимым током питания извещателей в дежурном режиме 8–10 мА, и в режиме «Пожар» при активизации пожарного извещателя лишь требовалось увеличить ток на значительную величину [1]. Чтобы при активизации нескольких дымовых извещателей не возникал режим, близкий к короткому замыканию шлейфа, в извещателях с тех пор используются стабилитроны, которые не допускают снижения напряжения шлейфа менее напряжения стабилизации независимо от числа активированных извещателей в шлейфе.

Для работы шлейфа в двухпороговом режиме требуется обеспечить стабильные характеристики ППКП и извещателя, которые в настоящее время никто не гарантирует. Обычно используемые дополнительные резисторы и оконечный резистор с 5%-ными допусками могут не обеспечить достоверное формирование сигналов «Пожар 1» при активизации одного извещателя и «Пожар 2» при активизации двух извещателей [2]. Параметры шлейфа в режимах «Пожар 1» и «Пожар 2» могут пересекаться. А в так называемом комбинированном шлейфе, рассчитанном на одновременное подключение нормально замкнутых тепловых и дымовых извещателей, то есть фактически уже в четырехпороговом шлейфе, при обрыве шлейфа за счет тока потребления дымовых извещателей формируются сигналы «Пожар 1» и «Пожар 2», как при сработке тепловых извещателей [2]. Более достоверное распознавание сработки одного и двух извещателей в шлейфе обеспечивается при использовании ППКП с адаптивными порогами «Пожар 1», «Пожар 2», величина которых программируется в соответствии с током потребления пожарных извещателей в дежурном режиме [3]. Очевидно, значительно большие возможности по проработке вопросов согласования извещателей с пожарными приборами имеют компании, выпускающие как извещатели, так и ППКП.

Требование индикации режима «Пожар»

Требования по согласованию ППКП с неадресными пожарными извещателями изложены в общем виде: в п. 4.2.1.1 ГОСТ Р 53325-2009 указано, что «извещатели пожарные, взаимодействующие с прибором приемно-контрольным пожарным, должны обеспечивать информационную и электрическую совместимость с ним», а в п. 4.2.1.3 содержится требование: «Электрические характеристики извещателей пожарных (напряжение и токи дежурного режима и режима тревожного извещения) должны быть установлены в технической документации (ТД) на извещатели пожарные конкретных типов и должны соответствовать электрическим характеристикам шлейфа пожарной сигнализации пожарного приемно-контрольного прибора, с которым предполагается использовать извещатели пожарные». Рассмотреть проблемы совместимости всего многообразия пожарных извещателей в рамках одной статьи не представляется возможным, вследствие чего ограничимся тепловыми контактными пожарными извещателями.

В документации любого ППКП приведены схемы подключения тепловых извещателей с нормально замкнутыми и нормально разомкнутыми контактами и номиналы соответственно балластных и дополнительных резисторов для работы в двухпороговом (четырехпороговом) режиме. При отсутствии дымовых извещателей в том же шлейфе никаких проблем возникать вроде бы не должно. Однако многие производители ППКП как бы не в курсе, что еще с 01.01.2001 г. на тепловые ПИ, не потребляющие электрический ток, распространяется требование п. 17.6.1 НПБ 76-98 «Извещатели пожарные. Общие технические требования. Методы испытаний» о том, что «ПИ должны содержать встроенный оптический индикатор красного цвета, включающийся в режиме передачи тревожного извещения. При невозможности установки оптического индикатора в ПИ последний должен обеспечивать возможность подключения выносного оптического индикатора или иметь другие средства для местной индикации режима передачи тревожного извещения». П. 4.2.5.1 действующего в настоящее время ГОСТ Р 53325-2009 гласит: «Извещатели пожарные должны содержать встроенный оптический индикатор, мигающий в дежурном режиме и включающийся в режиме постоянного свечения при передаче тревожного извещения. При невозможности установки оптического индикатора в извещатель пожарный последний должен обеспечивать возможность подключения выносного оптического индикатора или иметь другие средства для местной индикации дежурного режима и режима передачи тревожного извещения» с примечанием: «Требование к наличию оптического индикатора у ИПТ класса выше В и у извещателей, предназначенных для работы во взрывоопасных зонах, является рекомендуемым. Требование по миганию индикатора в дежурном режиме для неадресных извещателей является рекомендуемым. Требование по миганию индикатора в дежурном режиме для адресных извещателей, распространяется на извещатели, производимые после 01.01.2010 г.».

Соответственно в настоящее время выпускаются тепловые извещатели со встроенным светодиодным индикатором (рис. 1) и извещатели без индикатора, к которым подключаются выносные индикаторы. Следовательно, при определении номиналов дополнительных резисторов необходимо учитывать наличие и электрические характеристики подключаемых светодиодов.

Рис. 1. Тепловой извещатель со встроенным индикатором

Характеристики светодиодов

Светодиод, как и любой другой диод, имеет нелинейную вольт-амперную характеристику, то есть в отличие от резистора его сопротивление изменяется в широких пределах в зависимости от тока. В качестве примера на рис. 2 приведена вольт-амперная характеристика индикаторного светодиода от пожарного извещателя. При изменении тока светодиода в пределах от 1 до 20 мА напряжение на нем примерно равно 2 В, а точнее при 1 мА напряжение равно 1,84 В, а при 20 мА — 2,23 В. Соответственно сопротивление светодиода при токе 1 мА равно 1,84 кОм, а при увеличении тока до 20 мА его сопротивление падает до 111,5 Ом! Поэтому в спецификации на светодиоды, как правило, указывается типовое и максимальное падение напряжения на светодиоде. Эти величины показывают возможный разброс параметров светодиодов: например, может быть указано типовое падение напряжения на светодиоде, равное 2,2 В при 20 мА, а максимальное — 2,6 В.

Рис. 2. Вольт-амперная характеристика индикаторного светодиода

Яркость светодиодов также обычно указывается при токе 20 мА и в зависимости от типа светодиода может быть по минимуму 5—10 mcd и достигать порядка 2000—3000 mcd, что существенно влияет на их цену. В пожарном шлейфе ток индикаторов порядка 20 мА обеспечить не представляется возможным, поскольку даже ток короткого замыкания шлейфа у многих приборов не достигает этой величины. Конечно, для обеспечения функции индикации светодиод при включении должен иметь достаточную яркость и широкую диаграмму направленности. По экспертной оценке, стандартные светодиоды обеспечивают более-менее приемлемую яркость при токах не менее 5 мА, а сверхъяркие светодиоды — при токах от 1,5 мА. Необходимо отметить, что для упрощения монтажа в тепловых извещателях желательно использовать неполярные светодиодные индикаторы.

Схема подключения тепловых извещателей

Тепловые извещатели с нормально замкнутыми контактами подключаются к шлейфу пожарной сигнализации аналогично дымовым извещателям, и различие заключается в основном в значительно меньшей величине падения напряжения в активном режиме и в отсутствии тока потребления в дежурном режиме. Соответственно присутствуют примерно те же проблемы при согласовании шлейфа в двухпороговом режиме, степень значимости которых в основном зависит от типа используемого прибора. В этой статье ограничимся рассмотрением проблем, возникающих при использовании тепловых извещателей с нормально замкнутыми контрактами, которые соответственно подключаются в шлейф последовательно.

Рис. 3. Схема подключения тепловых извещателей без индикатора

Принцип действия так называемого теплового шлейфа заключается в повышении сопротивления шлейфа на величину балластного сопротивления, подключенного параллельно извещателю при его активизации (рис. 3). Без учета сопротивления кабеля, сопротивления контактов извещателей и тока утечки сопротивление шлейфа в дежурном режиме равно Rок, при активизации одного извещателя: RШС = RБАЛ + RОК, при активизации двух извещателей: RШС = 2RБАЛ + RОК, трех извещателей: RШС = 3RБАЛ + RОК и так далее. И если рассматривать «тепловой» шлейф с извещателями без индикаторов, то существенных проблем возникать не должно. В документации на любой прибор указаны величины оконечных и балластных резисторов. Кроме того, обычно приводятся диапазоны сопротивления шлейфа в различных режимах. Например, если величина балластных резисторов по 4,7 кОм, а оконечного резистора — 7,5 кОм, то при сработке первого извещателя сопротивление шлейфа повышается до 12,2 кОм, а при сработке двух извещателей — до 16,9 кОм, и при сопротивлении шлейфа более 20 кОм можно было бы фиксировать обрыв шлейфа и формировать сигнал «Неисправность». Однако необходимо учитывать, что при работе прибора в двухпороговом режиме в помещении должно устанавливаться не менее трех пожарных извещателей. Следовательно, есть определенная вероятность одновременного срабатывания 2-го и 3-го извещателя, ее величина зависит от многих факторов, например, от расположения извещателей относительно очага и идентичности их характеристик, от временных характеристик прибора, то есть насколько близкие по времени сработки извещателей он идентифицирует. Но в любом случае величина этой вероятности не равна нулю. А вот в приборах с перезапросом состояния извещателей, в том числе зачем-то и тепловых, эта вероятность близка к единице в случае исправности всех трех извещателей. Таким образом, с учетом высокой скорости развития открытого очага, если после сработки первого теплового извещателя прибор производит автоматический сброс шлейфа и повторный опрос состояния шлейфа производится примерно через полминуты, то к этому времени все три извещателя успеют активизироваться. В этом случае сопротивление шлейфа будет равно 21,6 кОм, а при активизации четырех извещателей — уже 26,3 кОм. Следовательно, для исключения формирования сигнала «Неисправность» при пожаре порог данного сигнала должен быть выбран около 30 кОм и режим перезапроса должен быть исключен.

Попутно отметим, что порог обрыва шлейфа на уровне 30 кОм исключает возможность работы с дымовыми извещателями. При напряжении шлейфа на холостом ходу порядка 20 В порогу сигнала «Неисправность» соответствует ток шлейфа, равный 0,67 мА, а за вычетом тока утечки 0,4 мА от сопротивления 50 кОм, что необходимо обеспечить в обязательном порядке по требованиям ГОСТ Р 53325—2009, на питание извещателей в дежурном режиме остается менее 0,27 мА. Что ограничивает возможности защиты таким шлейфом до одного помещения с тремя дымовыми извещателями. При попытке защиты даже двух помещений, то есть при включении в шлейф шести дымовых извещателей с током по 0,1 мА, их суммарный ток в дежурном режиме будет равен 0,6 мА, а при обрыве шлейфа между двумя помещениями, либо при снятии извещателей во втором помещении обрыв шлейфа не будет зафиксирован, так как ток оставшихся трех извещателей, равный 0,3 мА, превышает порог формирования сигнала «Неисправность».

Кроме того, формирование так называемого «комбинированного» шлейфа с одновременным включением дымовых и тепловых извещателей даже с нормально разомкнутыми контактами нельзя допускать, исходя из тактических соображений. Уровень защиты дымовыми и тепловыми извещателями существенно различается, соответственно должна быть другой реакция на сработку теплового извещателя при наличии открытого очага по сравнению с обнаружением тлеющих очагов дымовыми извещателями. С другой стороны, нормами определена защита большинства объектов дымовыми извещателями как обеспечивающими раннее обнаружение пожара и защищающими жизни людей. Тепловые извещатели используются в настоящее время достаточно редко и, как правило, в зонах, где не допускается использование дымовых извещателей по условиям эксплуатации. Вполне целесообразна защита этих зон отдельными шлейфами для обеспечения адресности с учетом обнаружения пожара на этапе открытого очага.

Расчет шлейфа с тепловыми извещателями с индикатором

Расчет шлейфа при использовании тепловых извещателей с индикаторами (рис. 4), по требованиям действующих уже 10 лет норм, естественно, усложняется. Кроме того, если в документации на приемно-контрольный прибор приведены схемы включения тепловых извещателей, аналогичные представленной на рис. 3, то возникают  вопросы: какая величина балластных резисторов должна быть выбрана при наличии светодиодов, можно ли уложиться в установленные пороги сигналов «Пожар 1», «Пожар 2» с учетом нелинейности характеристик светодиодов, будут ли они что-либо индицировать и т.д. Конечно, для точного расчета требуются более полные характеристики ППКП, которые в документации не указываются, исходя из чего попытаемся определить общие закономерности для различного класса приборов.

Рис. 4. Схема подключения тепловых извещателей с индикатором

Из предыдущего расчета при напряжении ненагруженного шлейфа 20 В при выходном сопротивлении шлейфа прибора 1 кОм и при сопротивлении шлейфа в режиме «Пожар 1» 4,7 к + 7,5 к, ток равен примерно 1,515 мА. Определим величину балластного сопротивления в предположении падения напряжения на светодиоде, равного 2 В (рис. 2). При токе шлейфа 1,515 мА на резисторе 4,7 кОм падает до 1,515х4,7 = 7,12 В. За вычетом 2 В, которые падают на светодиоде на балластное сопротивление, остается 5,12 В и с учетом тока шлейфа 1,515 мА его величина должна быть 3,38 кОм. Не будем производить округление этого значения до ближайшего номинала резистора, чтобы оценить, насколько расходятся параметры шлейфа при сработке второго и третьего теплового извещателя с индикатором от безиндикаторных. Проверка: сопротивление светодиода при падении напряжения на нем 2 В, и токе 1,515 мА равно 2/1,515 = 1,32 кОм, что в сумме с вычисленным балластным сопротивлением составляет требуемые 4,7 кОм.

При активизации второго извещателя ток шлейфа будет определяться как частное от деления суммарного падения напряжения на резисторах на их суммарную величину. То есть из исходного напряжения шлейфа, равного 20 В, вычитаем величину падения напряжения на двух светодиодах — примерно 4 В. Получаем 16 В — падение на резисторах, их суммарная величина 1 к + 3,38 к + 3,38 к + 7,5 к = 15,26 к, а ток соответственно равен 1,05 мА. Общее сопротивление цепи равно 20В/1,05мА = 19,05 кОм, и, вычитая выходное сопротивление прибора 1 кОм, получаем сопротивление шлейфа, равное 18,05 кОм. Получили несколько большую величину по сравнению с 16,9 кОм,  при использовании тепловых извещателей без индикаторов. Аналогично можно посчитать параметры шлейфа при активизации трех извещателей, однако следует отметить, что снижение величины тока до 1 мА делает проблематичным контроль индикации уже двух извещателей даже при использовании сверхъярких светодиодов, к тому же при токах менее 1—1,5 мА вольт-амперная характеристика «загибается» и необходимо учитывать изменение падения напряжения на светодиоде (рис. 2). Проще сказать, что приборы с однополярным шлейфом не рассчитаны на подключение тепловых извещателей с индикаторами, поэтому их подключение и не приводится в документации. Однако имеются и более существенные нюансы, чем отсутствие индикации режима «Пожар» при использовании выносного индикатора!

Выносной индикатор или резервирование неисправности?

По действующим с 2003 г. нормативным требованиям для снижения вероятности формирования ложного сигнала «Пожар» запуск большей части противопожарных систем производится при срабатывании не менее двух извещателей при наличии третьего резервного извещателя в двухпороговом шлейфе. Реализуется логика работы «два из трех», то есть сигнал «Пожар 2» формируется при активизации любых двух извещателей, а третий извещатель может быть неисправным. Этот алгоритм не обеспечивается при включении в «тепловой» шлейф извещателей с нормально замкнутыми контактами и с выносным индикатором. В случае обрыва цепи выносного индикатора или балластного резистора при срабатывании теплового извещателя происходит обрыв шлейфа (рис. 5) и прибор формирует сигнал «Неисправность», естественно при срабатывании оставшихся исправных извещателей обрыв шлейфа не устраняется и пожар не обнаруживается. Причем в дежурном режиме, при замкнутых контактах извещателя, эта неисправность не обнаруживается.

Рис. 5. Обрыв цепи выносного индикатора вызывает обрыв шлейфа при пожаре

Кроме того, даже если первым сработает исправный извещатель, а вторым — извещатель с оборванной цепью выносного индикатора, то прибор сформирует сначала сигнал «Пожар 1», а при сработке второго извещателя обнаружит обрыв шлейфа и сформирует сигнал «Неисправность» по логике работы большой части отечественных приборов. Таким образом, грубейшим образом нарушается логика работы системы, определенная в нормативах, — вместо резервирования неисправных извещателей резервируется сама неисправность. Если из двух сработавших извещателей один имеет обрыв выносного индикатора, сигнал «Пожар» блокируется.

В приборах с функцией перезапроса, когда к моменту перепроверки шлейфа сработают все три извещателя, будет работать логика резервирования неисправности по максимуму, по «ИЛИ»: если хотя бы в одном извещателе из трех есть обрыв цепи выносного индикатора, то сигнал «Пожар» блокируется из-за обрыва шлейфа.

Для обеспечения работоспособности системы в зарубежных нормах присутствует общее требование, относящееся ко всем пожарным извещателям, о том, что обрыв или короткое замыкание цепей выносных индикаторов и других дополнительных устройств не должны нарушать работоспособность извещателя.

Таким образом, при использовании тепловых извещателей с нормально замкнутыми контактами необходимо заранее прорабатывать вопросы согласования с ППКП для исключения значительных трудностей на этапе монтажа и приемосдаточных испытаний.

И.Г. Неплохов
Технический директор бизнес-группы «Центр-СБ», к.т.н.
  • Следующая статья Требования к системам оповещения и эвакуации
  • Предыдущая статья Магнитоконтактные датчики
Похожие статьи…

os-info.ru

монтаж, проект, установка датчиков, нормы

Честно обеспечить свое благосостояние всегда было трудно, а потерять праведно нажитое при пожаре или краже – обидно, и опять зарабатывать нужно… Охранно-пожарная сигнализация (ОПС) позволяет свести риск пропажи имущества от несчастья к минимуму, а ставки страховых взносов для оборудованного ею жилья существенно ниже. В наше время появилось еще одно благоприятное обстоятельство – монтаж пожарной сигнализации своими руками может произвести человек, знакомый с азами электротехники и домашних работ, а узаконивание правильно собранной системы чаще всего не требует соблюдения сложных формальностей.

Неужели? ОПС – дело серьезное, на сигнал тревоги должно отреагировать МЧС. И установка пожарной сигнализации по закону должна производиться лицензированной организацией, это всем известно. Да, но современная электроника настолько упростила построение автоматических охранных систем (АОС), повысив в то же время их функциональность и надежность, что, образно выражаясь, сытые волки бдительно охраняют пасущееся стадо: профессионалы имеют стабильный доход, сосредоточившись исключительно на охранных функциях, а граждане, не напрягая бюджет, обеспечивают свою безопасность.

Чтобы разобраться, почему охранно-пожарная сигнализация своими руками стала вполне реальной, и как ее правильно сделать, давайте вкратце ознакомимся с эволюцией АОС, устройством их в целом и составных частей, и принципами организации охранных служб жилых помещений.

Как развивались АОС

До чипов и герконов

Первоначально АОС строились в виде цепочки размыкающихся термодатчиков: пружинные контакты спаивались сплавами Вуда или Розе с температурой плавления 70-86 градусов. Принудительно замыкалась цепочка ручным извещателем с нормально замкнутыми контактами. Все это вместе образовывало шлейф Ш. От нагрева припой плавился, контакты расходились, цепь рвалась, включенное в нее реле тоже с нормально замкнутыми контактами отпускало, его контакты замыкались и включали сигнал тревоги. Нажав кнопку извещателя, можно было дать тревогу вручную.

Такие системы худо-бедно работали как локальные, но для связи с центральным пультом требовалась длинная линия (ЛС), подверженная неисправностям и имеющая собственные сопротивление утечки, сопротивление проводов, емкость и индуктивность, что могло вызвать как ложную сработку, так и несработку по действительной опасности.

Схемы построения прежних и современных ОПС

Поэтому на пультах стали включать лучи – шлейфы с ЛС – в диагональ электрического моста, а в его противоположную диагональ – балансный контур БК (см. рис). Луч характеризовался уже не сопротивлением шлейфа RШ, а полным сопротивлением (импедансом) абонента ZА. Регулируя БК, добивались равенства его импеданса ZК импедансу абонента ZА. При таком условии потенциалы в диагонали моста 1-2 оказывались равными, а напряжение U1-2=0. При сработке датчика возникало U1-2>0, что и включало тревогу.

Мостовая схема АОС позволила внести важное усовершенствование: параллельно извещателю стали включать резистор строго определенной величины RШ. Это позволило по величине U1-2 судить о характере сработки: если в цепи остался RШ, то это кто-то нажал кнопку извещателя, тогда U1-2 будет примерно вдвое меньше максимального; это сигнал «Внимание». Если разомкнулся датчик, то увидим четкий обрыв цепи и максимум U1-2; это – «Тревога».

Такая система была не весьма надежной: малейшая неисправность давала ложную сработку, выезжал наряд, а затем монтер, выражая в произвольной форме свои мысли по этому поводу, шел искать и устранять. Ложные сработки уменьшали степень доверия к АОС и от наряда до монтера объект оставался открытым. Более того, брызги припоя иногда попадали между разомкнувшимися контактами, и датчик, «пискнув», опять успокаивался. Бывали случаи, когда преступники стреляли по датчикам из пневматического ружья через форточку, и, увидев, что наряд уехал, знали, что у них есть не меньше часа на «дело».

Много хлопот доставляли и БК: параметры ЛС сильно «плавали». Работника с электротехническим образованием на пульт милиция и пожарники встречали с распростертыми объятиями, но зачастую вскоре приходилось подписывать заявление «по собственному»: зарплата была маленькой (не лезет же на нож и под пули), а нервотрепки не меньше, чем у оперов.

В обширных объектах, состоящих из многих абонентов (универмаг, почтамт) лучи из помещений сводили в локальный пульт – приемно-контрольный прибор (ПКП), автоматически дававший сигнал тревоги по телефонной линии при сработке какого-то из лучей. Это позволяло снизить зависимость БК от состояния ЛС, которые находились уже в ведении связистов, но уменьшало надежность: грамотно покопавшись в ПКП, можно было отключить от пульта весь объект и орудовать там в свое удовольствие.

Тогда же делались попытки использовать параллельное включение датчиков с термобиметаллическими нормально разомкнутыми контактами, зашунтированными RШ. По идее, это позволило бы по величине U1-2 судить с удаленного пульта и о месте сработки, чего последовательная система никак не позволяет. Однако открытый биметалл оказался крайне ненадежным: датчик с окислившимися контактами заранее никак не заявлял о себе, и потом молчал, как рыба об лед, когда огонь уже полыхал вовсю.

Герконы

Герметизированные магнитоуправляемые контакты – герконы – произвели первую революцию в АОС и ОПС. Герконы выдерживают миллиарды срабатываний без окисления контактных поверхностей, а проблема сработки по температуре легко решилась применением удерживающих магнитов из материалов с точкой Кюри в 70 градусов: при нагреве магнит переставал магнитить, и контакты размыкались.

Принцип устройства геркона позволяет сделать его переключающимся, что дает надежный датчик, пригодный и для последовательной, и для параллельной ОПС. Правда, точность определения места сработки аналоговыми способами оставалась низкой, поэтому параллельные аналоговые ОПС распространения не получили. Тем не менее, именно благодаря герконам появилась пожарная сигнализация в квартире: надежность и дешевизна датчиков обеспечивали стоимость системы, доступную даже рядовому советскому потребителю.

К «герконной эпохе» относятся и первые дымовые датчики, но отнюдь и отнюдь не бытовые: сработка по дыму обеспечивалась ионизацией зазора между неподвижными контактами, для чего он подсвечивался ампулкой с радиоактивным изотопом. Монтеры сигнализации боялись таких датчиков, в толстом стальном корпусе и замаркированных знаком радиационной опасности, как огня, и применялись они редко, на особо важных объектах.

Тогда же начали преобразовываться и ПКП: применение микросхем средней степени интеграции и аналого-цифровых преобразователей (АЦП) позволило упростить БК или вовсе от них отказаться и замерять параметры луча непосредственно. Появились и первые беспроводные ПКП с автономным питанием, независимо от телефонных линий дававшие тревогу на пульт по системе «Алтай» – прообразе современной мобильной связи, изобретенной в СССР еще в 50-х годах.

Чипы и лазеры

Подлинный переворот в ОПС произвели и сделали ее общедоступной большие интегральные микросхемы (БИС, чипы) и миниатюрные полупроводниковые лазеры. Коснулось это всех звеньев ОПС, и в новую систему органично вписались лучшие из прежних достижений (см. на рисунке ранее по тексту внизу).

Многофункциональный датчик-извещатель ОПС

Датчики с помощью лазерных детекторов контролируют температуру и задымленность сразу по нескольким параметрам, что исключает ложную сработку (см. рис. слева). Некоторые датчики совмещают в себе функции детекторов движения, о них будет сказано далее. «Умные» датчики могут быть и автономными, снабженными встроенным аккумулятором.

ПКП наших дней – компьютеризованное устройство, способное работать как с «умными» младшими коллегами, так и со старыми, но абсолютно безотказными и очень дешевыми герконами. Это позволило включить в состав бытовых ОПС СПУ – сигнально-пусковое устройство, по сигналу ПКП или непосредственно от датчика включающее табло-указатели, мигалки, сирены и открывающее клапаны автоматической системы пожаротушения.

Современные ОПС – цифро-аналоговые параллельно-адресные: в каждом датчике прошит его электронный адрес, и ПКП точно знает, где что произошло. Аналоговые датчики с помощью развитого ПО также достаточно точно контролируются по параметрам шлейфа. Сигнал тревоги подается по GSM на мобильный телефон владельца и на компьютер охранной организации. Тревога может дублироваться непосредственно от чипованного датчика, а включение СПУ – помимо него от КПП.

Датчики движения на тех же чипах и инфракрасных лазерах сделали ОПС действительно охранными: они контролируют весь объем помещения или площадь двора. Сигнал лазерного сканера преобразуется в код, а процессор ПКП непрерывно сравнивает коды один за другим, отсеивая помехи от погоды, осадков, мелких безопасных объектов.

Возможности современной полнофункциональной ОПС представлены на рисунке. Стоит такая весьма дорого, но систему попроще, для квартиры вполне надежную, можно собрать и самому. Как – будет описано далее, а пока посмотрим, что нужно и чего можно добиться вообще:

Структура современной полнофункциональной ОПС

  1. Источник бесперебойного питания (ИБП) необходим, чтобы ОПС продолжала действовать в обесточенной квартире;
  2. ПКП;
  3. Универсальные датчики-оповещатели: слева группа автономных, напр. в гараже;
  4. Датчики движения;
  5. Электронный замок;
  6. Герконовый противовзломный контактор;
  7. Табло-указатель;
  8. Локальный сигнализатор тревоги;
  9. Дисплей с пультом управления;
  10. Автомат ОПС.

Дадим некоторые пояснения. Во-первых, герконовые датчики вскрытия пока держатся на своем месте, не конкурируя с датчиками движения, и дело не только в дешевизне и надежности. Маленький герконовый контактор легко скрыть, его работа не обнаруживается антисканером. Поиски такого «клопа» (а неизвестно, есть ли он вообще) при умелой установке требуют столько времени, что и взлом теряет смысл.

Во-вторых, вместо любого из устройств по поз. 7, 8 может быть подключено СПУ. В-третьих, по поз.10: питание ОПС обязательно должно производиться от отдельного автомата, включенного ПЕРЕД квартирным, иначе надежная работа системы не гарантируется. И, наконец, пульт с дисплеем по коду доступа позволяет самостоятельно сбрасывать, тестировать и перенастраивать ОПС.

Оргсруктура

Коренное улучшение технической базы повлекло за собой и усовершенствование организационной структуры ОПС: на пульт МЧС абоненты заводятся редко, это дорого и перегружает как оборудование, так и персонал. Роль концентратора сигналов взяли на себя частные охранные фирмы. Горит или крадется не везде и не всегда, и они при приемлемой нагрузке могут набрать много абонентов, что при небольшой абонплате обеспечивает приличный доход.

Хозяевам такая система тоже выгодна: частный лицензированный охранник охотно проконсультирует, поможет советом, ему не занимать опыта во взаимодействии с МЧС и полицией. А поскольку хозяин все-таки платит ему свои кровные, то и потребовать в случае чего проще, чем с госструктуры.

Беремся за сигнализацию

Нужен ли проект?

Проект пожарной сигнализации нужен, и не столько по формальным соображениям. Только охранник с большим опытом сможет точно указать места расположения приборов, их типы и схему соединения. Иначе пламя может разбушеваться до непоправимого, а злоумышленник, сразу углядев «самопал» (они в сигнализации прекрасно разбираются), только хмыкнет и, «забомбив хату», рассядется привольно в любимом хозяйском кресле, попивая хозяйский коньячок, покуривая хозяйскую сигару, нежно поглаживая торбу на коленях, туго набитую хозяйским добром и поглядывая иронически на датчики в полной боевой готовности.

Однако охранные фирмы, в общем справедливо полагая, что главное – реальная безопасность, а не бумаги, нередко идут на поблажки потенциальным абонентам: проект соглашаются делать подешевле, эскизный, или ограничиваются еще более дешевой консультацией: где какие датчики ставить, где поместить ПКП, каким кабелем и как все соединять.

Потом, проверив работу, берут на охрану, а по документам проводят от себя задним числом. Хозяину от этого не хуже: раз договор подписан и квартира уже на пульте, на охранников ложится вся мера ответственности. Компоненты современной ОПС совершенно надежны, техническое обслуживание пожарной сигнализации сводится к периодической проверке ее работоспособности и готовности, которую совместно с дежурным охранной организации вполне может провести и сам владелец, так что и по сервису проблем, как правило, не возникает.

Как что делать?

Закон не запрещает самому делать ОПС, только на пульт такую не возьмут. Придется ограничиться выводом тревоги на мобильный, но и это уже серьезное подспорье в несчастье: МЧС и полиция обязаны реагировать на любые сигналы граждан. Поэтому опишем, какое для какого случая оборудование выбирать, и как правильно собрать его в работоспособное целое.

ПКП

Типы современных ПКП показаны на рисунке. Первый слева – профессиональный многолучевой аналого-цифровой. Такие могут работать с любыми схемами ОПС, соединяться каскадно, обеспечивая охрану объектов любой степени сложности и вести диалог с компьютером охранной организации, фиксируя и передавая полную картину развития обстановки. В быту не применяются.

Следующий – полупрофи, цифровой для параллельных адресных ОПС. Он показан открытым, т.к. снаружи это глухая коробка. Справа внизу в нем – ИП; рядом – аккумулятор, довольно мощный, как видно, на несколько часов, до суток, автономной работы.

Слева верху – электронный блок, а на пустом месте около него в круглосуточно охраняемых помещениях располагается пульт управления, но обычно его относят подальше. Дело в том, что такое сердце ОПС, хоть и снабжено системой самозащиты, все же самое уязвимое место охранной системы. Работу процессора можно засечь специальным сканером, наподобие того, как делают угонщики автомобилей, и вмешаться в нее нежелательным для владельца образом.

Поэтому ПКП настоятельно рекомендуется размещать в потаенном, труднодоступном и достаточно хорошо электрически экранированном месте, скажем, в железобетонном подвале. Что же касается последовательного интерфейса RS482, которым связаны ПКП и пульт, то сигналы его очень хорошо закодированы, и пробиться по нему к процессору невозможно.

Полупрофессиональные ПКП в быту применяются в элитных усадьбах индивидуально или коллективно в жилых комплексах: один такой ПКП позволяет подключать к нему до 255 датчиков.

Следующий – многолучевой бытовой ПКП. Это уже доступное по цене рядовому гражданину устройство. Предназначен такой прибор для частных домовладений с надворными постройками: кроме обслуживания герконовых и чипованных проводных лучей, он может обрабатывать сигналы от 2-8, в зависимости от модели, беспроводных датчиков.

Крайний справа – простейший квартирный ПКП. Обслуживают самые дешевые модели всего один луч (в квартире больше и не нужно), но, как и все вышеперечисленные, могут передавать сигнал на мобильный номер. Номер в недорогих бытовых ПКП без доступа по коду со своего пульта прошивается при покупке или в охранной фирме, поэтому телефон с ним нужно держать при себе заряженным и с не пустым счетом: мобильные операторы берут плату за прием сообщений по GSM.

Бытовые ПКП обязательно комплектуются подробной инструкцией с типовыми схемами ОПС, перечнем типов и моделей совместимых с прибором датчиков и рекомендациями по монтажу системы. Нередко в комплект входит маячок-мигалка для входной двери и наклейка «Объект под охраной». Это весьма полезные дополнения: их наличие чаще всего заставляет злодеев и вандалов убраться восвояси.

ПКП должен соответствовать евростандарту EN54, что обеспечивается сертификатами ССПБ, LPCB или VdS.

Датчики

Датчики и их соединительные провода – ключевой узел ОПС, определяющий ее надежность в целом. Прежде всего – о проводах. Телефонной «лапшой», непрочной и ненадежной, датчики уже не соединяют: в продаже есть множество видов сигнальных двух- и многожильных кабелей в круглой внешней оболочке, которые можно и проложить по стенам так, чтобы не бросались в глаза, и спрятать под декоративной обшивкой. Но о собственно датчиках следует поговорить подробнее.

Выбор

Герконовый датчик ОПС

Для квартиры оптимальный вариант – старые добрые герконовые «колпачки», см. рис. На кухню желателен чипованный, реагирующий, кроме тепла, и на задымление. Если в квартире хранятся значительные ценности, то возле мест их расположения лучше поставить полнофункциональные, с детекторами движения.

В частном доме полезен будет датчик движения во дворе со встроенным СПУ, нагруженным на фонарь освещения. И непрошеных гостей отпугнет, и самому в темноте не придется спотыкаться: СПУ подсветит.

Многофункциональные датчики обязательно снабжаются индикаторным светодиодом, а простейшие могут быть с ним или без него. Первые предпочтительнее: свечение или наоборот, погасание индикатора свидетельствуют о неисправности датчика. При ложной сработке не нужно лазить по потолку с тестером – плохой датчик сразу виден.

Размещение

Нормы размещения датчиков ОПС

Нормы на размещение датчиков ОПС на первый взгляд весьма либеральны, см. рис: не далее 4,5 м от стены или угла и не более 9 м между датчиками. Но так сделано только ради удобства конфигурирования конкретной ОПС, а на самом деле расположение датчиков – дело тонкое.

Во-первых, при размещении их на стенах до потолка должно быть не менее 0,2 м, иначе датчик может оказаться в дымовом кармане и дать ложную сработку. Видали прокуренные комнаты? Там ведь более всего закопчены верхние углы. Во-вторых, при балках на потолке датчики нужно размещать на их нижних поверхностях, а не на боковых или в межбалочном пространстве, по той же причине.

И, наконец, датчик обозревает не всю полусферу, а его чувствительность зависит от расстояния до источника опасности. Контролируемая площадь в виде круга в пустом помещении зависит от высоты потолка так:

По дыму:

  • До 3,5 м – до 85 кв. м.
  • 3,5-6 м – до 70 кв. м.
  • 6-10 м – до 65 кв. м.
  • От 10 м – до 55 кв. м.

По пламени:

  • До 3,5 м – до 25 кв. м.
  • 3,5-6 м – до 20 кв. м.
  • 6-9 м – до 15 кв. м.
  • Свыше 9 м – не контролируемо; возгорание превратится в пожар прежде, чем сработает датчик.

«До» перед площадью значит, что это максимально достижимая величина – в пустой комнате с пропорциями в плане 3/4. Точный расчет расположения датчиков в обитаемых комнатах требует компьютерного моделирования либо глаза опытного специалиста. Если ОПС делается самостоятельно без вывода на пульт охраны, то можно считать, что один датчик в жилой комнате «видит» внизу квадрат со стороной L, равной высоте потолка до 4 м. Размещать крайние датчики нужно на половине этого расстояния от ближайшей стены, а промежуточные – на расстоянии L друг от друга. В длинных и узких помещениях исходят прежде всего из расстояния между датчиками.

Пример: коридор в хрущевке 1,75х4 м; высота потолка – 2,5 м. Нужны два датчика, расположенные в 1,75/2=0,875 от торцевых стен. В спальне той же хрущевки 2,5х4,5 м нужны тоже два датчика в 1,25 м от торцевых стен.

Подключение

Включение извещателей ИП-212 в двухпроводный шлейф ОПС

Подключение датчиков пожарной сигнализации производится строго по инструкции к ним. Шлейф луча всегда заканчивается терминирующим резистором R. Его величина указывается в инструкции к ПКП. По умолчанию R=470 Ом, но могут потребоваться номиналы в 680 Ом или 910 Ом. Поясним подробнее лишь два часто запрашиваемых момента.

Первый – включение пятиклеммных датчиков ИП-212, отлично себя зарекомендовавших, в двухпроводный шлейф. Как это сделать – показано на рисунке слева.

Подключение шлейфа к дачикам ОПС

Второй – подключение обычных датчиков с одной клеммной колодкой. Провода кабеля должны заходить/выходить в клеммник ЗЕРКАЛЬНО, как показано на рис. справа.

Третий – датчики с двумя клеммниками. Левая колодка – ДЛЯ ШЛЕЙФА, который подключается по инструкции или как описано. А вот с правой следует разобраться уже при покупке: она предназначена для автономного включения СПУ; некоторые самые распространенные схемы таких датчиков показаны на последнем рисунке.

Если контакты шлейфа (клеммы 1-4) и СПУ (клеммы 6-8) электрически разделены, как на крайней правой позиции, то нужно выяснить допустимые напряжения и ток либо мощность СПУ. Если же контакт общий, как на остальных трех позициях, то напряжение – 12 В при токе до 200 мА, причем на СПУ оно пойдет от шлейфа, т.е. нагружать датчик лампочками, звонками и т.п. нельзя – выйдет из строя ПКП.

Схемы извещателей с выходом на СПУ

***

От души пожелаем всему или всем, что или кто вознамерится проигнорировать вашу ОПС, полной неудачи: гашения в зародыше или приговора по всей строгости закона.

Загрузка…

что еще почитать:

Вывести все материалы с меткой:

vopros-remont.ru

Схема подключения пожарных извещателей к контроллерам «Мираж»

Подключение дымовых датчиков (пожарных извещателей) допускается к объектовым контроллерам Мираж-GSM-M4-03, Мираж-GSM-M8-03, Мираж-GE-X8-01 серии «Мираж-Профессионал», к контроллерам серии «Мираж-Приват», а также к сетевым контрольным панелям. Как правило, схемы подключения дымовых датчиков приводится в инструкции по эксплуатации на датчик, тем не менее, вопросы по их подключению к объектовым контроллерам возникают очень часто.

Дымовой датчик представляет собой устройство, которое анализирует оптическую плотность среды с помощью оптического, ионного или другого метода. При сработке такого датчика, его сопротивление скачкообразно падает до определенной величины. Контроллер производит постоянное измерение сопротивления шлейфа сигнализации (ШС). Любое изменение величины сопротивления, вызванное механическим повреждением ШС или срабатыванием установленных в ШС извещателей, превышающим заданные пределы, приводит к формированию тревожного события, которое сохраняется в памяти и передаётся на ПЦН посредством одного из подключенных каналов передачи данных. При этом на панели индикации загорается индикатор, соответствующий номеру сработавшего шлейфа сигнализации, а также включается сирена.

Контроллеры «Мираж» позволяют вести контроль исправности пожарных шлейфов с автоматическим выявлением обрыва и короткого замыкания, а также формировать сигналы «Внимание» и «Пожар». Непосредственно в извещателе имеется перемычка между контактами 3 и 4 для контроля наличия извещателя. При изъятии любого извещателя из базы (розетки) происходит обрыв цепи шлейфа и контроллер формирует сообщение «Авария, обрыв». Для правильного функционирования шлейфа необходимо, чтобы номинальное сопротивление оконечного резистора R ок было равно 5,6 кОм. Сопротивление дополнительных резисторов R доп должно быть равно 1,8 — 2,2 кОм, в зависимости от типа извещателей и их количества в шлейфе. Номинальное напряжение в ШС составляет 28 В, максимальный ток для питания активных извещателей — 2 мА (согласно инструкции по эксплуатации).


Подключение извещателей производится согласно выбранной тактике реагирования для данного шлейфа:

Дымовой, без перезапроса — тактика означает, что сработка одного дымового извещателя не будет приводить к снятию питания с шлейфа с целью перезапроса. В данной стратегии при сработке одного дымового извещателя будет сформировано сообщение «Внимание». Сработка ещё одного из дымовых извещателей в этом шлейфе формирует сигнал «Пожар». Если при тестировании сработка второго извещателя не приводит к формированию события «Пожар», сопротивление R доп можно уменьшить до 1,1 кОм.


Дымовой, с перезапросом — означает, что при сработке одного дымового извещателя снимается питание со шлейфа на 3 секунды, затем вновь подается питание и через 5 секунд повторно анализируется состояние шлейфа. Вторая сработка одного из дымовых извещателей в этом шлейфе приводит к формированию события «Пожар».

Тепловой — стратегия предусмотрена для работы с тепловыми датчиками. Сработка одного теплового датчика формирует событие «Внимание» пожарного датчика, сработка второго — «Пожар».

Ручной извещатель — используется для ручного включения сигнала о пожаре. Сработка данного датчика приводит к формированию события «Пожар».

Независимо от выбранной тактики все пожарные шлейфы сигнализации по умолчанию круглосуточные. Если вы испытываете затруднения при подключении дымовых датчиков, обратитесь в нашу службу поддержки, вам окажут квалифицированную помощь и предложат правильное решение.

Используемые сокращения:
ШС – шлейф сигнализации
ДИП – дымовой извещатель пожарный
ИП – извещатель пожарный
ИПР – извещатель пожарный ручной

=»схема>

nppstels.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *