Схемы драйверов для светодиодных ламп 220в: Простейшие схемы подключения светодиодов в 220 вольт без драйвера (самое простое питание светодиода от сети напряжением 220В)

Содержание

Простейшие схемы подключения светодиодов в 220 вольт без драйвера (самое простое питание светодиода от сети напряжением 220В)

Потому что нужно грамотно решить сразу две задачи:

  1. Ограничить прямой ток через светодиод, чтобы он не сгорел.
  2. Обеспечить защиту светодиода от пробоя обратным током.

Если проигнорировать любой из этих пунктов, светодиод моментально накроется медным тазом.

В самом простейшем случае ограничить ток через светодиод можно резистором и/или конденсатором. А предотвратить пробой от обратного напряжения можно с помощью обычного диода или еще одного светодиода.

Поэтому самая простая схема подключения светодиода к 220В состоит всего из нескольких элементов:

Защитный диод может быть практически любым, т.к. его обратное напряжение никогда не будет превышать прямого напряжения на светодиоде, а ток ограничен резистором.

Сопротивление и мощность ограничительного (балластного) резистора зависит от рабочего тока светодиода и рассчитывается по закону Ома:

R = (Uвх — ULED) / I

А мощность рассеивания резистора рассчитывается так:

P = (Uвх — ULED)2 / R

где Uвх = 220 В,
ULED — прямое (рабочее) напряжение светодиода. Обычно оно лежит в пределах 1.5-3.5 В. Для одного-двух светодиодов им можно пренебречь и, соответственно, упростить формулу до R=Uвх/I,
I — ток светодиода. Для обычных индикаторных светодиодов ток будет 5-20 мА.

Пример расчета балластного резистора

Допустим, нам нужно получить средний ток через светодиод = 20 мА, следовательно, резистор должен быть:

R = 220В/0.020А = 11000 Ом (берем два резистора: 10 + 1 кОм)

P = (220В)2/11000 = 4.4 Вт (берём с запасом: 5 Вт)

Необходимое сопротивление резистора можно взять из таблицы ниже.

Таблица 1. Зависимость тока светодиода от сопротивления балластного резистора.

Сопротивление резистора, кОмАмплитудное значение тока через светодиод, мАСредний ток светодиода, мАСредний ток резистора, мАМощность резистора, Вт
437. 22.551.1
24
13
4.592
22145102.2
12269184
103111224.8
7.54115296.5
4.372255111.3
2.21415010022

Другие варианты подключения

В предыдущих схемах защитный диод был включен встречно-параллельно, однако его можно разместить и так:

Это вторая схема включения светодиодов на 220 вольт без драйвера. В этой схеме ток через резистор будет в 2 раза меньше, чем в первом варианте. А, следовательно, на нем будет выделяться в 4 раза меньше мощности. Это несомненный плюс.

Но есть и минус: к защитному диоду прикладывается полное (амплитудное) напряжение сети, поэтому любой диод здесь не прокатит. Придется подобрать что-нибудь с обратным напряжением 400 В и выше. Но в наши дни это вообще не проблема. Отлично подойдет, например, вездесущий диод на 1000 вольт — 1N4007 (КД258).

Не смотря на распространенное заблуждение, в отрицательные полупериоды сетевого напряжения, светодиод все-таки будет находиться в состоянии электрического пробоя. Но благодаря тому, что сопротивление обратносмещенного p-n-перехода защитного диода очень велико, ток пробоя будет недостаточен для вывода светодиода из строя.

Внимание! Все простейшие схемы подключения светодиодов в 220 вольт имеют непосредственную гальваническую связь с сетью, поэтому прикосновение к ЛЮБОЙ точке схемы — ЧРЕЗВЫЧАЙНО ОПАСНО!

Для уменьшения величины тока прикосновения нужно располовинить резистор на две части, чтобы получилось как показано на картинках:

Благодаря такому решению, даже поменяв местами фазу и ноль, ток через человека на «землю» (при случайном прикосновении) никак не сможет превысить 220/12000=0.

018А. А это уже не так опасно.

Как быть с пульсациями?

В обеих схемах светодиод будет светиться только в положительный полупериод сетевого напряжения. То есть он будет мерцать с частой 50 Гц или 50 раз в секунду, причём размах пульсаций будет равен 100% (10 мс горит, 10 мс не горит и так далее). Это будет заметно глазу.

К тому же, при подсветке мерцающими светодиодами каких-либо движущихся объектов, например, лопастей вентилятора, колес велосипеда и т.п., неизбежно будет возникать стробоскопический эффект. В некоторых случаях данный эффект может быть неприемлем или даже опасен. Например, при работе за станком может показаться, что фреза неподвижна, а на самом деле она вращается с бешенной скоростью и только и ждет, чтобы вы сунули туда пальцы.

Чтобы сделать пульсации менее заметными, можно удвоить частоту включения светодиода с помощью двухполупериодного выпрямителя (диодного моста):

Обратите внимание, что по сравнению со схемой #2 при том же самом сопротивлении резисторов, мы получили в два раза больший средний ток. И, соответственно, в четыре раза большую мощность рассеивания резисторов.

К диодному мосту при этом не предъявляется каких-либо особых требований, главное, чтобы диоды, из которых он состоит, выдерживали половину рабочего тока светодиода. Обратное напряжение на каждом из диодов будет совсем ничтожным.

Еще, как вариант, можно организовать встречно-параллельное включение двух светодиодов. Тогда один из них будет гореть во время положительной полуволны, а второй — во время отрицательной.

Фишка в том, что при таком включении максимальное обратное напряжение на каждом из светодиодов будет равно прямому напряжению другого светодиода (несколько вольт максимум), поэтому каждый из светодиодов будет надежно защищен от пробоя.

Светодиоды следует разместить как можно ближе друг к другу. В идеале — попытаться найти сдвоенный светодиод, где оба кристалла размещены в одном корпусе и у каждого свои выводы (хотя я таких ни разу не видел).

Вообще говоря, для светодиодов, выполняющих индикаторную функцию, величина пульсаций не очень-то и важна. Для них самое главное — это максимально заметная разница между включенным и выключенным состоянием (индикация вкл/выкл, воспроизведение/запись, заряд/разряд, норма/авария и т.п.)

А вот при создании светильников, всегда нужно стараться свести пульсации к минимуму. И не столько из-за опасностей стробоскопического эффекта, сколько из-за их вредного влияния на организм.

Какие пульсации считаются допустимыми?

Все зависит от частоты: чем она ниже, тем заметнее пульсации. На частотах выше 300 Гц пульсации становятся совершенно невидимыми и вообще никак не нормируются, то есть даже 100%-ные считаются нормой.

Не смотря на то, что пульсации освещенности на частотах 60-80 Гц и выше визуально не воспринимаются, тем не менее, они способны вызывать повышенную усталость глаз, общую утомляемость, тревожность, снижение производительности зрительной работы и даже головные боли.

Для предотвращения вышеперечисленных последствий, международный стандарт IEEE 1789-2015 рекомендует максимальный уровень пульсаций яркости для частоты 100 Гц — 8% (гарантированно безопасный уровень — 3%).

Для частоты 50 Гц — это будут 1.25% и 0.5% соответственно. Но это для перфекционистов.

На самом деле, для того, чтобы пульсации яркости светодиода перестали хоть как-то досаждать, достаточно, чтобы они не превышали 15-20%. Именно таков уровень мерцания ламп накаливания средней мощности, а ведь на них никто и никогда не жаловался. Да и наш российский СНиП 23-05-95 допускает мерцание света в 20% (и только для особо кропотливых и ответственных работ требование повышено до 10%).

В соответствии с ГОСТ 33393-2015 «Здания и сооружения. Методы измерения коэффициента пульсации освещенности» для оценки величины пульсаций вводится специальный показатель — коэффициент пульсаций (К

п).

Коэфф. пульсаций в общем рассчитывается по сложной формуле с применением интегральной функции, но для гармонических колебаний формула упрощается до следующей:

Кп = (Еmax — Emin) / (Emax + Emin) ⋅ 100%,

где Емах — максимальное значение освещенности (амплитудное), а Емин — минимальное.

Мы будем использовать эту формулу для расчета емкости сглаживающего конденсатора.

Очень точно определить пульсации любого источника света можно при помощи солнечной панели и осциллографа:

Как уменьшить пульсации?

Посмотрим, как включить светодиод в сеть 220 вольт, чтобы снизить пульсации. Для этого проще всего подпаять параллельно светодиоду накопительный (сглаживающий) конденсатор:

Из-за нелинейного сопротивления светодиодов, расчет емкости этого конденсатора является довольно нетривиальной задачей.

Однако, эту задачу можно упростить, если сделать несколько допущений. Во-первых, представить светодиод в виде эквивалентного постоянного резистора:

А во-вторых, сделать вид, что яркость светодиода (а, следовательно, и освещенность) имеет линейную зависимость от тока.

Давайте попробуем приблизительно рассчитать емкость конденсатора на конкретном примере.

Расчет емкости сглаживающего конденсатора

Допустим, мы хотим получить коэфф. пульсаций 2.5% при токе через светодиод 20 мА. И пусть в нашем распоряжении оказался светодиод, на котором при токе в 20 мА падает 2 В. Частота сети, как обычно, 50 Гц.

Так как мы решили, что яркость линейно зависит от тока через светодиод, а сам светодиод мы представили в виде простого резистора, то освещенность в формуле расчета коэффициента пульсаций можем спокойно заменить на напряжение на конденсаторе:

Кп = (Umax — Umin) / (Umax + Umin) ⋅ 100%

Подставляем исходные данные и вычисляем Umin:

2.5% = (2В — Umin) / (2В + Umin) 100% => Umin = 1.9В

Период колебаний напряжения в сети равен 0.02 с (1/50).

Таким образом, осциллограмма напряжения на конденсаторе (а значит и на нашем упрощенном светодиоде) будет выглядеть примерно вот так:

Вспоминаем тригонометрию и считаем время заряда конденсатора (для простоты не будем учитывать сопротивление балластного резистора):

tзар = arccos(Umin/Umax) / 2πf = arccos(1. 9/2) / (23.141550) = 0.0010108 с

Весь остальной остаток периода кондер будет разряжаться. Причем, период в данном случае нужно сократить в два раза, т.к. у нас используется двухполупериодный выпрямитель:

tразр = Т — tзар = 0.02/2 — 0.0010108 = 0.008989 с

Осталось вычислить емкость:

C = ILEDdt/dU = 0.02 0.008989/(2-1.9) = 0.0018 Ф (или 1800 мкФ)

На практике вряд ли кто-то будет ставить такой большой кондер ради одного маленького светодиодика. Хотя, если стоит задача получить пульсации в 10%, то нужно всего 440 мкФ.

Повышаем КПД

Обратили внимание, насколько большая мощность выделяется на гасящем резисторе? Мощность, которая тратится впустую. Нельзя ли ее как-нибудь уменьшить?

Оказывается, еще как можно! Достаточно вместо активного сопротивления (резистора) взять реактивное (конденсатор или дроссель).

Дроссель мы, пожалуй, сразу откинем из-за его громоздкости и возможных проблем с ЭДС самоиндукции. А насчет конденсаторов можно подумать.

Как известно, конденсатор любой емкости обладает бесконечным сопротивлением для постоянного тока. А вот сопротивление переменному току рассчитывается по этой формуле:

Rc = 1 / 2πfC

то есть, чем больше емкость C и чем выше частота тока f — тем ниже сопротивление.

Прелесть в том, что на реактивном сопротивлении и мощность тоже реактивная, то есть ненастоящая. Она как бы есть, но ее как бы и нет. На самом деле эта мощность не совершает никакой работы, а просто возвращается назад к источнику питания (в розетку). Бытовые счетчики ее не учитывают, поэтому платить за нее не придется. Да, она создает дополнительную нагрузку на сеть, но вас, как конечного потребителя, это вряд ли сильно обеспокоит =)

Таким образом, наша схема питания светодиодов от 220В своими руками приобретает следующий вид:

Но! Именно в таком виде ее лучше не использовать, так как в этой схеме светодиод уязвим для импульсных помех.

Включение или выключение распложенных на одной с вами линии мощной индуктивной нагрузки (двигатель кондиционера, компрессор холодильника, сварочный аппарат и т.п.) приводит к появлению в сети очень коротких выбросов напряжения. Конденсатор С1 представляет для них практически нулевое сопротивление, следовательно мощный импульс направится прямиком к С2 и VD5.

К сожалению, электролитические конденсаторы, из-за своей большой паразитной индуктивности, плохо справляются с ВЧ-помехами, поэтому большая часть энергии импульса пойдет через p-n-переход светодиода.

Еще один опасный момент возникает в случае включения схемы в момент пучности напряжения в сети (т.е. в тот самый момент, когда напряжение в розетке находится на пике своего значения). Т.к. С1 в этот момент полностью разряжен, то возникает слишком большой бросок тока через светодиод.

Все это со временем это приводит к прогрессирующей деградации кристалла и падению яркости свечения.

Во избежание таких печальных последствий, схему нужно дополнить небольшим гасящим резистором на 47-100 Ом и мощностью 1 Вт. Кроме того, резистор R1 будет выступать в роли предохранителя на случай пробоя конденсатора С1.

Получается, что схема включения светодиода в сеть 220 вольт должна быть такой:

И остается еще один маленький нюанс: если выдернуть эту схему из розетки, то на конденсаторе С1 останется какой-то заряд. Остаточное напряжение будет зависеть от того, в какой момент была разорвана цепь питания и в отдельных случаях может превышать 300 вольт.

А так как конденсатору некуда разряжаться, кроме как через свое внутреннее сопротивление, то заряд может сохраняться очень долго (сутки и более). И все это время кондер будет ждать вас или вашего ребенка, через которого можно будет как следует разрядиться. Причем, для того, чтобы получить удар током, не нужно лезть в недра схемы, достаточно просто прикоснуться к обоим контактам штепсельной вилки.

Чтобы помочь кондеру избавиться от ненужного заряда, подключим параллельно ему любой высокоомный резистор (например, на 1 МОм). Этот резистор не будет оказывать никакого влияния на расчетный режим работы схемы. Он даже греться не будет.

Таким образом, законченная схема подключения светодиода к сети 220В (с учетом всех нюансов и доработок) будет выглядеть так:

Значение емкости конденсатора C1 для получения нужного тока через светодиод можно сразу взять из Таблицы 2, а можно рассчитать самостоятельно.

Вот здесь можно посмотреть, как еще сильнее усовершенствовать данную схему, добавив в нее стабилизатор тока на одном транзисторе и стабилитроне. Это существенно понизит пульсации и продлит срок службы светодиодов.

Расчет гасящего конденсатора для светодиода

Не буду приводить утомляющие математические выкладки, дам сразу готовую формулу емкости (в Фарадах):

C = I / (2πf√(U2вх — U2LED)) [Ф],

где I — ток через светодиод, f — частота тока (50 Гц), Uвх — действующее значение напряжения сети (220В), ULED — напряжение на светодиоде.

Если расчет ведется для небольшого числа последовательно включенных светодиодов, то выражение √(U2вх — U2LED) приблизительно равно Uвх, следовательно формулу можно упростить:

C ≈ 3183 ⋅ ILED / Uвх [мкФ]

а, раз уж мы делаем расчеты под Uвх = 220 вольт, то:

C ≈ 15 ⋅ ILED [мкФ]

Таким образом, при включении светодиода на напряжение 220 В, на каждые 100 мА тока потребуется примерно 1. 5 мкФ (1500 нФ) емкости.

Кто не в ладах с математикой, заранее посчитанные значения можно взять из таблицы ниже.

Таблица 2. Зависимость тока через светодиоды от емкости балластного конденсатора.

C115 nF68 nF100 nF150 nF330 nF680 nF1000 nF
ILED1 mA4.5 mA6.7 mA10 mA22 mA45 mA67 mA

Немного о самих конденсаторах

В качестве гасящих рекомендуется применять помехоподавляющие конденсаторы класса Y1, Y2, X1 или X2 на напряжение не менее 250 В. Они имеют прямоугольный корпус с многочисленными обозначениями сертификатов на нем. Выглядят так:

Если вкратце, то:

  • X1 – используются в промышленных устройствах, подключаемых к трехфазной сети. Эти конденсаторы гарантированно выдерживают всплеск напряжения в 4 кВ;
  • X2 – самые распространенные. Используются в бытовых приборах с номинальным напряжением сети до 250 В, выдерживают скачек до 2.5 кВ;
  • Y1 – работают при номинальном сетевом напряжении до 250 В и выдерживают импульсное напряжение до 8 кВ;
  • Y2 – довольно-таки распространенный тип, может быть использован при сетевом напряжении до 250 В и выдерживает импульсы в 5 кВ.

Допустимо применять отечественные пленочные конденсаторы К73-17 на 400 В (а лучше — на 630 В).

Сегодня широкое распространение получили китайские «шоколадки» (CL21), но в виду их крайне низкой надежности, очень рекомендую удержаться от соблазна применять их в своих схемах. Особенно в качестве балластных конденсаторов.

Внимание! Полярные конденсаторы ни в коем случае нельзя использовать в качестве балластных!

Итак, мы рассмотрели, как подключать светодиод к 220В (схемы и их расчет). Все приведенные в данной статье примеры хорошо подходят для одного или нескольких маломощных светодиодов, но совершенно нецелесообразны для мощных светильников, например, ламп или прожекторов — для них лучше использовать полноценные схемы, которые называются драйверами.

Драйвер для светодиодной лампы 220 в своими руками. Драйверы для светодиодных лампочек

Современные мощные светодиоды отлично походят для организации яркого и эффективного освещения. Некоторую сложность составляет питание таких светодиодов – требуются мощные источники постоянного тока и токостабилизирующие драйвера. Вместе с тем, в любом помещении имеется розетка с переменным напряжением в 220В. И, конечно же, очень хотелось бы организовать работу мощных светодиодов от сети с минимальными затратами. Нет ничего невозможного – давайте рассмотрим схему драйвера для светодиода от сети 220В.

Прежде чем начнем обсуждать конкретные схемы, хотелось бы напомнить, что работа будет вестись с потенциально опасным для жизни переменным напряжением 220В. Разработка и расчет схемы потребуют хотя бы общего понимания происходящих электрических процессов, вероятность того, что при совершении ошибки вы можете получить ущерб или повреждения, очень высока. Мы категорически не одобряем проведение работ с высоким напряжением, если вы чувствуете себя неуверенно и не несем ответственности за возможный ущерб и повреждения, которые вы можете получить в процессе работы над предлагаемыми схемами. На самом деле, вполне возможно, что проще и дешевле будет приобрести и использовать уже готовый драйвер или даже светильник целиком. Выбор за вами.

Обычно падение напряжения на светодиоде составляет от 3 до 30В. Разница с сетевым напряжением в 220В очень большая, поэтому понижающий драйвер, безусловно, будет импульсным. Имеется несколько специализированных микросхем для изготовления таких драйверов – HV9901, HV9961, CPC9909. Все они очень похожи и от других микросхем отличаются тем, что имеют очень широкий диапазон допустимого входного напряжения – от 8 до 550В – и очень высокий КПД – до 85-90%. Тем не менее, предполагается, что общее падение напряжения на светодиодах в готовом устройстве будет составлять не менее 10-20% от напряжения источника питания. Не стоит пробовать запитать от 220В, например, один-два 3-6-ти вольтовых светодиода. Даже если они не сгорят сразу, КПД схемы будет низким.

Рассмотрим драйвер на базе микросхемы CPC9909 , поскольку она новее остальных и вполне доступна. Вообще, все указанные микросхемы взаимозаменяемы и совместимы попиново (но потребуется пересчитать параметры дросселя и резисторов).

Базовая схема драйвера следующая:


Схема драйвера для светодиодов на базе микросхемы CPC9909

Переменное сетевое напряжение необходимо предварительно выпрямить, для этого используется диодный мост. C1 и C2 – сглаживающие конденсаторы. C1 – электролит емкостью 22мкФ и напряжением 400В (при использовании сети 220В), C2 – керамический конденсатор емкостью 0,1мкФ, 400В. Конденсатор С1 – керамика 0,1мкФ, 25В. Микросхема CPC9909 в процессе работы генерирует импульсы, которые открывают и закрывают силовой транзистор Q1, тем самым управляя течением тока через светодиоды. Частота переключения, индуктивность дросселя L, параметры мосфета Q1 и диода D1 тесно взаимосвязаны и зависят от требуемого падения напряжения на светодиодах, их рабочем токе. Давайте попробуем рассчитать нужные параметры ключевых деталей схемы на конкретном примере.

У меня есть могучий светодиод. 50 ватт мощности, напряжение 30-36В, рабочий ток до 1.4А. 4-5 ТЫСЯЧ люменов! Мощность света неплохого прожектора.


COB cветодиод 50 ватт

Для охлаждения я посредством термопасты и суперклея посадил его на кулер от видеокарты.

Максимальный ток светодиода ограничим 1А. Значит

Падение напряжения на светодиодах –

Пульсацию тока примем равной +-15%:

I D = 1 * 0.15 * 2 = 0.3A

При напряжении сети переменного тока в 220В напряжение после выпрямительного моста и сглаживающих конденсаторов составит

Ток драйвера регулируется резистором Rs, сопротивление которого рассчитывается по формуле

Rs = 0.25 / I LED = 0.25 / 1 = 0.25 Ом.

Используем резистор 0.5W 0.22 Ом в SMD-корпусе 2512:

что даст ток 1.1А. При таком токе резистор будут рассеивать примерно 0.2Вт тепла и особо греться не будет.

Микросхема CPC9909 генерирует управляющие импульсы. Общая продолжительность импульса складывается из времени «высокого уровня», когда мосфет открыт и продолжительности паузы, когда транзистор закрыт. Жестко зафиксировать мы можем только продолжительность паузы. За нее отвечает резистор Rt. Его сопротивление рассчитывается по формуле:

Rt = (tp — 0.8) * 66 , где tp — пауза в микросекундах. Сопротивление Rt получается в килоомах.

Продолжительность «высокого уровня» — это время, за которое рабочий ток достигнет требуемого значения — регулируется микросхемой CPC9909. Штатный диапазон частот находится в пределах 30-120КГц. Причем, чем выше будет частота, тем меньшая индуктивность дросселя в итоге потребуется. Но тем больше будет греться силовой транзистор. Поскольку индуктивность дросселя (и связанные с ней его габариты) для нас важнее, будем стараться держаться верхней части допустимого диапазона частот.

Давайте рассчитаем допустимое время паузы. Отношение продолжительности «высокого уровня» к общей продолжительности импульса — скважность импульса — рассчитывается по формуле:

D = V LED / V IN = 30 / 310 = 0.097

Частота переключений рассчитывается так:

F = (1 — D) / tp , а значит tp = (1 — D) / F

Пусть частота будет равна 90КГц. В этом случае

tp = (1 — 0.097) / 90 000 = 10мкс

Соответственно, потребуется сопротивление резистора Rt

Rt = (10 — 0.8) * 66 = 607.2КОм

Ближайший доступный номинал — 620КОм. Подойдет любой резистор с таким сопротивлением, желательно с точностью 1%. Уточняем время паузы с резистором номиналом 620КОм:

tp = Rt / 66 + 0.8 = 620 / 66 + 0.8 = 10.19мкс

Минимальная индуктивность дросселя L рассчитывается по формуле

Lmin = (V LED * tp) / I D

Используя уточненное значения tp, получаем

Lmin = (30 * 10.19) / 0.3 = 1мГн

Рабочий ток дросселя, при котором он гарантированно не должен входить в насыщение — 1.1 + 15% = 1.3А. Лучше взять с полуторным запасом. Т.е. не менее 2А.

Готового дросселя с такими параметрами в продаже я не нашел. Нужно делать самому. Вообще расчет катушек индуктивности — это большая отдельная тема. Здесь же я лишь оставлю ссылку на основательный труд Кузнецова А.

Я использовал дроссель, выпаянный из нерабочего балласта обычной энергосберегающей лампы. Его индуктивность 2мГн, в сердечнике оказался зазор около 1мм. Считаем рабочий ток, получаем до 1.3 — 1.5А. Маловато, но для тестовой сборки пойдет.

Остались силовой транзистор и диод. Здесь проще — оба должны быть рассчитаны на напряжение не менее 400В и ток от 4-5А. Быстрый диод Шоттки может быть, например, таким — STTH5R06. Мосфет должен быть N-канальным. Для него крайне важно минимальное сопротивление в открытом состоянии и минимальный заряд затвора — менее 25нКл. Прекрасный выбор на нужный нам ток — FDD7N60NZ . В корпусе DPAK и с током до 1А греться он особо не будет. Можно будет обойтись без радиатора.

При разводке печатной платы нужно уделить внимание длине проводников и правильному расположению «земли». Проводник между CPC9909 и затвором полевого транзистора должен быть как можно короче. Это же относится и к проводнику от сенсорного резистора. Площадь «земли» должна быть как можно больше. Очень желательно один слой печатной платы полностью развести на землю. Резистор Rt нужно подальше от индуктивности и других проводников, работающих на высоких частотах.

Вывод LD микросхемы может быть использован для плавной регулировки яркости свечения светодиода, вывод PWMD – для димирования посредством ШИМ.

Вот примеры из технической документации, которые это реализуют.


На этой схеме сила тока, а соответственно, и яркость светодиодов плавно регулируется от нуля до 350мА переменным резистором RA1. Также на схеме присутствуют номиналы и названия ключевых элементов для питания линейки ярких светодиодов током до 350мА.

Схема, предполагающее управление яркостью посредством ШИМ, выглядит так:


Допустимая частота диммирования — до 500Гц. Обратите внимание на очень желательную электрическую развязку генератора регулирующих импульсов (обычно, это микроконтроллер) и силовой части схемы. Развязка выполнена посредством использования оптопары.

Я собрал схему с плавной регулировкой переменным резистором. Получилась плата 60х30мм.


Драйвер заработал сразу и так как нужно. Переменным резистором ток регулируется от 0.1 до расчетных 1.1А. Вентилятор кулера где установлен светодиод запитан от 3-х вольт. Вращается совершенно без звука, при этом радиатор греется слабо. На плате после 5-ти тестовых минут работы на максимальном токе градусов до 50С нагрелся дроссель. Его рабочего тока, как и ожидалось, оказалось маловато. Также заметно греется полевой транзистор. Остальные детали греются незначительно.


Сердце будущего мощного светильника в тестовом запуске

Разводку платы в программе Sprint-Layout 6.0 можно взять

Спустя какое-то время светодиод с драйвером заняли свое рабочее место в освещении аквариума. Работают по 15 часов в день при токе 0.7А. Света для аквариума объемом в 140 литров, на мой взгляд, вполне достаточно. Радиатор снабдил термистором и простенькой схемой — кулер включается автоматически и охлаждает всю конструкцию.

Драйвер для светодиода от сети 220В требует внимания при проектировании и сборке. Повторюсь — напряжение 220В опасно для жизни, а на схеме драйвера практически все детали находятся под этим и большим напряжением.

Тем не менее, при аккуратной сборке получится достаточно миниатюрный и эффективный драйвер, способный запитать от сети бытовой сети 220В один или несколько мощных светодиодов.



Драйвер для светодиодов своими руками: простые схемы с описанием

Для применения светодиодов в качестве источников освещения обычно требуется специализированный драйвер. Но бывает так, что нужного драйвера под рукой нет, а требуется организовать подсветку, например, в автомобиле, или протестировать светодиод на яркость свечения. В этом случае можно сделать драйвер для светодиодов своими руками.

Как сделать драйвер для светодиодов

В приведенных ниже схемах используются самые распространенные элементы, которые можно приобрести в любом радиомагазине. При сборке не требуется специальное оборудование, — все необходимые инструменты находятся в широком доступе. Несмотря на это, при аккуратном подходе устройства работают достаточно долго и не сильно уступают коммерческим образцам.

Необходимые материалы и инструменты

Для того, чтобы собрать самодельный драйвер, потребуются:

  • Паяльник мощностью 25-40 Вт. Можно использовать и большей мощности, но при этом возрастает опасность перегрева элементов и выхода их из строя. Лучше всего использовать паяльник с керамическим нагревателем и необгораемым жалом, т.к. обычное медное жало довольно быстро окисляется, и его приходится чистить.
  • Флюс для пайки (канифоль, глицерин, ФКЭТ, и т.д.). Желательно использовать именно нейтральный флюс, — в отличие от активных флюсов (ортофосфорная и соляная кислоты, хлористый цинк и др.), он со временем не окисляет контакты и менее токсичен. Вне зависимости от используемого флюса после сборки устройства его лучше отмыть с помощью спирта. Для активных флюсов эта процедура является обязательной, для нейтральных — в меньшей степени.
  • Припой. Наиболее распространенным является легкоплавкий оловянно-свинцовый припой ПОС-61. Бессвинцовые припои менее вредны при вдыхании паров во время пайки, но обладают более высокой температурой плавления при меньшей текучести и склонностью к деградации шва со временем.
  • Небольшие плоскогубцы для сгибания выводов.
  • Кусачки или бокорезы для обкусывания длинных концов выводов и проводов.
  • Монтажные провода в изоляции. Лучше всего подойдут многожильные медные провода сечением от 0.35 до 1 мм2.
  • Мультиметр для контроля напряжения в узловых точках.
  • Изолента или термоусадочная трубка.
  • Небольшая макетная плата из стеклотекстолита. Достаточно будет платы размерами 60х40 мм.

Макетная плата из текстолита для быстрого монтажа

Схема простого драйвера для светодиода 1 Вт

Одна из самых простых схем для питания мощного светодиода представлена на рисунке ниже:

Как видно, помимо светодиода в нее входят всего 4 элемента: 2 транзистора и 2 резистора.

В роли регулятора тока, проходящего через led, здесь выступает мощный полевой n-канальный транзистор VT2. Резистор R2 определяет максимальный ток, проходящий через светодиод, а также работает в качестве датчика тока для транзистора VT1 в цепи обратной связи.

Чем больший ток проходит через VT2, тем большее напряжение падает на R2, соответственно VT1 открывается и понижает напряжение на затворе VT2, тем самым уменьшая ток светодиода. Таким образом достигается стабилизация выходного тока.

Питание схемы осуществляется от источника постоянного напряжения 9 — 12 В, ток не менее 500 мА. Входное напряжение должно быть минимум на 1-2 В больше падения напряжения на светодиоде.

Резистор R2 должен рассеивать мощность 1-2 Вт, в зависимости от требуемого тока и питающего напряжения. Транзистор VT2 – n-канальный, рассчитанный на ток не менее 500 мА: IRF530, IRFZ48, IRFZ44N. VT1 – любой маломощный биполярный npn: 2N3904, 2N5088, 2N2222, BC547 и т.д. R1 – мощностью 0.125 — 0.25 Вт сопротивлением 100 кОм.

Ввиду малого количества элементов, сборку можно производить навесным монтажом:

Еще одна простая схема драйвера на основе линейного управляемого стабилизатора напряжения LM317:

Здесь входное напряжение может быть до 35 В. Сопротивление резистора можно рассчитать по формуле:

где I – сила тока в амперах.

В этой схеме на LM317 будет рассеиваться значительная мощность при большой разнице между питающим напряжением и падением на светодиоде. Поэтому ее придется разместить на небольшом радиаторе. Резистор также должен быть рассчитан на мощность не менее 2 Вт.

Более наглядно эта схема рассмотрена в следующем видео:

Здесь показано, как подключить мощный светодиод, используя аккумуляторы напряжением около 8 В. При падении напряжения на LED около 6 В разница получается небольшая, и микросхема нагревается несильно, поэтому можно обойтись и без радиатора.

Обратите внимание, что при большой разнице между напряжением питания и падением на LED необходимо ставить микросхему на теплоотвод.

Схема мощного драйвера с входом ШИМ

Ниже показана схема для питания мощных светодиодов:

Драйвер построен на сдвоенном компараторе LM393. Сама схема представляет собой buck-converter, то есть импульсный понижающий преобразователь напряжения.

Особенности драйвера
  • Напряжение питания: 5 — 24 В, постоянное;
  • Выходной ток: до 1 А, регулируемый;
  • Выходная мощность: до 18 Вт;
  • Защита от КЗ по выходу;
  • Возможность управления яркостью при помощи внешнего ШИМ сигнала (интересно будет почитать, как регулировать яркость светодиодной ленты через диммер).
Принцип действия

Резистор R1 с диодом D1 образуют источник опорного напряжения около 0.7 В, которое дополнительно регулируется переменным резистором VR1. Резисторы R10 и R11 служат датчиками тока для компаратора. Как только напряжение на них превысит опорное, компаратор закроется, закрывая таким образом пару транзисторов Q1 и Q2, а те, в свою очередь, закроют транзистор Q3. Однако индуктор L1 в этот момент стремится возобновить прохождение тока, поэтому ток будет протекать до тех пор, пока напряжение на R10 и R11 не станет меньше опорного, и компаратор снова не откроет транзистор Q3.

Пара Q1 и Q2 выступает в качестве буфера между выходом компаратора и затвором Q3. Это защищает схему от ложных срабатываний из-за наводок на затворе Q3, и стабилизирует ее работу.

Вторая часть компаратора (IC1 2/2) используется для дополнительной регулировки яркости при помощи ШИМ. Для этого управляющий сигнал подается на вход PWM: при подаче логических уровней ТТЛ (+5 и 0 В) схема будет открывать и закрывать Q3. Максимальная частота сигнала на входе PWM — порядка 2 КГц. Также этот вход можно использовать для включения и отключения устройства при помощи пульта ДУ.

D3 представляет собой диод Шоттки, рассчитанный на ток до 1 А. Если не удастся найти именно диод Шоттки, можно использовать импульсный диод, например FR107, но выходная мощность тогда несколько снизится.

Максимальный ток на выходе настраивается подбором R2 и включением или исключением R11. Так можно получить следующие значения:

  • 350 мА (LED мощностью 1 Вт): R2=10K, R11 отключен,
  • 700 мА (3 Вт): R2=10K, R11 подключен, номинал 1 Ом,
  • 1А (5Вт): R2=2,7K, R11 подключен, номинал 1 Ом.

В более узких пределах регулировка производится переменным резистором и ШИМ – сигналом.

Сборка и настройка драйвера

Монтаж компонентов драйвера производится на макетной плате. Сначала устанавливается микросхема LM393, затем самые маленькие компоненты: конденсаторы, резисторы, диоды. Потом ставятся транзисторы, и в последнюю очередь переменный резистор.

Размещать элементы на плате лучше таким образом, чтобы минимизировать расстояние между соединяемыми выводами и использовать как можно меньше проводов в качестве перемычек.

При соединении важно соблюдать полярность подключения диодов и распиновку транзисторов, которую можно найти в техническом описании на эти компоненты. Также диоды можно проверить с помощью мультиметра в режиме измерения сопротивления: в прямом направлении прибор покажет значение порядка 500-600 Ом.

Для питания схемы можно использовать внешний источник постоянного напряжения 5-24 В или аккумуляторы. У батареек 6F22 («крона») и других слишком маленькая емкость, поэтому их применение нецелесообразно при использовании мощных LED.

После сборки нужно подстроить выходной ток. Для этого на выход припаиваются светодиоды, а движок VR1 устанавливается в крайнее нижнее по схеме положение (проверяется мультиметром в режиме «прозвонки»). Далее на вход подаем питающее напряжение, и вращением ручки VR1 добиваемся требуемой яркости свечения.

Список элементов:

Заключение

Первые две из рассмотренных схем очень просты в изготовлении, но они не обеспечивают защиты от короткого замыкания и обладают довольно низким КПД. Для долговременного использования рекомендуется третья схема на LM393, поскольку она лишена этих недостатков и обладает более широкими возможностями по регулировке выходной мощности.

ledno.ru

Схема драйвера светодиодов 220В

Преимущества светодиодных лап рассматривались неоднократно. Обилие положительных отзывов пользователей светодиодного освещения волей-неволей заставляет задуматься о собственных лампочках Ильича. Все было бы неплохо, но когда дело доходит до калькуляции переоснащения квартиры на светодиодное освещения, цифры немного «напрягают».

Для замены обыкновенной лампы на 75Вт идёт светодиодная лампочка на 15Вт, а таких ламп надо поменять десяток. При средней стоимости около 10 долларов за лампу бюджет выходит приличный, да и еще нельзя исключить риск приобретения китайского «клона» с жизненным циклом 2-3 года. В свете этого многие рассматривают возможность самостоятельного изготовления этих девайсов.

Теория питания светодиодных ламп от 220В

Самый бюджетный вариант можно собирать своими руками из вот таких светодиодов. Десяток таких малюток стоит меньше доллара, а по яркости соответствует лампе накаливания на 75Вт. Собрать всё воедино не проблема, вот только напрямую в сеть их не подключишь – сгорят. Сердцем любой светодиодной лампы является драйвер питания. От него зависит, насколько долго и хорошо будет светить лампочка.

Что бы собрать светодиодную лампу своими руками на 220 вольт, разберёмся в схеме драйвера питания.

Параметры сети значительно превышают потребности светодиода. Что бы светодиод смог работать от сети требуется уменьшить амплитуду напряжения, силу тока и преобразовать переменное напряжение сети в постоянное.

Для этих целей используют делитель напряжения с резисторной либо ёмкостной нагрузкой и стабилизаторы.

Компоненты диодного светильника

Схема светодиодной лампы на 220 вольт потребует минимальное количество доступных компонентов.

  • Светодиоды 3,3В 1Вт – 12 шт.;
  • керамический конденсатор 0,27мкФ 400-500В – 1 шт.;
  • резистор 500кОм — 1Мом 0,5 — 1Вт – 1 ш.т;
  • диод на 100В – 4 шт.;
  • электролитические конденсаторы на 330мкФ и 100мкФ 16В по 1 шт.;
  • стабилизатор напряжения на 12В L7812 или аналогичный – 1шт.

Изготовление драйвера светодиодов на 220В своими руками

Схема лед драйвера на 220 вольт представляет собой не что иное, как импульсный блок питания.

В качестве самодельного светодиодного драйвера от сети 220В рассмотрим простейший импульсный блок питания без гальванической развязки. Основное преимущество таких схем – простота и надёжность. Но будьте осторожны при сборке, поскольку у такой схемы нет ограничения по отдаваемому току. Светодиоды будут отбирать свои положенные полтора ампера, но если вы коснётесь оголённых проводов рукой, ток достигнет десятка ампер, а такой удар тока очень ощутимый.

Схема простейшего драйвера для светодиодов на 220В состоит их трёх основных каскадов:

  • Делитель напряжения на ёмкостном сопротивлении;
  • диодный мост;
  • каскад стабилизации напряжения.

Первый каскад – ёмкостное сопротивление на конденсаторе С1 с резистором. Резистор необходим для саморазрядки конденсатора и на работу самой схемы не влияет. Его номинал не особо критичен и может быть от 100кОм до 1Мом с мощностью 0,5-1 Вт. Конденсатор обязательно не электролитический на 400-500В (эффективное амплитудное напряжение сети).

При прохождении полуволны напряжения через конденсатор, он пропускает ток, пока не произойдет заряд обкладок. Чем меньше его ёмкость, тем быстрее происходит полная зарядка. При ёмкости 0,3-0,4мкФ время зарядки составляет 1/10 периода полуволны сетевого напряжения. Говоря простым языком, через конденсатор пройдет лишь десятая часть поступающего напряжения.

Второй каскад – диодный мост. Он преобразует переменное напряжение в постоянное. После отсечения большей части полуволны напряжения конденсатором, на выходе диодного моста получаем около 20-24В постоянного тока.

Третий каскад – сглаживающий стабилизирующий фильтр.

Конденсатор с диодным мостом выполняют функцию делителя напряжения. При изменении вольтажа в сети, на выходе диодного моста амплитуда так же будет меняться.

Что бы сгладить пульсацию напряжения параллельно цепи подключаем электролитический конденсатор. Его ёмкость зависит от мощности нашей нагрузки.

В схеме драйвера питающее напряжение для светодиодов не должно превышать 12В. В качестве стабилизатора можно использовать распространённый элемент L7812.

Собранная схема светодиодной лампы на 220 вольт начинает работать сразу, но перед включением в сеть тщательно изолируйте все оголённые провода и места пайки элементов схемы.

Вариант драйвера без стабилизатора тока

В сети существует огромное количество схем драйверов для светодиодов от сети 220В, которые не имеют стабилизаторов тока.

Проблема любого безтрансформаторного драйвера – пульсация выходного напряжения, следовательно, и яркости светодиодов. Конденсатор, установленный после диодного моста, частично справляется с этой проблемой, но решает её не полностью.

На диодах будет присутствовать пульсация с амплитудой 2-3В. Когда мы устанавливаем в схему стабилизатор на 12В, даже с учётом пульсации амплитуда входящего напряжения будет выше диапазона отсечения.

Диаграмма напряжения в схеме без стабилизатора

Диаграмма в схеме со стабилизатором

Поэтому драйвер для диодных ламп, даже собранный своими руками, по уровню пульсации не будет уступать аналогичным узлам дорогих ламп фабричного производства.

Как видите, собрать драйвер своими руками не представляет особой сложности. Изменяя параметры элементов схемы, мы можем в широких пределах варьировать значения выходного сигнала.

Если у вас возникнет желание на основе такой схемы собрать схему светодиодного прожектора на 220 вольт, лучше переделать выходной каскад под напряжение 24В с соответствующим стабилизатором, поскольку выходной ток у L7812 1,2А, это ограничивает мощность нагрузки в 10Вт. Для более мощных источников освещения требуется либо увеличить количество выходных каскадов, либо использовать более мощный стабилизатор с выходным током до 5А и устанавливать его на радиатор.

svetodiodinfo.ru

Как выбрать светодиодный драйвер, led driver


Самым оптимальным способом подключения к 220В, 12В является использование стабилизатора тока, светодиодного драйвера. На языке предполагаемого противника пишется «led driver». Добавив к этому запросу желаемую мощность, вы легко найдёте на Aliexpress или Ebay подходящий товар.

  • 1. Особенности китайских
  • 2. Срок службы
  • 3. ЛЕД драйвер на 220В
  • 4. RGB драйвер на 220В
  • 5. Модуль для сборки
  • 6. Драйвер для светодиодных светильников
  • 7. Блок питания для led ленты
  • 8. Led драйвер своими руками
  • 9. Низковольтные
  • 10. Регулировка яркости

Особенности китайских

Многие любят покупать на самом большом китайском базаре Aliexpress. цены и ассортимент радуют. LED driver чаще всего выбирают из-за низкой стоимости и хороших характеристик.

Но с повышением курса доллара покупать у китайцев стало невыгодно, стоимость сравнялась с Российской, при этом отсутствует гарантия и возможность обмена. Для дешевой электроники характеристики бывают всегда завышены. Например, если указана мощность в 50 ватт, в лучшем случае то это максимальная кратковременная мощность, а не постоянная. Номинальная будет 35W — 40W.

К тому же сильно экономят на начинке, чтобы снизить цену. Кое где не хватает элементов, которые обеспечивают стабильную работу. Применяются самые дешевые комплектующие, с коротким сроком службы и невысокого качества, поэтому процент брака относительно высокий. Как правило, комплектующие работают на пределе своих параметров, без какого либо запаса.

Если производитель не указан, то ему не надо отвечать за качество и отзыв про его товар не напишут. А один и тот же товар выпускают несколько заводов в разной комплектации. Для хороших изделий должен быть указан бренд, значит он не боится отвечать за качество своей продукции.

Одним из лучших является бренд MeanWell, который дорожит качеством своих изделий и не выпускает барахло.

Срок службы

Как у любого электронного устройства у светодиодного драйвера есть срок службы, который зависит от условий эксплуатации. Фирменные современные светодиоды уже работают до 50-100 тысяч часов, поэтому питание выходит из строя раньше.

Классификация:

  1. ширпотреб до 20.000ч.;
  2. среднее качество до 50.000ч.;
  3. до 70.000ч. источник питания на качественных японских комплектующих.

Этот показатель важен при расчёте окупаемости на долгосрочную перспективу. Для бытового пользования хватает ширпотреба. Хотя скупой платит дважды, и в светодиодных прожекторах и светильниках это отлично работает.

ЛЕД драйвер на 220В

Современные светодиодные драйвера конструктивно выполняются на ШИМ контроллере, который очень хорошо может стабилизировать ток.

Основные параметры:

  1. номинальная мощность;
  2. рабочий ток;
  3. количество подключаемых светодиодов;
  4. коэффициент мощности;
  5. КПД стабилизатора.

Корпуса для уличного использования выполняются из металла или ударопрочного пластика. При изготовлении корпуса из алюминия он может выступать в качестве системы охлаждения для электронной начинки. Особенно это актуально при заполнении корпуса компаундом.

На маркировке часто указывают, сколько светодиодов можно подключить и какой мощности. Это значение может быть не только фиксированным, но и в виде диапазона. Например, возможно подключение светодиодов 12 220 от 4 до 7 штук по 1W. Это зависит от конструкции электрической схемы светодиодного драйвера.

RGB драйвер на 220В

Трёхцветные светодиоды RGB отличаются от одноцветных тем, что содержат в одном корпусе кристаллы разных цветов красный, синий, зелёный. Для управления ими каждый цвет необходимо зажигать отдельно. У диодных лент для этого используется RGB контроллер и блок питания.

Если для RGB светодиода указана мощность 50W, то это общая на всё 3 цвета. Чтобы узнать примерную нагрузку на каждый канал, делим 50W на 3, получим около 17W.

Кроме мощных led driver есть и на 1W, 3W, 5W, 10W.

Пульты дистанционного управления (ДУ) бывают 2 типов. С инфракрасным управлением, как у телевизора. С управлением по радиоканалу, ДУ не надо направлять на приёмник сигнала.

Модуль для сборки

Если вас интересует лед driver для сборки своими руками светодиодного прожектора или светильника, то можно использовать led driver без корпуса.

Если у вас уже есть стабилизатор тока для светодиодов, который не подходит по силе тока, то её можно увеличить или уменьшить. Найдите на плате микросхему ШИМ контроллера, от которого зависят характеристики led драйвера. На ней указана маркировка, по которой необходимо найти спецификации на неё. В документации будет указана типовая схема включения. Обычно ток на выходе задаётся одним или несколькими резисторами, подключенными к ножкам микросхемы. Если изменить номинал резисторов или поставить переменное сопротивление согласно информации из спецификаций, то можно будет изменить ток. Только нельзя превышать начальную мощность, иначе может выйти из строя.

Драйвер для светодиодных светильников

К питанию уличной светотехники предъявляются немного другие требования. При проектировании уличного освещения учитывается, то LED driver будет работать в условиях от -40° до +40° в сухом и влажном воздухе.

Коэффициент пульсаций для светильников может быть выше, чем при использовании внутри помещения. Для уличного освещения этот показатель становится не важным.

При эксплуатации на улице требуется полная герметичность блока питания. Существует несколько способов защиты от попадания влаги:

  1. заливка всей платы герметиком или компаундом;
  2. сборка блока с использованием силиконовых уплотнителей;
  3. размещение платы светодиодного драйвера в одном объёме со светодиодами.

Максимальный уровень защиты это IP68, обозначается как «Waterproof LED Driver» или «waterproof electronic led driver». У китайцев это не гарантия водонепроницаемости.

По моей практике заявленный уровень защиты от влаги и пыли не всегда соответствует реальному. В некоторых местах может не хватать уплотнителей. Обратите внимание на ввод и вывод кабеля из корпуса, попадаются образцы с отверстием, которое не закрыто герметиком или другим способом. Вода по кабелю сможет затекать в корпус и затем в нём испаряться. Это приведет к возникновению коррозии на плате и открытых частях проводов. Это многократно сократит срок службы прожектора или светильника.

Блок питания для led ленты

LED лента работает по другому принципу, для неё требуется стабилизированное напряжение. Токозадающий резистор установлен на самой ленте. Это облегчает процесс подключения, подсоединить можно отрезок любой длины начиная от 3см до 100м.

Поэтому питание для светодиодной ленты можно сделать из любого блока питания на 12в от бытовой электроники.

Основные параметры:

  1. количество вольт на выходе;
  2. номинальная мощность;
  3. степень защиты от влаги и пыли
  4. коэффициент мощности.

Led драйвер своими руками

Простейший драйвер своими руками можно изготовить за 30 минут, даже если вы не знаете основы электроники. В качестве источника напряжения можно использовать блок питания от бытовой электроники с напряжением от 12В до 37В. Особенно подходит блок питания от ноутбука, у которого 18 – 19В и мощность от 50W до 90W.

Потребуется минимум деталей, все они изображены на картинке. Радиатор для охлаждения мощного светодиода можно позаимствовать из компьютера. Наверняка где-нибудь дома в кладовке у вас пылятся старые запчасти от системного блока. Лучше всего подойдёт от процессора.

Ччто бы узнать номинал требуемого сопротивления, используйте калькулятор расчёта стабилизатора тока для LM317.

Прежде чем делать led driver 50W своими руками, стоит немного поискать, например есть в каждой диодной лампе. Если у вас есть неисправная лампочка, у которой неисправность в диодах, то можно использовать driver из неё.

Низковольтные

Подробно разберем виды низковольтных лед драйверов работающих от напряжения до 40 вольт. Наши китайские братья по разуму предлагают множество вариантов. На базе ШИМ контроллеров производятся стабилизаторы напряжения и стабилизаторы тока. Основное отличие, у модуля с возможностью стабилизации тока на плате находится 2-3 синих регулятора, в виде переменных резисторов.

В качестве технических характеристик всего модуля указывают параметры ШИМ микросхемы, на которой он собран. Например устаревший но популярный LM2596 по спецификациям держит до 3 Ампер. Но без радиатора он выдержит только 1 Ампер.

Более современный вариант с улучшенным КПД это ШИМ контроллер XL4015 рассчитанный на 5А. С миниатюрной системой охлаждения может работать до 2,5А.

Если у вас очень мощные сверхяркие светодиоды, то вам нужен led драйвер для светодиодных светильников. Два радиатора охлаждают диод Шотки и микросхему XL4015. В такой конфигурации она способна работать до 5А с напряжением до 35В. Желательно чтобы он не работал в предельных режимах, это значительно повысить его надежность и срок эксплуатации.

Если у вас небольшой светильник или карманный прожектор, то вам подойдет миниатюрный стабилизатор напряжения, с током до 1,5А. Входное напряжение от 5 до 23В, выход до 17В.

Регулировка яркости

Для регулирования яркости светодиода можно использовать компактные светодиодный диммеры, которые появились недавно. Если его мощности будет недостаточно, то можно поставить диммер побольше. Обычно они работают в двух диапазонах на 12В и 24В.

Управлять можно с помощью инфракрасного или радиопульта дистанционного управления (ДУ). Они стоят от 100руб за простую модель и от 200руб модель с пультом ДУ. В основном такие пульты используют для диодных лент на 12В. Но его с лёгкостью можно поставить к низковольтному драйверу.

Диммирование может быть аналоговым в виде крутящейся ручки и цифровым в виде кнопок.

led-obzor.ru

LED ДРАЙВЕР

Мы рассмотрим действительно простой и недорогой мощный светодиодный драйвер. Схема представляет собой источник постоянного тока, что означает, что он сохраняет яркость LED постоянной независимо от того, какое питание вы используете. Ели при ограничении тока небольших сверхярких светодиодов достаточно резистора, то для мощностей свыше 1-го ватта нужна специальная схема. В общем так питать светодиод лучше, чем с помощью резистора. Предлагаемый led драйвер идеально подходит особенно для мощных светодиодов, и может быть использован для любого их числа и конфигурации, с любым типом питания. В качестве тестового проекта, мы взяли LED элемент на 1 ватт. Вы можете легко изменить элементы драйвера на использование с более мощными светодиодами, на различные типы питания — БП, аккумуляторы и др.

Технические характеристики led драйвера:

Входное напряжение: 2В до 18В — выходное напряжение: на 0,5 меньше, чем входное напряжение (0.5V падение на полевом транзисторе) — ток: 20 ампер

Детали на схеме:

R2: приблизительно в 100-омный резистор

R3: подбирается резистор

Q2: маленький NPN-транзистор (2N5088BU)

Q1: большой N-канальный транзистор (FQP50N06L)

LED: Luxeon 1-ватт LXHL-MWEC


Другие элементы драйвера:

В качестве источника питания использован трансформатор-адаптер, вы можете использовать батареи. Для питания одного светодиода 4 — 6 вольт достаточно. Вот почему эта схема удобна, что вы можете использовать широкий спектр источников питания, и он всегда будет светить одинаково. Радиатор не требуется, так как идёт около 200 мА тока. Если планируется больше тока, вы должны установить LED элемент и транзистор Q1 на радиатор.

Выбор сопротивления R3

Ток LED устанавливается с помощью R3, он приблизительно равен: 0.5 / R3

Мощность рассеиваемая на резисторе приблизительно: 0.25 / R3

В данном случае установлен ток 225 мА с помощью R3 на 2,2 Ом. R3 имеет мощность 0,1 Вт, таким образом, стандартный 0,25 Вт резистор подходит отлично. Транзистор Q1 будет работать до 18 В. Если вы хотите больше, нужно изменить модель. Без радиаторов, FQP50N06L может рассеивать только около 0,5 Вт — этого достаточно для 200 мА тока при 3-х вольтовой разнице между источником питания и светодиодом.


Функции транзисторов на схеме:

Q1 используется в качестве переменного резистора.- Q2 используется в качестве токового датчика, а R3-это установочный резистор, который приводит к закрыванию Q2, когда течет повышенный ток. Транзистор создаёт обратную связь, которая непрерывно отслеживает текущие параметры тока и держит его точно в заданном значении.

Эта схема настолько проста, что нет смысла собирать её на печатной плате. Просто подключите выводы деталей навесным монтажом.

Форум по питанию различных светодиодов

elwo.ru

Драйверы для светодиодных лампочек.

Небольшая лабораторка на тему «какой драйвер лучше?» Электронный или на конденсаторах в роли балласта? Думаю, что у каждого есть своя ниша. Постараюсь рассмотреть все плюсы и минусы и тех и других схем. Напомню формулу расчёта балластных драйверов. Может кому интересно? Свой обзор построю по простому принципу. Сначала рассмотрю драйверы на конденсаторах в роли балласта. Затем посмотрю на их электронных собратьев. Ну а в конце сравнительный вывод. А теперь перейдём к делу. Берём стандартную китайскую лампочку. Вот её схема (немного усовершенствованная). Почему усовершенствованная? Эта схема подойдёт к любой дешёвой китайской лампочке. Отличие будет только в номиналах радиодеталей и отсутствии некоторых сопротивлений (в целях экономии).
Бывают лампочки с отсутствующим С2 (очень редко, но бывает). В таких лампочках коэффициент пульсаций 100%. Очень редко ставят R4. Хотя сопротивление R4 просто необходимо. Оно будет вместо предохранителя, а также смягчит пусковой ток. Если в схеме отсутствует, лучше поставить. Ток через светодиоды определяет номинал ёмкости С1. В зависимости от того, какой ток мы хотим пропустить через светодиоды (для самодельщиков), можно рассчитать его ёмкость по формуле (1).
Эту формулу я писАл много раз. Повторюсь. Формула (2) позволяет сделать обратное. С её помощью можно посчитать ток через светодиоды, а затем и мощность лампочки, не имея Ваттметра. Для расчётов мощности нам ещё необходимо знать падение напряжения на светодиодах. Можно вольтметром измерить, можно просто посчитать (без вольтметра). Вычисляется просто. Светодиод ведёт себя в схеме как стабилитрон с напряжением стабилизации около 3В (есть исключения, но очень редкие). При последовательном подключении светодиодов падение напряжения на них равно количеству светодиодов, умноженному на 3В (если 5 светодиодов, то 15В, если 10 — 30В и т.д.). Всё просто. Бывает, что схемы собраны из светодиодов в несколько параллелей. Тогда надо будет учитывать количество светодиодов только в одной параллели. Допустим, мы хотим сделать лампочку на десяти светодиодах 5730smd. По паспортным данным максимальный ток 150мА. Рассчитаем лампочку на 100мА. Будет запас по мощности. По формуле (1) получаем: С=3,18*100/(220-30)=1,67мкФ. Такой ёмкости промышленность не выпускает, даже китайская. Берём ближайшую удобную (у нас 1,5мкФ) и пересчитываем ток по формуле (2). (220-30)*1,5/3,18=90мА. 90мА*30В=2,7Вт. Это и есть расчетная мощность лампочки. Всё просто. В жизни конечно будет отличаться, но не намного. Всё зависит от реального напряжения в сети (это первый минус драйвера), от точной ёмкости балласта, реального падения напряжения на светодиодах и т.д. При помощи формулы (2) вы можете рассчитать мощность уже купленных лампочек (уже упоминал). Падением напряжения на R2 и R4 можно пренебречь, оно незначительно. Можно подключить последовательно достаточно много светодиодов, но общее падение напряжения не должно превышать половины напряжения сети (110В). При превышении этого напряжения лампочка болезненно реагирует на все изменения напряжения. Чем больше превышает, тем болезненнее реагирует (это дружеский совет). Тем более, за этими пределами формула работает неточно. Точно уже не рассчитать. Вот появился очень большой плюс у этих драйверов. Мощность лампочки можно подгонять под нужный результат подбором ёмкости С1 (как самодельных, так и уже купленных). Но тут же появился и второй минус. Схема не имеет гальванической развязки с сетью. Если ткнуть в любое место включенной лампочки отвёрткой-индикатором, она покажет наличие фазы. Трогать руками (включенную в сеть лампочку) категорически запрещено. Такой драйвер имеет практически 100%-ный КПД. Потери только на диодах и двух сопротивлениях. Его можно изготовить в течение получаса (по-быстрому). Даже плату травить необязательно. Конденсаторы заказывал эти:aliexpress.com/snapshot/310648391.html aliexpress.com/snapshot/310648393.html Диоды вот эти:aliexpress.com/snapshot/6008595825.html

Но у этих схем есть ещё один серьёзный недостаток. Это пульсации. Пульсации частотой 100Гц, результат выпрямления сетевого напряжения.
У различных лампочек форма незначительно будет отличаться. Всё зависит от величины фильтрующей ёмкости С2. Чем больше ёмкость, тем меньше горбы, тем меньше пульсации. Необходимо смотреть ГОСТ Р 54945-2012. А там чёрным по белому написано, что пульсации частотой до 300Гц вредны для здоровья. Там же формула для расчёта (приложение Г). Но это не всё. Необходимо смотреть Санитарные нормы СНиП 23-05-95 «ЕСТЕСТВЕННОЕ И ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ». В зависимости от предназначения помещения максимально допустимые пульсации от 10 до 20%. В жизни ничего просто так не бывает. Результат простоты и дешевизны лампочек налицо. Пора переходить к электронным драйверам. Здесь тоже не всё так безоблачно. Вот такой драйвер я заказывал. Это ссылка именно на него в начале обзора.
Почему заказал именно такой? Объясню. Хотел сам «колхозить» светильники на 1-3Вт-ных светодиодах. Подбирал по цене и характеристикам. Меня устроил бы драйвер на 3-4 светодиода с током до 700мА. Драйвер должен иметь в своём составе ключевой транзистор, что позволит разгрузить микросхему управления драйвером. Для уменьшения ВЧ пульсаций по выходу должен стоять конденсатор. Первый минус. Стоимость подобных драйверов (US $13.75 /10 штук) отличается в бОльшую сторону от балластных. Но тут же плюс. Токи стабилизации подобных драйверов 300мА, 600мА и выше. Балластным драйверам такое и не снилось (более 200мА не рекомендую). Посмотрим на характеристики от продавца: ac85-265v» that everyday household appliances.» load after 10-15v; can drive 3-4 3w led lamp beads series 600maА вот диапазон выходных напряжений маловат (тоже минус). Максимум, можно подцепить последовательно пять светодиодов. Параллельно можно подцеплять сколько угодно. Светодиодная мощность считается по формуле: Ток драйвера умножить на падение напряжения на светодиодах [количество светодиодов (от трёх до пяти) и умножить на падение напряжения на светодиоде (около 3В)]. Ещё один большой недостаток этих драйверов – большие ВЧ помехи. Некоторые экземпляры слышит не только ФМ радио, но и пропадает приём цифровых каналов ТВ при их работе. Частота преобразования составляет несколько десятков кГц. А вот защиты, как правило, никакой (от помех).
Под трансформатором что-то типа «экрана». Должно уменьшить помехи. Именно Этот драйвер почти не фонит. Почему они фонят, становится ясно, если посмотреть на осциллограмму напряжения на светодиодах. Без конденсаторов ёлочка куда серьёзнее!
На выходе драйвера должен стоять не только электролит, но и керамика для подавления ВЧ помех. Высказал своё мнение. Обычно стоит либо то либо другое. Бывает, что ничего не стоит. Это бывает в дешёвых лампочках. Драйвер спрятан внутри, предъявить претензию будет сложно. Посмотрим схему. Но предупрежу, она ознакомительная. Нанёс только основные элементы, которые необходимы нам для творчества (для понимания «что к чему»).

Погрешность в расчётах присутствует. Кстати, на мелких мощностях приборчик тоже подвирает. А теперь посчитаем пульсации (теория в начале обзора). Посмотрим, что же видит наш глаз. К осциллографу подключаю фотодиод. Два снимка объединил в один для удобства восприятия. Слева лампочка выключена. Справа – лампочка включена. Смотрим ГОСТ Р 54945-2012. А там чёрным по белому написано, что пульсации частотой до 300Гц вредны для здоровья. А у нас около 100Гц. Для глаз вредно.
У меня получилось 20%. Необходимо смотреть Санитарные нормы СНиП 23-05-95 «ЕСТЕСТВЕННОЕ И ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ». Использовать можно, но не в спальне. А у меня коридор. Можно СНиП и не смотреть. А теперь посмотрим другой вариант подключения светодиодов. Это схема подключения к электронному драйверу.
Итого 3 параллели по 4 светодиода. Вот, что показывает Ваттметр. 7,1Вт активной мощности.
Посмотрим, сколько доходит до светодиодов. Подключил к выходу драйвера амперметр и вольтметр.
Посчитаем чисто светодиодную мощность. Р=0,49А*12,1В=5,93Вт. Всё, что не хватает, взял на себя драйвер. Теперь посмотрим, что же видит наш глаз. Слева лампочка выключена. Справа – лампочка включена. Частота повторения импульсов около 100кГц. Смотрим ГОСТ Р 54945-2012. А там чёрным по белому написано, что вредны для здоровья только пульсации частотой до 300Гц. А у нас около 100кГц. Для глаз безвредно.

Всё рассмотрел, всё измерил. Теперь выделю плюсы и минусы этих схем:Минусы лампочек с конденсатором в роли балласта по сравнению с электронными драйверами. -Во время работы КАТЕГОРИЧЕСКИ нельзя касаться элементов схемы, они под фазой. -Невозможно достичь высоких токов свечения светодиодов, т.к. при этом необходимы конденсаторы больших размеров. А увеличение ёмкости приводит к большим пусковым токам, портящим выключатели. -Большие пульсации светового потока частотой 100Гц, требуют больших фильтрующих ёмкостей на выходе.Плюсы лампочек с конденсатором в роли балласта по сравнению с электронными драйверами. +Схема очень проста, не требует особых навыков при изготовлении. +Диапазон выходных напряжений просто фантастический. Один и тот же драйвер будет работать и с одним и с сорока последовательно соединёнными светодиодами. У электронных драйверов выходные напряжения имеют намного более узкий диапазон. +Низкая стоимость подобных драйверов, которая складывается буквально из стоимости двух конденсаторов и диодного моста. +Можно изготовить и самому. Большинство деталей можно найти в любом сарае или гараже (старые телевизоры и т.д.). +Можно регулировать ток через светодиоды подбором ёмкости балласта. +Незаменимы как начальный светодиодный опыт, как первый шаг в освоении светодиодного освещения. Есть ещё одно качество, которое можно отнести как к плюсам, так и к минусам. При использовании подобных схем с выключателями с подсветкой, светодиоды лампочки подсвечиваются. Лично для меня это скорее плюс, чем минус. Использую повсеместно как дежурное (ночное) освещение. Умышленно не пишу, какие драйверы лучше, у каждого есть своя ниша. Я выложил по максимуму всё, что знаю. Показал все плюсы и минусы этих схем. А выбор как всегда делать вам. Я лишь постарался помочь. На этом всё! Удачи всем.

mysku.ru

Как подобрать светодиодный драйвер — виды и основные характеристики

Светодиоды получили большую популярность. Главную роль в этом сыграл светодиодный драйвер, поддерживающий постоянный выходной ток определенного значения. Можно сказать, что это устройство представляет собой источник тока для LED-приборов. Такой драйвер тока, работая вместе со светодиодом, обеспечивает долголетний срок службы и надежную яркость. Анализ характеристик и видов этих устройств позволяет понять, какие они выполняют функции, и как их правильно выбирать.

Что такое драйвер и каково его назначение?

Драйвер для светодиодов является электронным устройством, на выходе которого образуется постоянный ток после стабилизации. В данном случае образуется не напряжение, а именно ток. Устройства, которые стабилизируют напряжение, называются блоками питания. На их корпусе указывается выходное напряжение. Блоки питания 12 В применяют для питания LED-линеек, светодиодной ленты и модулей.

Основным параметром LED-драйвера, которым он сможет обеспечивать потребителя длительное время при определенной нагрузке, является выходной ток. В качестве нагрузки применяются отдельные светодиоды или сборки из аналогичных элементов.


Драйвер для светодиода обычно питается от сети напряжением 220 В. В большинстве случаев диапазон рабочего выходного напряжения составляет от трех вольт и может достигать нескольких десятков вольт. Для подключения светодиодов 3W в количестве шести штук потребуется драйвер с выходным напряжением от 9 до 21 В, рассчитанный на 780 мА. При своей универсальности он обладает малым КПД, если на него включить минимальную нагрузку.

При освещении в автомобилях, в фарах велосипедов, мотоциклов, мопедов и т. д., в оснащении переносных фонарей используется питание с постоянным напряжением, значение которого варьируется от 9 до 36 В. Можно не применять драйвер для светодиодов с небольшой мощностью, но в таких случаях потребуется внесение соответствующего резистора в питающую сеть напряжением 220 В. Несмотря на то, что в бытовых выключателях используется этот элемент, подключить светодиод к сети 220 В и рассчитывать на надежность достаточно проблематично.

Основные особенности

Мощность, которую эти устройства способны отдавать под нагрузкой, является важным показателем. Не стоит перегружать его, пытаясь добиться максимальных результатов. В результате таких действий могут выйти из строя драйверы для светодиодов или же сами LED-элементы.


На электронную начинку устройства влияет множество причин:

  • класс защиты аппарата;
  • элементная составляющая, которая применяется для сборки;
  • параметры входа и выхода;
  • марка производителя.

Изготовление современных драйверов выполняется при помощи микросхем с использованием технологии широтно-импульсного преобразования, в состав которых входят импульсные преобразователи и схемы, стабилизирующие ток. ШИМ-преобразователи запитываются от 220 В, обладают высоким классом защиты от коротких замыканий, перегрузок, а так же высоким КПД.

Технические характеристики

Перед приобретением преобразователя для светодиодов следует изучить характеристики устройства. К ним относятся следующие параметры:

  • выдаваемая мощность;
  • выходное напряжение;
  • номинальный ток.

Схема подключения LED-драйвера

На выходное напряжение влияет схема подключения к источнику питания, количество в ней светодиодов. Значение тока пропорционально зависит от мощности диодов и яркости их излучения. Светодиодный драйвер должен выдавать столько тока для светодиодов, сколько потребуется для обеспечения постоянной яркости. Стоит помнить, что мощность необходимого устройства должна быть более потребляемой всеми светодиодами. Рассчитать ее можно, используя следующую формулу:

P(led) – мощность одного LED-элемента;

n — количество LED-элементов.

Для обеспечения длительной и стабильной работы драйвера следует учитывать запас мощности устройства в 20–30% от номинальной.


Выполняя расчет, следует учитывать цветовой фактор потребителя, так как он влияет на падение напряжения. У разных цветов оно будет иметь отличающиеся значения.

Срок годности

Светодиодные драйверы, как и вся электроника, обладают определенным сроком службы, на который сильно влияют эксплуатационные условия. LED-элементы, изготовленные известными брендами, рассчитаны на работу до 100 тысяч часов, что намного дольше источников питания. По качеству рассчитанный драйвер можно классифицировать на три типа:

  • низкого качества, с работоспособностью до 20 тысяч часов;
  • с усредненными параметрами — до 50 тысяч часов;
  • преобразователь, состоящий из комплектующих известных брендов — до 70 тысяч часов.

Многие даже не знают, зачем обращать внимание на этот параметр. Это понадобится для выбора устройства для длительного использования и дальнейшей окупаемости. Для использования в бытовых помещениях подойдет первая категория (до 20 тысяч часов).

Как подобрать драйвер?

Насчитывается множество разновидностей драйверов, используемых для LED-освещения. Большинство из представленной продукции изготовлено в Китае и не имеет нужного качества, но выделяется при этом низким ценовым диапазоном. Если нужен хороший драйвер, лучше не гнаться за дешевизной китайского производства, так как их характеристики не всегда совпадают с заявленными, и редко когда к ним прилагается гарантия. Может быть брак на микросхеме или быстрый выход из строя устройства, в таком случае не удастся совершить обмен на более качественное изделие или вернуть средства.


Наиболее часто выбираемым вариантом является бескорпусный драйвер, питающийся от 220 В или 12 В. Различные модификации позволяют использовать их для одного или более светодиодов. Эти устройства можно выбрать для организации исследований в лаборатории или же проведения экспериментов. Для фито-ламп и бытового применения выбирают драйверы для светодиодов, находящиеся в корпусе. Бескорпусные устройства выигрывают в ценовом плане, но проигрывают в эстетике, безопасности и надежности.

Виды драйверов

Устройства, осуществляющие питание светодиодов, условно можно разделить на:

  • импульсные;
  • линейные.

Устройства импульсного типа производят на выходе множество токовых импульсов высокой частоты и работают по принципу ШИМ, КПД у них составляет до 95%. Импульсные преобразователи имеют один существенный недостаток — во время работы возникают сильные электромагнитные помехи. Для обеспечения стабильного выходного тока в линейный драйвер установлен генератор тока, который играет роль выхода. Такие устройства имеют небольшой КПД (до 80%), но при этом просты в техническом плане и стоят недорого. Такие устройства не получится использовать для потребителей большой мощности.

Из вышеперечисленного можно сделать вывод, что источник питания для светодиодов следует выбирать очень тщательно. Примером может послужить люминесцентная лампа, на которую подается ток, превышающий норму на 20%. В ее характеристиках практически не произойдет изменений, а вот работоспособность светодиода уменьшится в несколько раз.

lampagid.ru

Схемы подключения светодиодов к 220В и 12В


Рассмотрим способы включения лед диодов средней мощности к наиболее популярным номиналам 5В, 12 вольт, 220В. Затем их можно использовать при изготовлении цветомузыкальных устройств, индикаторов уровня сигнала, плавное включение и выключение. Давно собираюсь сделать плавный искусственный рассвет, чтобы соблюдать распорядок дня. К тому же эмуляция рассвета позволяет просыпаться гораздо лучше и легче.

Про подключение светодиодов к 12 и 220В читайте в предыдущей статье, рассмотрены все способы от сложных до простых, от дорогих до дешёвых.

  • 1. Типы схем
  • 2. Обозначение на схеме
  • 3. Подключение светодиода к сети 220в, схема
  • 4. Подключение к постоянному напряжению
  • 5. Самый простой низковольтный драйвер
  • 6. Драйвера с питанием от 5В до 30В
  • 7. Включение 1 диода
  • 8. Параллельное подключение
  • 9. Последовательное подключение
  • 10. Подключение RGB LED
  • 11. Включение COB диодов
  • 12. Подключение SMD5050 на 3 кристалла
  • 13. Светодиодная лента 12В SMD5630
  • 14. Светодиодная лента RGB 12В SMD5050

Типы схем

Схема подключения светодиодов бывает двух типов, которые зависят от источника питания:

  1. светодиодный драйвер со стабилизированным током;
  2. блок питания со стабилизированным напряжением.

В первом варианте применяется специализированный источник, который имеет определенный стабилизированный ток, например 300мА. Количество подключаемых LED диодов ограничено только его мощностью. Резистор (сопротивление) не требуется.

Во втором варианте стабильно только напряжение. Диод имеет очень малое внутреннее сопротивление, если его включить без ограничения Ампер, то он сгорит. Для включения необходимо использовать токоограничивающий резистор.Расчет резистора для светодиода можно сделать на специальном калькуляторе.

Калькулятор учитывает 4 параметра:

  • снижение напряжения на одном LED;
  • номинальный рабочий ток;
  • количество LED в цепи;
  • количество вольт на выходе блока питания.

Если вы используете недорогие LED элементы китайского производства, то скорее всего у них будет большой разброс параметров. Поэтому реальное значение Ампер цепи будет отличатся и потребуется корректировка установленного сопротивления. Чтобы проверить насколько велик разброс параметров, необходимо включить все последовательно. Подключаем питание светодиодов и затем понижаем напряжение до тех пор, когда они будут едва светиться. Если характеристики отличаются сильно, то часть LED будет работать ярко, часть тускло.

Это приводит к тому, что на некоторых элементах электрической цепи мощность будет выше, из-за этого они будут сильнее нагружены. Так же будет повышенный нагрев, усиленная деградация, ниже надежность.

Обозначение на схеме

Для обозначения на схеме используется две вышеуказанные пиктограммы. Две параллельные стрелочки указывают, что светит очень сильно, количество зайчиков в глазах не сосчитать.

Подключение светодиода к сети 220в, схема

Для подключения к сети 220 вольт используется драйвер, который является источником стабилизированного тока.

Схема драйвера для светодиодов бывает двух видов:

  1. простая на гасящем конденсаторе;
  2. полноценная с использованием микросхем стабилизатора;

Собрать драйвер на конденсаторе очень просто, требуется минимум деталей и времени. Напряжение 220В снижается за счёт высоковольтного конденсатора, которое затем выпрямляется и немного стабилизируется. Она используется в дешевых светодиодных лампах. Основным недостатком является высокой уровень пульсаций света, который плохо действует на здоровье. Но это индивидуально, некоторые этого вообще не замечают. Так же схему сложно рассчитывать из-за разброса характеристик электронных компонентов.

Полноценная схема с использованием специализированных микросхем обеспечивает лучшую стабильность на выходе драйвера. Если драйвер хорошо справляется с нагрузкой, то коэффициент пульсаций будет не выше 10%, а в идеале 0%. Чтобы не делать драйвер своими руками, можно взять из неисправной лампочки или светильника, если проблема у них была не с питанием.

Если у вас есть более менее подходящий стабилизатор, но сила тока меньше или больше, то её можно подкорректировать с минимум усилий. Найдите технические характеристики на микросхему из драйвера. Чаще всего количество Ампер на выходе задаётся резистором или несколькими резисторами, находящимися рядом с микросхемой. Добавив к ним еще сопротивление или убрав один из них можно получить необходимую силу тока. Единственное нельзя превышать указанную мощность.

Подключение к постоянному напряжению

  1. 3,7В – аккумуляторы от телефонов;
  2. 5В – зарядные устройства с USB;
  3. 12В – автомобиль, прикуриватель, бытовая электроника, компьютер;
  4. 19В – блоки от ноутбуков, нетбуков, моноблоков.

Самый простой низковольтный драйвер

Простейшая схема стабилизатора тока для светодиодов состоит из линейной микросхемы LM317 или его аналогов. На выходе таких стабилизаторов может быть от 0,1А до 5А. Основные недостатки это невысокий КПД и сильный нагрев. Но это компенсируется максимальной простотой изготовления.

Входное до 37В, до 1,5 Ампера для корпуса указанного на картинке.

Для рассчёта сопротивления, задающего рабочий ток используйте калькулятор стабилизатор тока на LM317 для светодиодов.

Драйвера с питанием от 5В до 30В

Если у вас есть подходящий источник питания от какой либо бытовой техники, то для включения лучше использовать низковольтный драйвер. Они бывают повышающие и понижающие. Повышающий даже из 1,5В сделает 5В, чтобы светодиодная цепь работала. Понижающий из 10В-30В сделает более низкое, например 15В.

В большом ассортименте они продаются у китайцев, низковольтный драйвер отличается двумя регуляторами от простого стабилизатора Вольт.

Реальная мощность такого стабилизатора будет ниже, чем указал китаец. У параметрах модуля пишут характеристику микросхемы и не всей конструкции. Если стоит большой радиатор, то такой модуль потянет 70% — 80% от обещанного. Если радиатора нет, то 25% — 35%.

Особенно популярны модели на LM2596, которые уже прилично устарели из-за низкого КПД. Еще они сильно греются, поэтому без системы охлаждения не держат более 1 Ампера.

Более эффективны XL4015, XL4005, КПД гораздо выше. Без радиатора охлаждения выдерживают до 2,5А. Есть совсем миниатюрные модели на MP1584 размером 22мм на 17мм.

Включение 1 диода

Чаще всего используются 12 вольт, 220 вольт и 5В. Таким образом делается маломощная светодиодная подсветка настенных выключателей на 220В. В заводских стандартных выключателях чаще всего ставится неоновая лампа.

Параллельное подключение

При параллельном соединении желательно на каждую последовательную цепь диодов использовать отдельный резистор, чтобы получить максимальную надежность. Другой вариант, это ставить одно мощное сопротивление на несколько LED. Но при выходе одного LED из строя увеличится ток на других оставшихся. На целых будет выше номинального или заданного, что значительно сократит ресурс и увеличит нагрев.

Рациональность применений каждого способа рассчитывают исходя из требований к изделию.

Последовательное подключение

Последовательное подключение при питании от 220в используют в филаментных диодах и светодиодных лентах на 220 вольт. В длинной цепочке из 60-70 LED на каждом падает 3В, что и позволяет подсоединять напрямую к высокому напряжению. Дополнительно используется только выпрямитель тока, для получения плюса и минуса.

Такое соединение применяют в любой светотехнике:

  1. светодиодные лампах для дома;
  2. led светильники;
  3. новогодние гирлянды на 220В;
  4. светодиодные ленты на 220.

В лампах для дома обычно используется до 20 LED включенных последовательно, напряжение на них получается около 60В. Максимальное количество используется в китайских лампочках кукурузах, от 30 до 120 штук LED. Кукурузы не имеют защитной колбы, поэтому электрические контакты на которых до 180В полностью открыты.

Соблюдайте осторожность, если видите длинную последовательную цепочку, к тому же на них не всегда есть заземление. Мой сосед схватил кукурузу голыми руками и потом рассказывал увлекательные стихи из нехороших слов.

Подключение RGB LED

Маломощные трёхцветные RGB светодиоды состоят из трёх независимых кристаллов, находящихся в одном корпусе. Если 3 кристалла (красный, зеленый, синий) включить одновременно, то получим белый свет.

Управление каждым цветом происходит независимо от других при помощи RGB контроллера. В блоке управления есть готовые программы и ручные режимы.

Включение COB диодов

Схемы подключения такие же, как у однокристальных и трехцветных светодиодов SMD5050, SMD 5630, SMD 5730. Единственное отличие, вместо 1 диода включена последовательная цепь из нескольких кристаллов.

Мощные светодиодные матрицы имеют в своём составе множество кристаллов включенных последовательно и параллельно. Поэтому питание требуется от 9 до 40 вольт, зависит от мощности.

Подключение SMD5050 на 3 кристалла

От обычных диодов SMD5050 отличается тем, что состоит из 3 кристаллов белого света, поэтому имеет 6 ножек. То есть он равен трём SMD2835, сделанным на этих же кристаллах.

При параллельном включении с использованием одного резистора надежность будет ниже. Если один их кристаллов выходит из строя, то увеличивается сила тока через оставшиеся 2. Это приводит к ускоренному выгоранию оставшихся.

При использовании отдельного сопротивления для каждого кристалла, выше указанный недостаток устраняется. Но при этом в 3 раза возрастает количество используемых резисторов и схема подключения светодиода становится сложней. Поэтому оно не используется в светодиодных лентах и лампах.

Светодиодная лента 12В SMD5630

Наглядным примером подключения светодиода к 12 вольтам является светодиодная лента. Она состоит из секций по 3 диода и 1 резистора, включенных последовательно. Поэтому разрезать её можно только в указанных местах между этими секциями.

Светодиодная лента RGB 12В SMD5050

В RGB ленте используется три цвета, каждый управляется отдельно, для каждого цвета ставится резистор. Разрезать можно только по указанному месту, чтобы в каждой секции было по 3 SMD5050 и она могла подключатся к 12 вольт.

led-obzor.ru Схемы подключения розеток и выключателей

  • Схемы led драйверов

  • Небольшая лабораторка на тему «какой драйвер лучше?» Электронный или на конденсаторах в роли балласта? Думаю, что у каждого есть своя ниша. Постараюсь рассмотреть все плюсы и минусы и тех и других схем. Напомню формулу расчёта балластных драйверов. Может кому интересно?

    Свой обзор построю по простому принципу. Сначала рассмотрю драйверы на конденсаторах в роли балласта. Затем посмотрю на их электронных собратьев. Ну а в конце сравнительный вывод.
    А теперь перейдём к делу.
    Берём стандартную китайскую лампочку. Вот её схема (немного усовершенствованная). Почему усовершенствованная? Эта схема подойдёт к любой дешёвой китайской лампочке. Отличие будет только в номиналах радиодеталей и отсутствии некоторых сопротивлений (в целях экономии).


    Бывают лампочки с отсутствующим С2 (очень редко, но бывает). В таких лампочках коэффициент пульсаций 100%. Очень редко ставят R4. Хотя сопротивление R4 просто необходимо. Оно будет вместо предохранителя, а также смягчит пусковой ток. Если в схеме отсутствует, лучше поставить. Ток через светодиоды определяет номинал ёмкости С1. В зависимости от того, какой ток мы хотим пропустить через светодиоды (для самодельщиков), можно рассчитать его ёмкость по формуле (1).


    Эту формулу я писАл много раз. Повторюсь.
    Формула (2) позволяет сделать обратное. С её помощью можно посчитать ток через светодиоды, а затем и мощность лампочки, не имея Ваттметра. Для расчётов мощности нам ещё необходимо знать падение напряжения на светодиодах. Можно вольтметром измерить, можно просто посчитать (без вольтметра). Вычисляется просто. Светодиод ведёт себя в схеме как стабилитрон с напряжением стабилизации около 3В (есть исключения, но очень редкие). При последовательном подключении светодиодов падение напряжения на них равно количеству светодиодов, умноженному на 3В (если 5 светодиодов, то 15В, если 10 — 30В и т.д.). Всё просто. Бывает, что схемы собраны из светодиодов в несколько параллелей. Тогда надо будет учитывать количество светодиодов только в одной параллели.
    Допустим, мы хотим сделать лампочку на десяти светодиодах 5730smd. По паспортным данным максимальный ток 150мА. Рассчитаем лампочку на 100мА. Будет запас по мощности. По формуле (1) получаем: С=3,18*100/(220-30)=1,67мкФ. Такой ёмкости промышленность не выпускает, даже китайская. Берём ближайшую удобную (у нас 1,5мкФ) и пересчитываем ток по формуле (2).
    (220-30)*1,5/3,18=90мА. 90мА*30В=2,7Вт. Это и есть расчетная мощность лампочки. Всё просто. В жизни конечно будет отличаться, но не намного. Всё зависит от реального напряжения в сети (это первый минус драйвера), от точной ёмкости балласта, реального падения напряжения на светодиодах и т.д. При помощи формулы (2) вы можете рассчитать мощность уже купленных лампочек (уже упоминал). Падением напряжения на R2 и R4 можно пренебречь, оно незначительно. Можно подключить последовательно достаточно много светодиодов, но общее падение напряжения не должно превышать половины напряжения сети (110В). При превышении этого напряжения лампочка болезненно реагирует на все изменения напряжения. Чем больше превышает, тем болезненнее реагирует (это дружеский совет). Тем более, за этими пределами формула работает неточно. Точно уже не рассчитать.
    Вот появился очень большой плюс у этих драйверов. Мощность лампочки можно подгонять под нужный результат подбором ёмкости С1 (как самодельных, так и уже купленных). Но тут же появился и второй минус. Схема не имеет гальванической развязки с сетью. Если ткнуть в любое место включенной лампочки отвёрткой-индикатором, она покажет наличие фазы. Трогать руками (включенную в сеть лампочку) категорически запрещено.
    Такой драйвер имеет практически 100%-ный КПД. Потери только на диодах и двух сопротивлениях.
    Его можно изготовить в течение получаса (по-быстрому). Даже плату травить необязательно.
    Конденсаторы заказывал эти:

    Диоды вот эти:


    Но у этих схем есть ещё один серьёзный недостаток. Это пульсации. Пульсации частотой 100Гц, результат выпрямления сетевого напряжения.


    У различных лампочек форма незначительно будет отличаться. Всё зависит от величины фильтрующей ёмкости С2. Чем больше ёмкость, тем меньше горбы, тем меньше пульсации. Необходимо смотреть ГОСТ Р 54945-2012. А там чёрным по белому написано, что пульсации частотой до 300Гц вредны для здоровья. Там же формула для расчёта (приложение Г).

    Но это не всё. Необходимо смотреть Санитарные нормы СНиП 23-05-95 «ЕСТЕСТВЕННОЕ И ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ». В зависимости от предназначения помещения максимально допустимые пульсации от 10 до 20%.
    В жизни ничего просто так не бывает. Результат простоты и дешевизны лампочек налицо.
    Пора переходить к электронным драйверам. Здесь тоже не всё так безоблачно.
    Вот такой драйвер я заказывал. Это ссылка именно на него в начале обзора.


    Почему заказал именно такой? Объясню. Хотел сам «колхозить» светильники на 1-3Вт-ных светодиодах. Подбирал по цене и характеристикам. Меня устроил бы драйвер на 3-4 светодиода с током до 700мА. Драйвер должен иметь в своём составе ключевой транзистор, что позволит разгрузить микросхему управления драйвером. Для уменьшения ВЧ пульсаций по выходу должен стоять конденсатор. Первый минус. Стоимость подобных драйверов (US $13.75 /10 штук) отличается в бОльшую сторону от балластных. Но тут же плюс. Токи стабилизации подобных драйверов 300мА, 600мА и выше. Балластным драйверам такое и не снилось (более 200мА не рекомендую).
    Посмотрим на характеристики от продавца:

    ac85-265v» that everyday household appliances.»
    load after 10-15v; can drive 3-4 3w led lamp beads series
    600ma
    А вот диапазон выходных напряжений маловат (тоже минус). Максимум, можно подцепить последовательно пять светодиодов. Параллельно можно подцеплять сколько угодно. Светодиодная мощность считается по формуле: Ток драйвера умножить на падение напряжения на светодиодах [количество светодиодов (от трёх до пяти) и умножить на падение напряжения на светодиоде (около 3В)].
    Ещё один большой недостаток этих драйверов – большие ВЧ помехи. Некоторые экземпляры слышит не только ФМ радио, но и пропадает приём цифровых каналов ТВ при их работе. Частота преобразования составляет несколько десятков кГц. А вот защиты, как правило, никакой (от помех).


    Под трансформатором что-то типа «экрана». Должно уменьшить помехи. Именно Этот драйвер почти не фонит.
    Почему они фонят, становится ясно, если посмотреть на осциллограмму напряжения на светодиодах. Без конденсаторов ёлочка куда серьёзнее!


    На выходе драйвера должен стоять не только электролит, но и керамика для подавления ВЧ помех. Высказал своё мнение. Обычно стоит либо то либо другое. Бывает, что ничего не стоит. Это бывает в дешёвых лампочках. Драйвер спрятан внутри, предъявить претензию будет сложно.
    Посмотрим схему. Но предупрежу, она ознакомительная. Нанёс только основные элементы, которые необходимы нам для творчества (для понимания «что к чему»).


    Погрешность в расчётах присутствует. Кстати, на мелких мощностях приборчик тоже подвирает.
    А теперь посчитаем пульсации (теория в начале обзора). Посмотрим, что же видит наш глаз. К осциллографу подключаю фотодиод. Два снимка объединил в один для удобства восприятия. Слева лампочка выключена. Справа – лампочка включена. Смотрим ГОСТ Р 54945-2012. А там чёрным по белому написано, что пульсации частотой до 300Гц вредны для здоровья. А у нас около 100Гц. Для глаз вредно.


    У меня получилось 20%. Необходимо смотреть Санитарные нормы СНиП 23-05-95 «ЕСТЕСТВЕННОЕ И ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ». Использовать можно, но не в спальне. А у меня коридор. Можно СНиП и не смотреть.
    А теперь посмотрим другой вариант подключения светодиодов. Это схема подключения к электронному драйверу.


    Итого 3 параллели по 4 светодиода.
    Вот, что показывает Ваттметр. 7,1Вт активной мощности.


    Посмотрим, сколько доходит до светодиодов. Подключил к выходу драйвера амперметр и вольтметр.


    Посчитаем чисто светодиодную мощность. Р=0,49А*12,1В=5,93Вт. Всё, что не хватает, взял на себя драйвер.
    Теперь посмотрим, что же видит наш глаз. Слева лампочка выключена. Справа – лампочка включена. Частота повторения импульсов около 100кГц. Смотрим ГОСТ Р 54945-2012. А там чёрным по белому написано, что вредны для здоровья только пульсации частотой до 300Гц. А у нас около 100кГц. Для глаз безвредно.

    Всё рассмотрел, всё измерил.
    Теперь выделю плюсы и минусы этих схем:
    Минусы лампочек с конденсатором в роли балласта по сравнению с электронными драйверами.
    -Во время работы КАТЕГОРИЧЕСКИ нельзя касаться элементов схемы, они под фазой.
    -Невозможно достичь высоких токов свечения светодиодов, т.к. при этом необходимы конденсаторы больших размеров. А увеличение ёмкости приводит к большим пусковым токам, портящим выключатели.
    -Большие пульсации светового потока частотой 100Гц, требуют больших фильтрующих ёмкостей на выходе.
    Плюсы лампочек с конденсатором в роли балласта по сравнению с электронными драйверами.
    +Схема очень проста, не требует особых навыков при изготовлении.
    +Диапазон выходных напряжений просто фантастический. Один и тот же драйвер будет работать и с одним и с сорока последовательно соединёнными светодиодами. У электронных драйверов выходные напряжения имеют намного более узкий диапазон.
    +Низкая стоимость подобных драйверов, которая складывается буквально из стоимости двух конденсаторов и диодного моста.
    +Можно изготовить и самому. Большинство деталей можно найти в любом сарае или гараже (старые телевизоры и т.д.).
    +Можно регулировать ток через светодиоды подбором ёмкости балласта.
    +Незаменимы как начальный светодиодный опыт, как первый шаг в освоении светодиодного освещения.
    Есть ещё одно качество, которое можно отнести как к плюсам, так и к минусам. При использовании подобных схем с выключателями с подсветкой, светодиоды лампочки подсвечиваются. Лично для меня это скорее плюс, чем минус. Использую повсеместно как дежурное (ночное) освещение.
    Умышленно не пишу, какие драйверы лучше, у каждого есть своя ниша.
    Я выложил по максимуму всё, что знаю. Показал все плюсы и минусы этих схем. А выбор как всегда делать вам. Я лишь постарался помочь.
    На этом всё!
    Удачи всем.

    Планирую купить +70 Добавить в избранное Обзор понравился +68 +157

    Несмотря на высокую стоимость, потребление электроэнергии полупроводниковыми светильниками (LED) намного меньше, чем у ламп накаливания, а срок службы в 5 раз больше. Схема светодиодной лампы работает при подаче 220 вольт, когда входной сигнал, вызывающий свечение, преобразуется до рабочей величины с помощью драйвера.

    Светодиодные светильники на 220 В

    Каким бы ни было напряжение питания, на один светодиод подается постоянное напряжение 1,8-4 В.

    Типы светодиодов

    Светодиод – это полупроводниковый кристалл из нескольких слоев, преобразующий электричество в видимый свет. При изменении его состава получается излучение определенного цвета. Светодиод делается на основе чипа – кристалла с площадкой для подключения проводников питания.

    Чтобы воспроизвести белый свет, «синий» чип покрывается желтым люминофором. При излучении кристалла люминофор испускает собственное. Смешивание желтого и синего света образует белый.

    Разные способы сборки чипов позволяют создавать 4 основных типа светодиодов:

    1. DIP – состоит из кристалла с расположенной сверху линзой и присоединенными двумя проводниками. Он наиболее распространен и используется для подсветки, в световых украшениях и табло.
    2. «Пиранья» – похожая конструкция, но с четырьмя выводами, что делает ее более надежной для монтажа и улучшает отвод выделяющегося тепла. Большей частью применяется в автомобильной промышленности.
    3. SMD-светодиод – размещается на поверхности, за счет чего удается уменьшить габариты, улучшить теплоотвод и обеспечить множество вариантов исполнения. Используется в любых источниках света.
    4. СОВ-технология, где чип впаивается в плату. За счет этого контакт лучше защищен от окисления и перегрева, а также значительно повышается интенсивность свечения. Если светодиод перегорает, его надо полностью менять, поскольку ремонт своими руками с заменой отдельных чипов не возможен.

    Недостатком светодиода является его маленький размер. Чтобы создать большое красочное световое изображение, требуется много источников, объединенных в группы. Кроме того, кристалл со временем стареет, и яркость ламп постепенно падает. У качественных моделей процесс износа протекает очень медленно.

    Устройство LED-лампы

    В состав лампы входят:

    • корпус;
    • цоколь;
    • рассеиватель;
    • радиатор;
    • блок светодиодов LED;
    • бестрансформаторный драйвер.

    Устройство LED-лампы на 220 вольт

    На рисунке изображена современная LED-лампа по технологии СОВ. Светодиод выполнен как одно целое, с множеством кристаллов. Для него не требуется распайка многочисленных контактов. Достаточно присоединить всего одну пару. Когда делается ремонт светильника с перегоревшим светодиодом, его меняют целиком.

    По форме лампы бывают круглыми, цилиндрическими и прочими. Подключение к сети питания производится через резьбовые или штырьковые цоколи.

    Под общее освещение выбираются светильники с 2700К, 3500К и 5000К. Градации спектра могут быть любыми. Их часто используют для освещения реклам и в декоративных целях.

    Простейшая схема драйвера для питания лампы от сети изображена на рисунке ниже. Количество деталей здесь минимальное, за счет наличия одного или двух гасящих резисторов R1, R2 и встречно-параллельного включения светодиодов HL1, HL2. Так они защищают друг друга от обратного напряжения. При этом частота мерцания лампы увеличивается до 100 Гц.

    Простейшая схема подключения LED-лампы в сеть 220 вольт

    Напряжение питания 220 вольт поступает через ограничительный конденсатор С1 на выпрямительный мост, а после – на лампу. Один из светодиодов можно заменить на обычный выпрямительный, но при этом мерцание изменится до 25 Гц, что плохо повлияет на зрение.

    На рисунке ниже изображена классическая схема источника питания LED-лампы. Он применяется во многих моделях, и его можно извлекать, чтобы производить ремонт своими руками.

    Классическая схема включения LED-лампы в сеть 220 В

    На электролитическом конденсаторе выпрямленное напряжение сглаживается, что устраняет мерцание с частотой 100 Гц. Резистор R1 разряжает конденсатор при отключении питания.

    своими руками

    В простой LED-лампе с отдельными светодиодами можно сделать ремонт с заменой неисправных элементов. Она легко разбирается, если аккуратно отделить от стеклянного корпуса цоколь. Внутри располагаются светодиоды. У лампы MR 16 их 27 штук. Для доступа к печатной плате, на которой они размещены, надо удалить защитное стекло, поддев его отверткой. Порой эту операцию сделать довольно трудно.

    Лампа светодиодная на 220 вольт

    Прогоревшие светодиоды сразу заменяются. Остальные следует прозвонить тестером или подать на каждый напряжение 1,5 В. Исправные должны загораться, а остальные подлежат замене.

    Изготовитель рассчитывает лампы так, чтобы рабочий ток светодиодов был как можно выше. Это значительно снижает их ресурс, но «вечные» устройства продавать невыгодно. Поэтому последовательно к светодиодам можно подключить ограничивающий резистор.

    Если светильники моргают, причиной может быть выход из строя конденсатора С1. Его следует заменить на другой, с номинальным напряжением 400 В.

    Заново светильники на светодиодах делают редко. Лампу проще изготовить из неисправной. Фактически получается, что ремонт и изготовление нового изделия – это один процесс. Для этого LED-лампу разбирают и восстанавливают перегоревшие светодиоды и радиодетали драйвера. В продаже часто бывают оригинальные светильники с нестандартными лампами, которым в дальнейшем трудно найти замену. Простой драйвер можно взять из неисправной лампы, а светодиоды – из старого фонарика.

    Схема драйвера собирается по классическому образцу, рассмотренному выше. Только к ней добавляется резистор R3 для разрядки конденсатора С2 при отключении и пара стабилитронов VD2,VD3 для его шунтирования на случай обрыва цепи светодиодов. Можно обойтись одним стабилитроном, если правильно подобрать напряжение стабилизации. Если конденсатор выбрать под напряжение больше 220 В, можно обойтись без дополнительных деталей. Но в этом случае его размеры увеличатся и после того, как будет сделан ремонт, плата с деталями может не поместиться в цоколь.

    Драйвер LED-лампы

    Схема драйвера приведена для лампы из 20 светодиодов. Если их количество будет другим, необходимо подобрать такую величину емкости конденсатора С1, чтобы через них проходил ток 20 мА.

    Схема питания LED-лампы является чаще всего бестрансформаторной, и следует соблюдать осторожность при монтаже своими руками на металлическом светильнике, чтобы не было замыкания фазы или нуля на корпус.

    Конденсаторы подбираются по таблице, в зависимости от количества светодиодов. Их можно закрепить на алюминиевой пластине в количестве 20-30 шт. Для этого в ней сверлятся отверстия, и на термоклей устанавливаются светодиоды. Их пайка производится последовательно. Все детали можно разместить на печатной плате из стеклотекстолита. Они располагаются со стороны, где отсутствуют печатные дорожки, за исключением светодиодов. Последние – крепятся пайкой выводов на плате. Их длина составляет около 5 мм. Затем устройство собирается в светильнике.

    Настольная лампа на светодиодах

    Лампа на 220 В. Видео

    Об изготовлении светодиодной лампы на 220 В своими руками можно узнать из этого видео.

    Правильно изготовленная самодельная схема светодиодной лампы позволит эксплуатировать ее многие годы. Для нее бывает возможным ремонт. Источники питания могут быть любые: от обычной батарейки до сети на 220 вольт.

    Для многих многоквартирных домов актуальна проблема освещения лестничных площадок: хорошую лампу туда ставить жалко, а дешевые быстро выходят из строя.

    С другой стороны качество освещения в данном случае не является критичным, так как люди находятся там очень недолго, то вполне можно поставить туда лапочки с повышенными пульсациями. А раз так, то схема светодиодной лампы на 220 В получиться совсем простой:

    Список номиналов:

    • C1 – значение емкости по таблице, 275 В или больше
    • C2 – 100 мкФ (напряжение должно быть больше чем падает на диодах
    • R1 – 100 Ом
    • R2 – 1 MОм (для разряда конденсатора C1)
    • VD1 .. VD4 – 1N4007

    Я уже приводил схему подключение светодиодной ленты к сети 220В так вот её можно упростить выкинуть стабилизатор тока. Упрощенная схема не будет работать в широком диапазоне напряжений, это плата за упрощение.

    Конденсатор C1 является тем компонентом, который ограничивает ток. И выбор его значения очень важен, его величина зависит от напряжения питания, напряжения на последовательно включенных светодиодах и требуемого тока через светодиоды.

    количество светодиодов последовательно, шт11020305070
    напряжение на сборке из светодиодов, В3,53570105165230
    ток через светодиоды, мА (С1=1000нФ)645749423220
    ток через светодиоды, мА (С1=680нФ)443934292214
    ток через светодиоды, мА (С1=470нФ)3027242015
    ток через светодиоды, мА (С1=330нФ)21191714
    ток через светодиоды, мА (С1=220нФ)141311

    Для 1 светодиода в сборке фильтрующий конденсатор C2 следует увеличить до 1000мкФ, а для 10 светодиодов, до 470мкФ.

    По таблице можно понять, что для получения максимальной мощности (чуть более 4 Вт) нужен конденсатор на 1мкФ и 70 последовательно включенных светодиодов на 20мА. Для более мощных источников света лучше подойдет схема светодиодной лампы на 220 в использующая широтноимпульсную модуляцию для преобразования и стабилизации тока через светодиоды.

    Схемы на основе широтноимпульсной более сложные, но зато обладают преимуществами: им не требуется большой ограничивающий конденсатор, эти схемы обладают высоким КПД и широким диапазоном работы.

    Я заказал несколько светодиодных светильников в Китае. В основе преобразователей этих ламп лежат микросхемы драйверов разработанных в том же Китае, конечно качество работы этих схем ещё не дотягивает до западных стандартов, но вот стоимость более чем демократичная.


    Итак, конкретно в последних светодиодных лампах была установлена микросхема WS3413D7P, являющаяся светодиодным драйвером с активным корректором коэффициента мощности.


    Что же мы видим на схеме? Все тот же диодный мост VD1 — VD4, сглаживающий конденсатор С1. Остальные же компоненты работают нужны для работы микросхемы D1. Резистор R1 нужен для питания самой микросхемы в начальный момент времени, а после запуска микросхема начинает питаться со своего выхода через цепочку R5, VD5. Конденсатор С2 фильтрует питания собственных нужд. Конденсатор С3 служит для задания частоты преобразования. Резистор R2 нужен для измерения тока через светодиоды. Делитель на резисторах R3, R4 позволяет микросхеме получать информацию о напряжении на светодиодной сборке. Катушка индуктивности L1 и конденсатор C4 нужны для преобразования импульсной энергии в постоянную.

    Существует куча других разновидностей микросхем, но основных типов высоковольтных драйверов светодиодов всего три: на основе емкостного гасящего сопротивления, активный гасящий стабилизатор тока и импульсный стабилизатор тока.

    Навигация по записям

    15 thoughts on “Схема светодиодной лампы на 220 в ”

    1. Игорь

      Даже с «выброшенным» стабилизатором, светодиодная лампочка для подъезда получается слишком дорогой. Там лучше вкрутить обычную лампочку «Ильича Эдисона» с диодом, который монтируется в слегка модернизированный патрон.

      1. Валерий

        Не в патрон, в выключатель, там больше места.

    2. Greg

      Не знаю, что слишком дорогого увидел здесь Игорь, но, уж если экономить по полной, то можно выкинуть сопротивления и мост. Останутся: С1, как реактивное сопротивление, один диод для выпрямления переменки и С2 (емкость увеличить в 2-3 раза) для сглаживания пульсаций. Затраты на питание и замену ламп накаливания гораздо выше, чем, даже первоначальный вариант схемы. Очень уж они неэкономичны, причем, во всех ракурсах. От них и избавляются поэтому везде, где только можно. А в подъездах — это архиважно и архинужно, как говаривал Ильич.

    3. admin Автор записи

      У лампы накаливая маловат ресурс, на коробке пишут 1000ч, при круглосуточной работе это 42 дня. В лучшем случае лампочка прослужит несколько месяцев.
      Питание лампы однополупериодным напряжением должно значительно увеличить ресурс (якобы до 100 раз), вот только светоотдача упадет больше чем в два раза. И лампочка будет мерцать с частотой 50Гц.
      Чтобы вернуть частоту к 100Гц, достаточно включить две одинаковых лампочки последовательно — и ресурс возрастет и частота не снизиться.

    4. олександр

      В первой схеме конденсатор С1 надо брать на большее допустимое напряжение в сети 220 в это действующее напряжение Максимальное 220*1,42= примерно 320 в к тому же как правило На конденсаторе указывается на постоянное напряжение а в сети 50 герц. Я рекомендую брать не меньше 450 В. Один диод как пишет Greg не пойдет так на светодиоды или выпрямительный диод будет действовать обратное напряжение.Я рекомендую Выкинуть диодный мост и С2 параллейно светодиодам в обратной полярности поставить диол один период пойдет через светодиод другой через силовой диод. Светодиод можно взять из не исправных фонариков.

    5. Greg

      Ну, обратное напряжение светодиоды должны выдержать, но идея хороша. Зачем терять один период? С2 — выбрасываем, да, а вместо предложенного Олександром силового, ставим еще один световой — пусть моргают попеременно, усиливая общий световой поток и защищая друг дружку от обратного напряжения. А учитывая, что сверхъярких светодиодов, в некоторые фонарики тулят штук по 20, наковырять можно много. Можно и целиком взять, у многих ручных фонарей — ручка выполнена в виде удлиненной лампочки кругового рассеивания.

    6. олександр

      Данную схему можно не только в подъезде как предполагает (Игорь) но где угодно, например освещение приусадебного участка по схеме Greg через понижающий трансформатор для безопасности и две группы светодиодов включенных параллейно и в противоположной полярности.или освещение кессона, душа летнего.

    7. Анатолий

      Я часто видел в подъездах мерцающие лампочки накаливания, где использовался «хитрый» патрон с одним диодом. По моему самое то для подъезда, экономия энергии и непрезентабельный вид. Вот для дома схема №1 вполне подойдёт, скопирую её себе.

    8. Николай

      разобрал «замолчавшую» светодиодную лампу на 11 ватт(100 эквивалента к накаливанию). То что автор называет драйвером, обычный инвертор, схема которого вошла в быт повсеместно, от лампочек до компьютеров и сварочных аппаратов. Так вот на моей лампе стоит 20 диодных светоизлучающих элементов. Исследуя их я пришел к выводу, что они включены как елочная гирлянда — последовательно. Обнаружить неисправный диод не составило труда. Припаяв перемычку из резистроа порядка 50 ом, лампа восстановилась. Так что светоизлучатели работают не при 9.8 иольтах а на всё напряжение выдаваемое инвертором. То есть 220 вольт.
      Дале — у меня есть фонарь ЭРА летучая мышь, с 6 вольтовым АКБ и люминесцентной лампой. Эта лампа светит очень гумозно при своих 7 ваттах. А АКБ хватает на 4 часа. Что я сделал — выпаял из схемы «драйвера» диодный мост и плату со светоизлучателями. В точки пайки проводов от инвертора обозначенные + и — , впаял этот мост соблюдая полярность. На вход моста подал переменное напряжение которое вырабатывал штатный генератор «Эры». Лампа заработала как надо. Светоотдача осталась той же как и от сети 220 вольт. Поскольку холостой ход генератора обеспечивал это напряжение на светоизлучателях.
      Как то вот так.

    Схема драйвера для светодиодов 220

    Для того чтобы светодиодные лампы работали максимально ярко и эффективно, используются специальные модули – драйверы. Собрать самостоятельно схему драйвера для светодиодов сможет каждый, если, конечно, имеются познания в электротехнике. Смысл работы прибора – преобразовать переменное напряжение, протекающее в сети, в постоянное (пониженное). Но прежде чем приступать к сборке, нужно определиться с тем, какие требования к устройству предъявляются – проанализируйте характеристики и виды приборов.

    Основное назначение драйверов – это стабилизация тока, который проходит через светодиод. Причем нужно учесть, что сила тока, который проходит по кристаллу полупроводника, должна быть точно такой же, как и у светодиода по паспорту. Благодаря этому обеспечивается устойчивое освещение. Кристалл в светодиоде намного дольше прослужит. Чтобы узнать напряжение, необходимое для питания светодиодов, нужно воспользоваться вольт-амперной характеристикой. Это график, показывающий зависимость между напряжением питания и током.

    Если планируется проводить освещение светодиодными лампами жилого или офисного помещения, то драйвер должен питаться от бытовой сети переменного тока с напряжением 220 В. Если же светодиоды используются в автомобильной или мототехнике, нужно использовать драйверы, питающиеся от постоянного напряжения, значение 9-36 В. В некоторых случаях (если светодиодная лампа небольшой мощности и питается от сети 220 В) допускается убрать схему драйвера светодиода. От сети если запитано устройство, достаточно включить в схему постоянный резистор.

    Параметры драйверов

    Прежде чем приобрести устройство или самостоятельно его изготовить, нужно ознакомиться с тем, какие у него имеются основные характеристики:

    1. Номинальный ток потребления.
    2. Мощность.
    3. Выходное напряжение.

    Напряжение на выходе преобразователя напрямую зависит от того, какой выбран способ подключения источника света, числа светодиодов. Ток имеет прямую зависимость от яркости и мощности элементов.

    Преобразователь должен обеспечивать ток, при котором светодиоды будут работать с одинаковой яркостью. На PT4115 схема драйвера светодиодов реализуется довольно просто – это самый распространенный преобразователь напряжения для использования с LED-элементами. Изготовить прибор на его основе можно буквально «на коленке».

    Мощность драйвера

    Мощность прибора – это самая важная характеристика. Чем мощнее драйвер, тем большее число светодиодов можно подключить к нему (конечно, придется проводить простые расчеты). Обязательное условие – мощность драйвера должна быть больше, чем у всех светодиодов в сумме. Выражается это такой формулой:

    Р = Р(св) х N,

    где Р, Вт – мощность драйвера;

    Р(св), Вт – мощность одного светодиода;

    N – количество светодиодов.

    Например, при сборке схемы драйвера для светодиода 10W вы можете смело подключать в качестве нагрузки LED-элементы мощностью до 10 Вт. Обязательно нужно иметь небольшой запас по мощности – примерно 25%. Поэтому, если планируется подключение светодиода 10 Вт, драйвер должен обеспечивать мощность не менее 12,5-13 Вт.

    Цвета светодиодов

    Обязательно нужно учитывать то, какой цвет испускает светодиод. От этого зависит то, какое падение напряжения будет у них при одинаковой силе тока. Например, при токе питания 0,35 А, падение напряжения у красных LED-элементов примерно 1,9-2,4 В. Мощность в среднем 0,75 Вт. Аналогичная модель с зеленым цветом будет уже иметь падение в интервале 3,3-3,9 В, а мощность 1,25 Вт. Поэтому, если вы применяете схему драйвера светодиода 220В с преобразованием в 12 В, к нему можно подключить максимум 9 элементов с зеленым цветом или 16 с красным.

    Типы драйверов

    Всего можно выделить два типа драйверов для светодиодов:

    1. Импульсные. С помощью таких устройств создаются в выходной части устройства высокочастотные импульсы. Функционирование основывается на принципах ШИМ-модуляции. Среднее значение тока зависит от коэффициента заполнения (отношения длительности одного импульса к частоте его повторения). Ток на выходе меняется за счет того, что коэффициент заполнения колеблется в интервале 10-80%, а частота остается постоянной.
    2. Линейные – типовая схема и структура выполнены в виде генератора тока на транзисторах с р-каналом. С их помощью можно обеспечить максимально плавную стабилизацию питающего тока в случае, если напряжение на входе неустойчиво. Отличаются дешевизной, но у них малая эффективность. При работе выделяется большое количество тепла, поэтому можно использовать только для маломощных светодиодов.

    Импульсные получили большее распространение, так как у них КПД намного выше (может достигать 95%). Устройства компактные, диапазон входного напряжения достаточно широкий. Но есть один большой недостаток – высокое влияние различного рода электромагнитных помех.

    На что обратить внимание при покупке?

    Покупку драйвера обязательно нужно совершать при выборе светодиодов. На PT4115 схема драйвера светодиодов позволяет обеспечить нормальное функционирование системы освещения. Устройства, использующие ШИМ-модуляторы, построенные по схемам с одной микросхемой, применяются по большей части в автомобильной технике. В частности, для подключения подсветки и ламп головного освещения. Но качество у таких простейших приборов довольно низкое – для использования в бытовых системах они не годятся.

    Диммируемый драйвер

    Практически все конструкции преобразователей позволяют регулировать яркость свечения LED-элементов. С помощью таких устройств можно выполнять следующие действия:

    1. Уменьшать интенсивность освещенности днем.
    2. Скрывать или же подчеркивать определенные элементы интерьера.
    3. Зонировать помещение.

    Благодаря этим качествам можно существенно сэкономить на электроэнергии, увеличить ресурс элементов.

    Разновидности диммируемых драйверов

    Типы диммируемых драйверов:

    1. Подключаются между БП и источником света. Они позволяют управлять энергией, которая поступает на LED-элементы. В основе конструкции находятся ШИМ-модуляторы с микроконтроллерным управлением. Вся энергия идет к светодиодам импульсами. От длины импульсов напрямую зависит энергия, которая поступит на светодиоды. Такие конструкции драйверов применяются в основном для работы модулей со стабилизированным питанием. Например, для лент или бегущих строк.
    2. Второй тип устройств позволяет проводить управление блоком питания. Управление производится при помощи ШИМ-модулятора. Также изменяется величина тока, который протекает через светодиоды. Как правило, такие конструкции применяются для питания тех устройств, которым необходим стабилизированный ток.

    Нужно обязательно учесть тот факт, что ШИМ-регулирование плохо влияет на зрение. Лучше всего использовать схемы драйверов для питания светодиодов, в которых регулируется величина тока. Но вот один нюанс – в зависимости от величины тока свечение будет различным. При низком значении элементы будут излучать свет с желтым оттенком, при увеличении – с синеватым.

    Какую микросхему выбрать?

    Если нет желания искать готовое устройство, можно сделать его самостоятельно. Причем произвести расчет под конкретные светодиоды. Микросхем для изготовления драйверов довольно много. Вам потребуется только умение читать электрические схемы и работать с паяльником. Для простейших устройств (мощностью до 3 Вт) можно использовать микросхему PT4115. Она дешевая, и достать очень просто. Характеристики элемента такие:

    1. Регулирование яркости.
    2. Напряжение питания – 6-30 В.
    3. Выходной ток – 1,2 А.
    4. Допустимая погрешность при стабилизации тока – не более 5%.
    5. Защита от отключения нагрузки.
    6. Выводы для диммирования.
    7. КПД – 97%.

    Обозначение выводов микросхемы:

    1. SW – подключение выходного коммутатора.
    2. GND – отрицательный вывод источников питания и сигнала.
    3. DIM – регулятор яркости.
    4. CSN – датчик входного тока.
    5. VIN – положительный вывод, соединяемый с источником питания.

    Варианты схем драйверов

    Варианты исполнения устройств:

    1. Если имеется источник питания с постоянным напряжением 6-30 В.
    2. Питание от переменного напряжения 12-18 В. В схему вводится диодный мост и электролитический конденсатор. По сути, «классическая» схема мостового выпрямителя с отсечением переменной составляющей.

    Нужно отметить тот факт, что электролитический конденсатор не сглаживает пульсации напряжения, а позволяет избавиться от переменной составляющей в нем. В схемах замещения (по теореме Кирхгофа) электролитический конденсатор в цепи переменного тока является проводником. А вот в цепи постоянного тока он заменяется разрывом (нет никакого элемента).

    Собрать схему драйвера светодиодов 220 своими руками можно только в том случае, если использовать дополнительный блок питания. В нем обязательно задействован трансформатор, которым понижается напряжение до необходимого значения в 12-18 В. Учтите, что нельзя подключать драйверы к светодиодам без электролитического конденсатора в блоке питания. При необходимости установки индуктивности необходимо произвести ее расчет. Обычно величина составляет 70-220 мкГн.

    Процесс сборки

    Все элементы, которые используются в схеме, нужно подбирать, опираясь на даташит (техническую документацию). Обычно в нем приводятся даже практические схемы использования устройств. Обязательно использовать в схеме выпрямителя низкоимпедансные конденсаторы (значение ESR должно быть низким). Применение иных аналогов снижает эффективность регулятора. Емкость должна быть не менее 4,7 мкФ (в случае использования схемы с постоянным током) и от 100 мкФ (для работы в цепи переменного тока).

    Собрать по схеме драйвер для светодиодов своими руками можно буквально за несколько минут, потребуется только наличие элементов. Но нужно знать и особенности проведения монтажа. Катушку индуктивности желательно располагать возле вывода микросхемы SW. Изготовить ее можно самостоятельно, для этого необходимо всего несколько элементов:

    1. Ферритовое кольцо – можно использовать со старых блоков питания компьютеров.
    2. Провод типа ПЭЛ-0,35 в лаковой изоляции.

    Старайтесь все элементы располагать максимально близко к микросхеме, это позволит исключить появление помех. Никогда не проводите соединения элементов при помощи длинных проводов. Они не только создают множество помех, но и способны принимать их. В результате микросхема, неустойчивая к этим помехам, будет работать неправильно, нарушится регулировка тока.

    Вариант компоновки

    Разместить все элементы можно в корпусе от старой лампы дневного света. В ней уже все имеется – корпус, патрон, плата (которую можно повторно использовать). Внутри расположить все элементы блока питания и микросхему можно без особого труда. А с внешней стороны установить светодиод, который планируете запитывать от устройства. Схемы драйверов для светодиодов 220 В можно использовать практически любые, главное – понизить напряжение. Сделать это легко простейшим трансформатором.

    Монтажную плату желательно использовать новую. А лучше вообще обойтись без нее. Конструкция очень простая, допустимо применить навесной монтаж. Обязательно удостоверьтесь в том, что на выходе выпрямителя напряжение в допустимых пределах, в противном случае микросхема сгорит. После сборки и подключения произведите замер потребляемого тока. Учтите, что в случае снижения тока питания увеличится ресурс светодиодного элемента.

    Тщательно выбирайте схему драйвера для питания светодиодов, рассчитывайте каждый компонент конструкции – от этого зависит срок службы и надежность. При правильном подборе драйверов характеристики светодиодов останутся максимально высокими, а ресурс не пострадает. Схемы драйверов для мощных светодиодов отличаются тем, что в них большее число элементов. Зачастую применяется ШИМ-модуляция, но в домашних условиях, что называется, «на коленке», такие устройства уже сложно собрать.

    Схема драйвера для светодиодов лампы JCDR-G5.3 на 220 вольт мощностью 7W

    Схема драйвера для светодиодов лампы JCDR-G5.3 на 220 вольт мощностью 7W выполнена на микросхеме BP3122.

    Драйвер питания светодиодов обеспечивает высокую точность поддержания выходного тока в диапазоне входных напряжений 70 – 260 вольт переменного и постоянного тока и имеет защиты от короткого замыкания, обрыва LED, перегрева и другие. Электрическая принципиальная схема драйвера лампы JCDR-G5.3

    Производитель рекомендует не превышать выходную мощность драйвера более 5 Вт. В BP3122 интегрированы выходные полевые транзисторы MOSFET с допустимым напряжением 650 вольт, нагрузкой которых является первичная обмотка трансформатора.

    Мизерный ток потребления микросхемы позволяет исключить дополнительную обмотку на трансформаторе, а запатентованная архитектура чипа требует минимального количества внешних элементов. Точность поддержания тока светодиодов +/- 5% во всем диапазоне входных рабочих напряжений сети. Диодный мост MB6S — 0.5А, 600В. Цепочка R3, R4 и C1 служит для питания микросхемы, стабилизатор на 15 вольт встроен в чип. Параллельно включенными резисторами R1 и R2 устанавливается ток через светодиоды, суммарное сопротивление составляет 2,9 Ом. Цепочка D1, R5, C2 демпфирует противоЭДС, диод демпфирующей цепи должен иметь высокое быстродействие и обратное напряжение, а также большой импульсный ток.

    Тридцать светодиодов установлены на плате из фольгированного стеклотекстолита и составляют 10 параллельно включенных цепочек, каждая из трех светодиодов соединенных последовательно. Все детали кроме трансформатора и электролитического конденсатора С4 — smd. Специальные выступы печатной платы драйвера (выходное напряжение) впаяны в прорези на плате со светодиодами.

    Внимание! Соблюдайте правила электробезопасности. Электротравмы, могут быть смертельными, а неправильный ремонт пожароопасным.

    Параметры драйвера:

    Напряжение на светодиодах 9,8 вольта, ток 260 мА, частота 62 кГц во всем диапазоне входных напряжений сети.

    КПД в диапазоне входных напряжений 120 – 250 вольт переменного тока находится в пределах 80 – 82%. При снижении напряжения от 110 до 60 вольт КПД снижается от 78 до 62 процентов.

    При изменении напряжения сети от 180 до 250 вольт потребляемый матрицей светодиодов ток плавно падает с 260 до 200 мА.

    К такому импульсному драйверу можно подключать три включенных последовательно мощных светодиода по 1 Вт каждый. Откуда производитель взял мощность лампы 7 Ватт непонятно, т.к. с учетом КПД потребляемая мощность составляет порядка трех ватт. Видимо просто маркетинговый ход, либо установлены супер яркие экономичные светодиоды у которых световое излучение более чем в два раза сильнее, чем у стандартных. Визуально световой поток лампы сравним с лампой GL5.5

  • Напряжение на светодиоде
  • Схема светодиодной лампы на 220в
  • Схема диодной лампы 5 Вт 220в
  • Лампа ЭРА А65 13Вт
  • Как паять светодиодную ленту
  • Светодиодная лента на 220 в
  • Простое зарядное устройство
  • Разрядное устройство для автомобильного аккумулятора
  • Схема драйвера светодиодов на 220
  • Подсветка для кухни из ленты
  • Подсветка рабочей зоны кухни
  • LED лампа Selecta g9 220v 5w
  • Светодиодная лампа ASD LED-A60
  • Схема светодиодной ленты
  • Простой цифровой термометр своими руками с датчиком на LM35
  • Общедомовой учет тепла
  • Схемы самых надежных самодельных светодиодных ламп. Как сделать недорогую, но очень мощную светодиодную лампу. Светодиодная лампа из отходов

    Светодиодная лампа на 220 вольт позволяет сэкономить в 1,5–2 раза больше электроэнергии, чем лампа дневного света, и в 10 раз больше, чем лампа накаливания. К тому же при сборке из перегоревшего светильника расходы на изготовление такой лампы будут значительно ниже. Светодиодная лампа своими руками собирается достаточно просто, хотя работать с высоким напряжением вы можете только при наличии у вас соответствующей квалификации.

    Преимущества самодельной лампы

    В магазине можно найти множество видов ламп. Каждый тип имеет свой недостаток и преимущество. Лампы накаливания постепенно сдают свои позиции из-за высокого потребления энергии, низкой светоотдачи, несмотря на высокий индекс цветопередачи. По сравнению с ними люминесцентные источники света — настоящее чудо. Энергосберегающие лампы — их более современная модернизация, позволившая применять преимущества люминесцентного света в самых распространенных светильниках, с цоколями Е27, лишенная неприятного мерцания старых представителей этого семейства.

    Но и у ламп дневного света есть недостатки. Они быстро выходят из строя из-за частого включения-выключения, к тому же содержащиеся в трубках пары ядовиты, а сама конструкция требует специальной утилизации. По сравнению с ними лампа на светодиодах (LED) — вторая революция в области освещения. Они ещё более экономичны, не требуют особой утилизации и работают в 5–10 раза дольше.

    У светодиодных ламп есть один, но существенный недостаток — они самые дорогие. Чтобы снизить этот минус до минимума или обернуть его в плюс, потребуется соорудить её из светодиодной ленты своими руками. При этом стоимость источника света становится ниже, чем у люминесцентных аналогов.

    Самодельная светодиодная лампа обладает рядом преимуществ:

    • срок службы устройства при правильной сборке составляет рекордные 100 000 часов;
    • по эффективности ватт/люмен они также превосходят все аналоги;
    • стоимость самодельной лампы не выше, чем у люминесцентной.

    Разумеется, есть один недостаток — отсутствие гарантий на изделие, который должен компенсироваться точным соблюдением инструкций и мастерством электрика.

    Материалы для сборки

    Способов создания лампы своими руками великое множество. Наиболее распространены методы с использованием старого цоколя от перегоревшей люминесцентной лампы. Такой ресурс найдется у каждого в доме, поэтому проблем с поиском не будет. Помимо этого понадобятся:

    1. Цоколь от перегоревшего изделия.
    2. Непосредственно ЛЕД. Они продаются в виде светодиодных лент или отдельных светодиодов НК6. Каждый элемент имеет силу тока примерно 100–120 мА и напряжение около 3–3,3 Вольта.
    3. Потребуется диодный мост или выпрямительные диоды 1N4007.
    4. Нужен предохранитель, который можно найти в цоколе перегоревшей лампы.
    5. Конденсатор. Его емкость, напряжение и другие параметры выбираются в зависимости от электрической схемы для сборки и количества светодиодов в ней.
    6. В большинстве случаев потребуется каркас, на который будут крепиться светодиоды. Каркас можно сделать из пластика или подобного материала. Главное требование — не должен быть металлическим, токопроводящим и должен быть теплоустойчивым.
    7. Для надежного прикрепления светодиодов к каркасу потребуется суперклей или жидкие гвозди (последние предпочтительней).

    Один–два элемента из вышеперечисленного списка могут не пригодиться при некоторых схемах, в других случаях могут, наоборот, добавляться новые звенья цепи (драйвера, электролиты). Поэтому список необходимых материалов нужно составлять в каждом конкретном случае индивидуально.

    Собираем лампу из светодиодной ленты

    Разберем пошагово создание источника света на 220 В из светодиодной ленты. Чтобы решиться использовать новшество на кухне, достаточно вспомнить, что собранные своими руками светодиодные лампы существенно выгодней люминесцентных аналогов. Они живут в 10 раз дольше, а потребляют в 2–3 раза меньше энергии при одинаковом уровне освещения.

    1. Для конструирования понадобятся две перегоревшие люминесцентные лампы длиной полметра и мощностью 13 ватт. Покупать новые смысла нет, лучше найти старые и неработающие, но не сломанные и без трещин.
    2. Далее идем в магазин и покупаем светодиодную ленту. Выбор большой, поэтому к приобретению подойдите ответственно. Желательно покупать ленты с чистым белым или естественным светом, он не изменяет оттенки окружающих предметов. В таких лентах светодиоды собраны в группы по 3 штуки. Напряжение одной группы 12 вольт, а мощность 14 ватт на метровую ленту.
    3. Затем нужно разобрать люминесцентные лампы на составные части. Осторожно! Не повредите провода, а также не разбейте трубку, иначе ядовитые пары вырвутся наружу и придется проводить уборку, как после разбитого ртутного градусника. Извлеченные внутренности не выбрасывайте, они пригодятся в дальнейшем.
      Ниже представлена схема светодиодной ленты, которую мы купили. В ней ЛЕД подключены параллельно по 3 штуки в группе. Обратите внимание, что такая схема нам не подходит.
    4. Поэтому нужно разрезать ленту на участки по 3 диода в каждом и достать дорогие и бесполезные преобразователи. Разрезать ленту удобней кусачками или большими и крепкими ножницами. После спаивания проволочек должна получиться схема, приведенная ниже.
      В итоге должно получиться 66 светодиодов или 22 группы по 3 ЛЕД в каждой, подключенные параллельно по всей длине. Расчеты просты. Так как нам понадобится преобразовать переменный ток в постоянный, то стандартное напряжение 220 Вольт в электрической сети нужно увеличить до 250. Необходимость «накинуть» напряжение связана с процессом выпрямления.
    5. Для выяснения количества секций светодиодов нужно разделить 250 Вольт на 12 Вольт (напряжение для одной группы по 3 штуки). В итоге получим 20,8(3), округлив в большую сторону, получаем 21 группу. Здесь желательно добавить ещё одну группу, поскольку общее количество светодиодов придется разделить на 2 лампы, а для этого нужно четное число. К тому же добавив ещё одну секцию, сделаем общую схему безопаснее.
    6. Нам понадобится выпрямитель постоянного тока, именно поэтому нельзя выбрасывать извлеченные внутренности люминесцентной лампы. Для этого достаем преобразователь, при помощи кусачек удаляем конденсатор из общей цепи. Сделать это достаточно просто, поскольку он расположен отдельно от диодов, то достаточно отломить плату.
      На схеме показано, что должно в итоге получиться, более подробно.
    7. Далее при помощи пайки и суперклея нужно собрать всю конструкцию. Даже не пытайтесь уместить все 22 секции в один светильник. Выше говорилось, что нужно специально найти 2 полуметровые лампы, поскольку разместить все светодиоды в одной просто невозможно. Также не нужно рассчитывать на самоклеющийся слой на обратной стороне ленты. Он не протянет долго, поэтому светодиоды нужно закрепить при помощи суперклея или жидких гвоздей.

    Подведем итоги и выясним достоинства собранного изделия:

    • Количество света от получившихся светодиодных ламп в 1,5 раза больше, чем у люминесцентных аналогов.
    • Потребляемая мощность при этом намного меньше, чем у ламп дневного света.
    • Служить собранный источник света будет в 5–10 раз дольше.
    • Наконец, последнее преимущество — направленность света. Он не рассеивается и направлен строго вниз, благодаря чему используется у рабочего стола или на кухне.

    Разумеется, испускаемый свет не отличается высокой яркостью, но главным достоинством является низкое энергопотребление лампы. Даже если включить и никогда не выключать её, то она за год съест всего 4 кВт энергии. При этом стоимость потребляемой электроэнергии в год сопоставима со стоимостью билета в городском автобусе. Поэтому такие источники света особенно эффективно использовать там, где требуется постоянная подсветка (коридор, улица, подсобка).

    Собираем простую лампочку из светодиодов

    Разберем другой способ создания светодиодного светильника. Люстра или настольная лампа нуждается в стандартном цоколе E14 или E27. Соответственно, схема и используемые диоды будут отличаться. Сейчас широко используются компактные люминесцентные лампы. Нам потребуется один перегоревший патрон, также изменим общий список материалов для сборки.

    Понадобятся:

    • перегоревший цоколь E27;
    • драйвер RLD2-1;
    • светодиоды НК6;
    • кусок картона, но лучше — пластика;
    • суперклей;
    • электрическая проводка;
    • а также ножницы, паяльник, плоскогубцы и другие инструменты.

    Приступим к созданию самодельной лампы:


    Световой поток собранного светильника равняется 100–120 люменам. Благодаря чистому белому свету лампочка кажется существенно светлее. Этого хватит для освещения небольшого помещения (коридора, подсобки). Главным достоинством светодиодного источника света является низкое энергопотребление и мощность — всего 3 Ватта. Что в 10 раз меньше ламп накаливания и в 2–3 раза — люминесцентных. Работает она от обычного патрона с питанием 220 вольт.

    Заключение

    Значит, имея под руками неработающие линейные или компактные люминесцентные лампы и несколько элементов, приведенных выше в данной статье, можно создать своими руками светодиодную лампу, обладающую рядом преимуществ. Одно из основных — низкая стоимость по сравнению с лампами, которые можно приобрести в магазине. При сборке и монтаже требуется соблюдать меры безопасности, так как приходится работать с высоким напряжением, поэтому следует придерживаться последовательности монтажа по схеме. В итоге получите лампу, которая будет долго работать и радовать глаз.

    Видео

    Экономные лампы освещения уже есть практически в каждом доме. Предлагаем рассмотреть, как сделать светодиодный светильник своими руками, какие материалы для этого потребуются, а так же советы о том, по каким критериям их необходимо выбирать.

    Пошаговая разработка светодиодного светильника

    Первоначально, перед нами стоит задача – проверить работоспособность светодиодов и измерить питающее напряжение сети. При настройке данного устройства для предотвращения поражения электрическим током мы предлагаем использовать разделительный трансформатор 220/220 В. Это так же обеспечит более безопасное проведение измерений при настройке нашего будущего светодиодного светильника.

    Нужно учесть, что если какие-либо элементы схемы будут подключены неправильно, возможен взрыв, так что строго следуйте инструкции, приведенной ниже.

    Чаще всего проблемы неправильной сборки заключается именно в некачественной спайке компонентов.

    При расчетах для измерения падения напряжения тока потребления светодиодов нужно использовать универсальный измерительный мультиметр. В основном такие самодельные светодиодные светильники используются на напряжении 12 В, но наша конструкция будет рассчитана на сетевое напряжение 220 В переменного тока.

    Видео: Светодиодный светильник в домашних условиях

    Высокая светоотдача достигается на диодах при токе 20-25 мА. Но дешевые светодиоды могут давать неприятное голубоватое свечение, которое еще и очень вредно для глаз, поэтому мы советуем разбавлять самодельный светодиодный светильник небольшим количеством красных светодиодов. На 10 дешевых белых будет достаточно 4 светодиода красного свечение.

    Схема довольно проста и разработана для питания светодиодов непосредственно от сети, без дополнительного блока питания. Единственным недостатком такой схемы является то, что все ее компоненты не изолированы от питающей сети и светодиодный светильник не обеспечит защиту от возможного удара током. Так что будьте осторожны при сборке и установке данного светильника. Хотя в дальнейшем схему можно будет модернизировать и изолировать от сети.

    Упрощённая схема светильника
    1. Резистор на 100 ОМ при включении защищает схему от бросков напряжения, если его нет, нужно использовать выпрямительный диодный мост большей мощности.
    2. Конденсатор 400 нФ ограничивает силу тока, которая необходима для нормального свечения светодиодов. При необходимости можно добавить еще светодиодов, если их суммарное потребление тока не превышает предела, установленного конденсатором.
    3. Убедитесь в том, что используемый конденсатор рассчитан на рабочее напряжение не менее 350 В, оно должно в полтора раза превышать напряжение сети.
    4. Конденсатор 10 мкФ необходим, чтобы обеспечить стабильный источник света, без мерцаний. Его номинальное напряжение должно быть в два раза больше того, что измеряется на всех последовательно соединенных светодиодах во время работы.

    На фото вы видите сгоревшую лампу, которая скоро будет разобрана для светодиодного светильника своими руками.


    Лампу разбираем, но очень осторожно, чтобы не повредить цоколь, после этого очищаем его и обезжириваем спиртом или ацетоном. Особое внимание уделяем отверстию. Его очищаем от лишнего припоя и еще раз обрабатываем. Это необходимо для качественной пайки компонентов в цоколе.


    Фото: патрон лампы
    Фото: резисторы и транзистор

    Теперь нужно впаять крошечный выпрямитель, мы используем для этих целей обычный паяльник и уже заранее приготовлены диодный мост и обрабатываем поверхность, работаем очень аккуратно, чтобы не повредить ранее установленные детали.


    Фото: пайка выпрямителя

    В качестве изоляционного слоя модно использовать клей простого монтажного термопистолета. Подойдет так же ПВХ трубка, но желательно воспользоваться специально предназначенным для этого материалом, заполняющим все пространство между деталями и одновременно фиксируя их. У нас получилась готовая основа для будущего светильника.


    Фото: клей и патрон

    После этих манипуляций приступаем к самому интересному: установки светодиодов. Используем как основу специальную монтажную плату, её можно купить в любом магазине электронных компонентов или даже извлечь из какой-нибудь старой и ненужной техники, предварительно очистив плату от ненужных деталей.


    Фото: светодиоды на доске

    Очень важно проверить каждую из наших плат на работоспособность, ведь иначе весь труд зря. Особенное внимание уделяем контактам светодиодов, при необходимости их дополнительно очищаем и зауживаем.

    Теперь собираем конструктор, нужно припаять все платы, у нас их четыре, к конденсатору. После этой операции снова все изолируем клеем, проверяем соединения диодов между собой. Располагаем платы на одинаковом расстоянии друг от друга, чтобы свет распространялся равномерно.


    Соединение светодиодов

    Также без дополнительных проводов подпаиваем конденсатор 10 мкФ, это хороший опыт пайки для будущих электриков.


    Готовая мини лампа Резистор и лампа

    Все готово. Мы советуем накрыть нашу лампу абажуром, т.к. светодиоды излучают чрезвычайно яркий свет, который очень бьет по глазам. Если поместить наш самодельный светильник в «огранку» из бумаги, к примеру, или ткани, то получится очень мягкий свет, романтичный ночник или бра в детскую. Поменяв мягкий абажур на стандартный стеклянный, мы получим достаточно яркое свечение, не раздражающее глаз. Это хороший и очень красивый вариант для дома или дачи.

    Если вы хотите сделать питание лампы на батарейках или от USB, нужно исключить из схемы конденсатор на 400 нФ и выпрямитель, подключив схему непосредственно к источнику постоянного тока напряжением 5-12 В.

    Это неплохой прибор для подсветки аквариума, но нужно подобрать специальную влагозащищенную лампу, ее можно найти посетив любой магазин электромеханических приборов, такие существуют в любом городе, будь-то Челябинск или Москва.


    Фото: лампа в действии

    Светильник в офис

    Можно сделать креативный настенный, настольный светильник или напольный торшер в рабочий кабинет из нескольких десятков светодиодов. Но для этого будет поток света будет недостаточен для чтения, здесь нужен достаточный уровень освещенности рабочего места.

    Для начала нужно определить количество светодиодов и номинальную мощность.

    После выяснить нагрузочную способность выпрямительного диодного моста и конденсатора. Подключаем группу светодиодов на отрицательный контакт диодного моста. Подключаем все светодиоды, как показано на рисунке.


    Схема: подключение ламп

    Паяем все 60 светодиодов вместе. Если нужно подсоединять дополнительные светодиоды, просто продолжайте последовательную их спайку плюса к минус. Используйте провода, чтобы соединить минус одной группы светодиодов с последующей, пока не завершится весь процесс сборки. Теперь добавьте диодный мост. Подключите его, как показано на рисунке ниже. Положительный вывод к положительному проводу первый группы светодиодов, соедините отрицательный вывод к общему проводу последнего светодиода в группе.


    Короткие провода светодиодов

    Дальше нужно подготовить цоколь старой лампочки, отрезав провода от платы и припаять их к входам переменного напряжения на диодном мосте, отмеченные знаком ~. Вы можете использовать пластиковые крепления, винты и гайки для соединения двух плат вместе, если все диоды размещены на отдельных платах. Не забываем залить платы клеем, изолируя их от короткого замыкание. Это достаточно мощный сетевой светодиодный светильник, который прослужит до 100 000 часов непрерывной работы.

    Добавляем конденсатор

    Если увеличить напряжение питание на светодиодах, для того, чтобы свет был ярче, то светодиоды начнут нагреваться, из-за чего значительно понижается их долговечность. Для того чтобы этого избежать, нужно соединить встраиваемый или настольный светильник на 10 Вт с дополнительным конденсатором. Просто подключите одну сторону цоколя к минусовому выходу мостового выпрямителя а положительный, через дополнительный конденсатор, к плюсовому выводу выпрямителя. Вы можете использовать 40 светодиодов вместо предложенных 60, увеличив тем самым общую яркость лампы.

    Видео: как правильно сделать светодиодный светильник своими руками

    При желании аналогичный светильник можно сделать и на мощном светодиоде, просто тогда понадобится уже конденсаторы другого номинала.

    Как видите, особой сложности сборка или ремонт обычного светодиодного светильника, сделанного своими руками, не представляет. И это не займет много времени и сил. Такая лампа подойдет и как дачный вариант, например для теплицы, ее свет абсолютно безвреден для растений.

    При многообразии на прилавках страны, остаются вне конкуренции по причине экономичности и долговечности. Однако не всегда приобретается качественное изделие, ведь в магазине товар не разберешь для осмотра. Да и в этом случае не факт, что каждый определит, из каких деталей она собрана. перегорают, а покупать новые становится накладно. Выходом становится ремонт светодиодных ламп своими руками. Работа эта под силу даже начинающему домашнему мастеру, а детали недороги. Сегодня разберемся, как проверить , в каких случаях изделие ремонтируется и как это сделать.

    Известно, что светодиоды не могут работать напрямую от сети 220 В. Для этого им нужно дополнительное оборудование, которое, чаще всего, и выходит из строя. О нем сегодня и поговорим. Рассмотрим схему , без которого невозможна работа осветительного прибора. Попутно и проведем ликбез для тех, кто ничего не понимает в радиоэлектронике.

    драйвер gauss 12w

    Схема драйвера светодиодной лампы 220 В состоит из:

    • диодного моста;
    • сопротивлений;
    • резисторов.

    Диодный мост служит для выпрямления тока (превращает его из переменного в постоянный). На графике это выглядит как отсекание полуволны синусоиды. Сопротивления ограничивают ток, а конденсаторы накапливают энергию, увеличивая частоту. Рассмотрим принцип действия на схеме светодиодной лампы на 220 В.

    Принцип работы драйвера в лампе на светодиодах

    Вид на схеме Порядок работы

    Напряжение 220 В подается на драйвер и проходит через сглаживающий конденсатор и сопротивление, ограничивающее ток. Это нужно для того, чтобы обезопасить диодный мост.

    Напряжение подается на диодный мост, состоящий из четырех разнонаправленных диодов, которые отсекают полуволну синусоиды. На выходе ток постоянный.

    Теперь, посредством сопротивления и конденсатора, ток снова ограничивается и ему задается нужная частота.

    Напряжение с необходимыми параметрами поступает на равнонаправленные световые диоды, которые служат и как ограничение тока. Т.е. при перегорании одного из них напряжение повышается, что приводит к выходу из строя конденсатора, если он недостаточно мощный. Такое происходит в китайских изделиях. Качественные приборы от этого защищены.

    Поняв принцип работы и схему драйвера, решение как починить светодиодную лампу на 220V уже не будет казаться сложным. Если говорить о качественных , то неприятностей от них ждать не стоит. Они работают весь положенный срок и не тускнеют, хотя есть «болезни», которым подвержены и они. Как с ними справиться сейчас поговорим.

    Причины выхода из строя осветительных LED-приборов

    Чтобы проще было разобраться с причинами, обобщим все данные в одной общей таблице.

    Причина поломки Описание Решение проблемы
    Перепады напряженияТакие светильники в меньшей мере подвержены поломкам из-за перепадов напряжения, однако чувствительные скачки могут «пробить» диодный мост. В результате перегорают LED-элементы.Если скачки чувствительны, нужно установить , который значительно продлит срок службы светового оборудования, но и остальных бытовых приборов.
    Неправильно подобран светильникОтсутствие должной вентиляции влияет на драйвер. Выделяемое им тепло не отводится. В результате происходит перегрев.Выбрать с хорошей вентиляцией, которая обеспечит нужный теплообмен.
    Ошибки монтажаНеправильно выбранная система освещения, его подключение. Неверно высчитанное сечение электропроводки.Здесь выходом будет разгрузить линию освещения или заменить осветительные приборы устройствами, потребляющие меньше мощности.
    Внешний факторПовышенная влажность, вибрации, удары или запыленность при неправильном подборе IP.Правильный подбор или устранение негативных факторов.

    Полезно знать! Ремонт светодиодных светильников невозможно выполнять до бесконечности. Намного проще исключит негативные факторы, влияющие на долговечность и не приобретать дешевые изделия. Экономия сегодня обернется затратами завтра. Как говорил экономист Адам Смит: «Я не настолько богат, чтобы покупать дешевые вещи».

    Ремонт светодиодной лампы на 220 В своими руками: нюансы производства работ

    Перед тем, как отремонтировать светодиодную лампу своими руками, обратите внимание на некоторые детали, требующие меньшего количество трудозатрат. Проверка патрона и напряжения в нем – первое, что стоит сделать.

    Важно! Ремонт ЛЕД-ламп требует наличия мультиметра – без него не получится прозвонить элементы драйвера. Так же потребуется паяльная станция.

    мультиметры бытовые

    Паяльная станция необходима для ремонта светодиодных люстр и светильников. Ведь перегрев их элементов приводит к выходу из строя. Температура нагрева при пайке должна быть не выше 2600, в то время как паяльник разогревается сильнее. Но выход есть. Используем кусок медной жилы, сечением 4 мм, который наматывается на жало паяльника плотной спиралью. Чем сильнее удлинить жало, тем ниже его температура. Удобно, если на мультиметре присутствует функция термометра. В этом случае ее можно отрегулировать точнее.


    паяльная станция

    Но перед тем, как выполнить ремонт светодиодных прожекторов, люстр или ламп нужно определить причину выхода из строя.

    Как разобрать светодиодную лампочку

    Одна из проблем, с которой сталкивается начинающий домашний мастер – как разобрать светодиодную лампочку. Для этого понадобится шило, растворитель и шприц с иглой. Рассеиватель LED-лампы приклеен к корпусу герметиком, который нужно удалить. Проводя аккуратно вдоль кромки рассеивателя шилом, шприцем вводим растворитель. Через 2÷3 минуты, легко покручивая, рассеиватель снимается.

    Некоторые световые приборы изготовлены без проклейки герметиком. В этом случае достаточно провернуть рассеиватель и снять его с корпуса.

    Выявляем причину выхода из строя светодиодной лампочки

    Разобрав осветительный прибор, обратите внимание на LED-элементы. Часто сгоревший определяется визуально: на нем имеются подпалины или черные точки. Тогда меняем неисправную деталь и проверяем работоспособность. Подробно о замене мы расскажем в пошаговой инструкции.

    Если LED-элементы в порядке, переходим к драйверу. Для проверки работоспособности его деталей нужно их выпаять из печатной платы. Номинал резисторов (сопротивлений) указывается на плате, а параметры конденсатора – на корпусе. При прозвонке мультиметром в соответствующих режимах отклонений быть не должно. Однако часто конденсаторы, вышедшие из строя, определяются визуально – они вздуваются либо лопаются. Решение – замена подходящим по техническим параметрам.


    Замену конденсаторов и сопротивлений, в отличие от светодиодов, часто выполняют обычным паяльником. При этом следует соблюдать осторожность, не перегревать ближайшие контакты и элементы.

    Замена светодиодов лампочки: насколько это сложно

    При наличии паяльной станции или фена работа эта проста. Паяльником работать сложнее, но тоже возможно.

    Полезно знать! Если под рукой нет рабочих LED-элементов можно установить перемычку вместо сгоревшего. Долго такая лампа не проработает, но некоторое время выиграть удастся. Однако такой ремонт производится только если количество элементов более шести. В противном случае день – это максимум работы ремонтного изделия.

    Современные лампы работают на SMD LED-элементах, которые можно выпаять из светодиодной ленты. Но стоит подбирать подходящие по техническим характеристикам. Если таковых нет, лучше поменять все.

    Статья по теме:

    Для правильного выбора LED-приборов надо знать не только общие . Пригодятся сведения о современных моделях, электрических схемах рабочих устройств. В этой статье вы найдете ответы на эти и другие практические вопросы.

    Ремонт драйвера светодиодной лампы при наличии электрической схемы устройства

    Если драйвер состоит из SMD-компонентов, которые имеют меньший размер, воспользуемся паяльником с медной проволокой на жале. При визуальном осмотре выявлен сгоревший элемент – выпаиваем и подбираем подходящий по маркировке. Нет видимых повреждений – это сложнее. Придется выпаивать все детали и прозванивать по отдельности. Найдя сгоревший, меняем на работоспособный и . Удобно использовать для этого пинцет.

    Полезный совет! Не стоит удалять с печатной платы все элементы одновременно. Они похожи по внешнему виду, можно перепутать впоследствии местоположение. Лучше выпаивать элементы по одному и, проверив, монтировать на место.


    Как проверить и заменить блок питания светодиодных светильников

    При монтаже освещения в помещениях с повышенной влажностью ( или ) используются стабилизирующие , которые понижают напряжение до безопасного (12 или 24 вольта). Стабилизатор может выйти из строя по нескольким причинам. Основные из них – это избыточная нагрузка (потребляемая мощность светильников) или неправильный выбор степени защиты блока. Ремонтируются такие устройства в специализированных сервисах. В домашних условиях это нереально без наличия оборудования и знаний в области радиоэлектроники. В этом случае БП придется заменить.


    Блок питания для светодиодов

    Очень важно! Все работы по замене стабилизирующего блока питания светодиодов производятся при снятом напряжении. Не стоит надеяться на выключатель – он может быть неправильно скоммутирован. Напряжение отключается в распределительном щитке квартиры. Помните, что прикосновение рукой к токоведущим частям опасно для жизни.

    Нужно обратить внимание на технические характеристики устройства – мощность должна превышать параметры ламп, которые от него запитаны. Отключив вышедший из строя блок, подключаем новый согласно схеме. Она находится в технической документации прибора. Сложностей это не представляет – все провода имеют цветовую маркировку, а контакты – буквенное обозначение.


    Играет роль и степень защиты устройства (IP). Для ванной комнаты прибор должен иметь маркировку не ниже IP45.

    Статья

    Прежде чем продолжить читать, обязательно ознакомьтесь с этой информацией . Любой источник электроэнергии опасен для жизни, если не соблюдать правила безопасности. Описанные здесь схемы создания LED не имеют трансформаторов и, следовательно, представляют опасность. Сборку таких схем можно выполнять людям, которые имеют элементарные знания основ электротехники.

    Светоизлучающий диод — это электронное устройство, излучающее свет, когда через него проходит ток. Светодиоды при своих небольших размерах чрезвычайно эффективны, очень яркие, при этом состоят из дешёвых и доступных электронных компонентов. Многие думают, что светодиоды — просто обычные светоизлучающие лампочки, но это совсем не так.

    История светодиодов

    Капитан Генри Джозеф Раунд, один из пионеров радио, во время эксперимента заметил необычное свечение, испускаемое карбидом кремния. Свои наблюдения он опубликовал в General World, но объяснить природу явления он не мог.

    Русский учёный Олег Лосев наблюдал излучение света кристаллами — диодами. В 1927 году он опубликовал подробности своей работы в российском журнале и оформил патент на «Световое реле».

    В 1961 году инфракрасный диод создали Б. Биард и Г. Питмен. Однако отцом-основателем светодиода по праву считывается Ник Холоняк. Его ученик Дж. Крэфорд в 1972 г. создал светодиод жёлтого цвета. В конце 80-х годов благодаря исследованиям русского учёного Ж. И. Алферова были открыты новые светодиодные материалы, которые дали толчок дальнейшему развитию светодиодов.

    В начале 70-х впервые были изобретены светодиоды зелёного цвета, в 1971 году появился синий светодиод, который был очень неэффективным. Прорыв сделали японские учёные только в 1996 году, которые изобрели дешёвый светодиод синего цвета.

    Принцип работы LED

    Наиболее распространённые светодиоды состоят из галлия (Ga), мышьяка (As) и фосфора (P). Светодиод представляет собой диодный PN-переход, который излучает свет вместо тепла, генерируемого обычным диодом. Когда PN- переход находится в прямом смещении, некоторые из дырок объединяются с электронами N-области, а некоторые из электронов N объединяются с дыркой из P-области. Каждая комбинация излучает свет или фотоны.

    Как устроена светодиодная лампа на 220 вольт? Светодиоды имеют полярность и, следовательно, не работают, если они подключены в обратном направлении. Самый простой способ проверить полярность общего светодиода — это определить на глаз толщину электродов. Более толстым является катод (-). Свет излучается от катода. Более тонкий электрод представляет собой анод (+). Некоторые производители выпускают светодиоды таким образом, что длина проводов катода и анода различна, анод (+) длиннее катода (-). Это также облегчает определение полярности . Некоторые изготовители изготавливают оба провода электродов одинаковой длины, в этом случае можно определить полярность, воспользовавшись мультиметром.

    Преимущества и недостатки светодиодных ламп

    Достоинства LED:

    Недостатки светодиодов LED:

    • Могут быть ненадёжным для наружных применений с большими температурными перепадами.
    • Необходимость дополнительно использовать радиаторы для защиты полупроводников от теплового воздействия.

    Светодиод используется в самых разных областях применения:

    Светодиодное освещение с питанием от сети

    Но для построения светодиодной схемы освещения необходимо построить специальные источники питания с регуляторами, трансформаторами или без них. В качестве решения нижеприведенная схема демонстрирует конструкцию светодиодного контура с питанием от сети без использования трансформаторов.

    Схема светодиодной лампы на 220 В

    Для питания этой цепи используется переменный ток 220 В, который подаётся в качестве входного сигнала. Ёмкостное реактивное сопротивление понижает напряжение переменного тока. Переменный ток поступает на конденсатор, пластины которого непрерывно заряжаются и разряжаются, а связанные токи всегда поступают в пластинки и выходят из них, что вызывает реактивное сопротивление, направленное против потока.

    Реакция, создаваемая конденсатором, зависит от частоты входного сигнала. R2 сбрасывает накопленный ток из конденсатора, когда вся цепь выключена. Он способен хранить до 400 В, а резистор R1 ограничивает этот поток. Следующий этап схемы светодиодной лампы своими руками — это мостовой выпрямитель, который предназначен для преобразования сигнала переменного тока в постоянный ток. Конденсатор C2 служит для устранения пульсации в выпрямленном сигнале постоянного тока.

    Резистор R3 служит в качестве ограничителя тока для всех светодиодов. В схеме использованы белые светодиоды, которые имеют падение напряжения около 3,5 В и потребляют 30 мА тока. Поскольку светодиоды подключены последовательно, потребление тока очень мало. Поэтому эта схема становится энергоэффективной и имеет бюджетный вариант изготовления.

    Светодиодная лампа из отходов

    LED 220 В может быть легко выполнена из неработающих ламп, ремонт или восстановление которых нецелесообразны. Лента из пяти светодиодов приводится в действие с использованием трансформатора. В цепи 0,7 uF / 400V полиэфирный конденсатор C1 снижает напряжение сети. R1 — это резистор для разрядки, который поглощает накопленный заряд от C1, когда вход переменного тока выключен.

    Резисторы R2 и R3 ограничивают подачу тока при включении схемы. Диоды D1 — D4 образуют мост-выпрямитель, который выпрямляет пониженное напряжение переменного тока, а C2 действует как конденсатор фильтра. Наконец, стабилитрон D1 обеспечивает управление светодиодами.

    Порядок изготовления настольной лампы своими руками:

    LED для автомобиля

    Используя ленту LED, можно легко изготовить самодельную красивую наружную подсветку автомобиля. Нужно использовать 4 светодиодных полосыы по одному метру для чёткого и яркого свечения. Для обеспечения водонепроницаемости и прочности соединения тщательно обрабатывают термоклеем. Правильное выполнение электрических соединений проверяется мультиметром. Реле IGN получает питание, когда двигатель работает и выключается после отключения двигателя. Чтобы понизить автомобильное напряжение, которое может достигать 14,8 V, в схему включается диод, обеспечивающий долговечность светодиодов.

    Светодиодная лампа своими руками на 220в

    Цилиндрическая лампа LED обеспечивает правильное и равномерное распределение генерируемой освещённости на всех 360 градусах, так что все помещение равномерно освещено.

    Лампа оснащена интерактивной функцией защиты от перенапряжений, обеспечивающей идеальную защиту устройства от всех импульсов переменного тока.

    40 светодиодов объединены в одну длинную цепь светодиодов, соединённых последовательно одна за другой. Для входного напряжения 220 В можно подключить около 90 светодиодов в ряд, для напряжения 120 В — 45 светодиодов.

    Расчёт получен путём деления выпрямленного напряжения 310 В постоянного тока (от 220 В переменного тока) на прямое напряжение светодиода. 310/3,3 = 93 единиц, а для входов 120 В — 150/3,3 = 45 единиц. Если уменьшить количество светодиодов ниже этих цифр, возникнет риск перенапряжения и выход со строя собранной схемы.

    Как сделать лампочку своими руками

    Схема состоит из высоковольтного конденсатора, низкореактивного сопротивления для понижения тока, двух резисторов и конденсатора на положительном источнике для снижения входного напряжения и колебаний сети. Фактически коррекция всплеска производится C2, установленным после моста (между R2 и R3). Все мгновенные скачки напряжения эффективно поглощаются этим конденсатором, обеспечивая чистое и безопасное напряжение для встроенных светодиодов на следующем этапе схемы.

    Список деталей:

    Самодельные LED имеют защиту, а их срок службы увеличен путём добавления стабилитрона по линиям питания. Показанное значение zener составляет 310 В/2 Вт, и подходит, если LED включает в себя светодиоды от 93 до 96 В. Для другого, меньшего количества светодиодных строк необходимо уменьшить значение zener в соответствии с общим вычислением прямого напряжения светодиодной строки.

    Например, если используется 50 светодиодная строка, а светодиод имеет 3,3 В, то рассчитываем 50×3,3 = 165 В, поэтому стабилизатора на 170 В будет достаточно, чтоб защитить светодиод.

    Автоматическая цепь ночного освещения LED

    Схема автоматически включит ночью лампу и отключит через заданное время, используя несколько транзисторов и таймер NE555. Схема недорогая и простая в установке. В качестве датчика здесь используется LDR. В дневное время сопротивление LDR будет низким, напряжение на нем упадет, а транзистор Q1 будет находиться в режиме проводки. Когда освещённость в помещении падает, сопротивление LDR увеличивается, как и напряжение на нем. Транзистор Q1 выключается. База Q2 подключена к эмиттеру Q1 и поэтому Q2 смещается и, в свою очередь, включает IC1.

    NE555 автоматически включается при включении питания. Автоматический запуск происходит с помощью конденсатора C2. Выход IC1 остаётся высоким в течение времени, определяемого резистором R5 и конденсатором C4. Когда на выходе IC1 поступает транзистор Q3, он включается, запускает триггер T1 и лампа светится. В цепь входит 9-вольтная батарея для питания таймера во время сбоёв питания. Резистор R1, диод D1, конденсатор C1 и Zener D3 образуют секцию питания схемы. R7 и R8 являются токоограничивающими резисторами.

    Схема светодиодного освещения своими руками

    Примечания:

    1. Предустановка R2 может использоваться для настройки чувствительности схемы.
    2. Предустановку R5 можно использовать для настройки времени включения лампы.
    3. При R5 @ 4,7M время включения будет около трёх часов.
    4. Мощность L1 не должна превышать 200 Вт.
    5. Для BT136 рекомендуется использовать радиатор.
    6. IC1 должен быть установлен на держателе.

    Мероприятия по борьбе с мерцанием светодиодов

    Светодиодная лампа из энергосберегающей своими руками имеет огромное преимущество, но нужно потрудиться, чтобы при работе самоделки пользователей не беспокоило излишнее мерцание LED:

    Чтобы избежать влияния мерцания светодиодов, нужно всегда помнить о вышеуказанных моментах.

    Возможно ли заменить драйвер в светодиодной лампе?

    Сегодня светодиодные лампы есть едва ли не в каждом доме. Но к сожалению, эти осветительные приборы нередко выходят из строя задолго до положенного им срока, и причин тому множество. Выбрасывать? Не стоит, можно произвести ремонт. Сегодня мы разберем до винтика несколько таких устройств, посмотрим, что у них внутри, и попробуем провести ремонт светодиодной лампы на 220 В своими руками.

    Блок: 1/9 | Кол-во символов: 388
    Источник: https://LampaExpert.ru/vidy-i-tipy-lamp/svetodiodnie/remont-svetodiodnoj-lampy-na-220v-svoimi-rukami

    Как устроены светодиодные лампы 220 В

    Известно, что светодиоды не могут работать напрямую от сети 220 В. Для этого им нужно дополнительное оборудование, которое, чаще всего, и выходит из строя. О нем сегодня и поговорим. Рассмотрим схему светодиодного драйвера, без которого невозможна работа осветительного прибора. Попутно и проведем ликбез для тех, кто ничего не понимает в радиоэлектронике.

    Драйвер в светодиодной лампе выполняет основную работу

    Схема драйвера светодиодной лампы 220 В состоит из:

    • диодного моста;
    • сопротивлений;
    • резисторов.

    Диодный мост служит для выпрямления тока (превращает его из переменного в постоянный). На графике это выглядит как отсекание полуволны синусоиды. Сопротивления ограничивают ток, а конденсаторы накапливают энергию, увеличивая частоту. Рассмотрим принцип действия на схеме светодиодной лампы на 220 В.

    Блок: 2/7 | Кол-во символов: 837
    Источник: https://homius.ru/remont-svetodiodnyih-lamp-svoimi-rukami.html

    Основные поломки светодиодной лампы и их обнаружение

     Так как сама светодиодная лампа состоит из радиоэлементов, то к ее основным неисправностям можно отнести неисправность именно тех самым радиоэлементов, из которых она состоит. Пусть это покажется кому-то тавтологией, но именно такое заключение будет максимально близким к истине.
     В светодиодной лампе могут быть микросхемы, транзисторы, трансформаторы, индуктивности, резисторы, диоды, светодиоды. О том, как проверять тот или иной радиоэлемент лучше взглянуть в специализированной рубрике нашего сайта «Радиоэлектроника». Ведь если мы сейчас начнем вам рассказывать об идентификации всех неисправностей каждого из нами перечисленного выше радиоэлемента, то это будет статья уже совсем другого содержания, нежели о ремонте светодиодной лампы.
     Кратко лишь скажем, что есть неисправности, которые сразу «бросаются в глаза». Обычно это тепловые пробои и связанные с ними изменениями. Это обугливание радиодетали, ее вздутие, появление маленьких точечных отверстий. Вот взгляните на конденсатор.

    Здесь сразу видно, что с ним что-то не то. Это тот самый вариант, когда драйвер для светодиодов можно починить. В итоге починим и саму лампу.
     Второй вариант, это ремонт светодиодной лампы путем замены платы, питающей светодиоды. Как вы уже догадались, такую плату называют драйвером.  Этот вариант хорош тем, что такую плату можно приобрести в радиомагазинах, а затем ее просто взять или перепаять. А если вам сильно хочется, то можно даже самому собрать схему драйвера для светодиодов, и использовать именно ваш вариант для ремонта лампы.
     Ну что же, давайте теперь обо всем этом по порядку.

    Блок: 2/6 | Кол-во символов: 1651
    Источник: http://xn——7kcglddctzgerobebivoffrddel5x.xn--p1ai/kommunikatsii/elektronika/751-kak-pochinit-svetodiodnuyu-lampu-svoimi-rukami-zamena-radioelementa-drajvera

    Схемы драйверов и их принцип работы

    Чтобы провести успешный ремонт, необходимо четко представлять, как лампа работает. Одним из основных узлов любой светодиодной лампы является драйвер. Схем драйверов для светодиодных ламп на 220 В существует множество, но условно их можно разделить на 3 типа:

    1. Со стабилизацией тока.
    2. Со стабилизацией напряжения.
    3. Без стабилизации.

    Только устройства первого типа, по своей сути, являются драйверами. Они ограничивают ток через светодиоды. Второй тип лучше назвать блоком питания для светодиодной ленты. Третий вообще как-то назвать сложно, но его ремонт, как я указывал выше, самый простой. Рассмотрим схемы ламп на драйверах каждого типа.

    Драйвер со стабилизацией тока

    Драйвер лампы, схему которой ты видишь ниже, собран на интегральном стабилизаторе тока SM2082D. Несмотря на кажущуюся простоту он является полноценным и качественным, да и ремонт его несложен.

    Схема лампы LED-А60 на полноценном драйвере

    Сетевое напряжение через предохранитель F подается на диодный мост  VD1-VD4, а затем, уже выпрямленное, на сглаживающий конденсатор С1. Полученное таким образом постоянное напряжение поступает на светодиоды лампы HL1-HL14, включенные последовательно, и вывод 2 микросхемы DA1.

    С первого же вывода этой микросхемы на светодиоды поступает напряжение, стабилизированное по току. Величина тока зависит от номинала резистора R2. Резистор R1 довольно большой величины, шунтирующий конденсатор, в процессе работы схемы не участвует. Он нужен для того, чтобы быстро разрядить конденсатор, когда ты выкрутишь лампочку. В противном случае, взявшись за цоколь, ты рискуешь получить серьезный удар током, поскольку С1 останется заряженным до напряжения 300 В.

    Драйвер со стабилизацией напряжения

    Эта схема, в принципе, тоже довольно качественная, но подключать ее к светодиодам нужно несколько иначе. Как я уже говорил выше, такой драйвер правильнее было бы назвать блоком питания, поскольку он стабилизирует не ток, а напряжение.

    Схема блока питания для светодиодной лампы

    Здесь сетевое напряжение сначала поступает на балластный конденсатор С1, снижающий его до величины примерно 20 В, а затем уже на диодный мост VD1-VD4. Далее выпрямленное напряжение сглаживается конденсатором С2 и подается на интегральный стабилизатор напряжения. Снова сглаживается (С3) и через токоограничивающий резистор R2 питает цепочку светодиодов, включенных последовательно. Таким образом, даже при колебаниях сетевого напряжения ток через светодиоды останется постоянным.

    Отличие этой схемы от предыдущей как раз в данном токоограничивающем резисторе. По сути, это схема светодиодной ленты с балластным блоком питания.

    Драйвер без стабилизации

    Драйвер, собранный по этой схеме, — чудо китайской схемотехники. Тем не менее, если в сети напряжение нормальной величины и не сильно скачет, он работает. Устройство собрано по простейшей схеме и не стабилизирует ни ток, ни напряжение. Оно просто понижает его (напряжение) до примерной нужной величины и выпрямляет.

    Простейший драйвер светодиодной лампы 220 В

    На этой схеме ты видишь уже знакомый тебе гасящий (балластный) конденсатор, зашунтированный для безопасности резистором. Далее напряжение поступает на выпрямительный мост, сглаживается конденсатором обидно малой емкости – всего 10 мкФ – и через токоограничивающий резистор поступает на цепочку светодиодов.

    Что можно сказать о таком «драйвере»? Поскольку он ничего не стабилизирует, напряжение на светодиодах и, соответственно, ток через них напрямую зависят от входного напряжения. Если оно завышено, то лампа быстро сгорит. Если «скачет», то будет мигать и лампочка.

    Такое решение обычно используется в бюджетных лампах китайских производителей. Назвать его удачным, конечно, сложно, но оно встречается довольно часто и при нормальном напряжении в сети может работать достаточно долго. Кроме того, такие схемы легко поддаются ремонту.

    Блок: 3/9 | Кол-во символов: 3830
    Источник: https://LampaExpert.ru/vidy-i-tipy-lamp/svetodiodnie/remont-svetodiodnoj-lampy-na-220v-svoimi-rukami

    Частые причины неисправностей

    К выходу из строя светодиодной лампы часто приводят некорректная эксплуатация и резкие перепады напряжения в центральной электросети. Сами диодные элементы в этом случае сохраняют работоспособность, а вот драйвер может испортиться.

    Заводской брак – вполне возможный вариант неисправности. В основном ему подвержены изделия-«безымянки», однако, и у брендовой продукции это может случиться, хотя, такие случаи крайне редки и обычно выявляются на этапе покупки

    Если в самом светильнике не обеспечена качественная вентиляция, драйвер будет перегреваться. В итоге это плохо отразится на его функционировании и спровоцирует поломку.

    Удары и вибрации не нанесут повреждения диодам, а вот на драйвере скажутся самым негативным образом. Может нарушиться целостность конструкции и точность прилегания к плате рабочих элементов

    Лампа начнет чувствительно мерцать и моргать, раздражая глаз, когда испортится токоограничивающий резистор, и совсем перестанет гореть, если выйдет из строя конденсатор.

    Все эти моменты неприятны, но впадать в панику не стоит. Исправить неполадку без особых усилий получится дома своими руками.

    Плохо подействует на Led-элемент и приведет к его выходу из строя неправильно организованная в доме или квартире электрическая система.

    Плюс к тому она увеличит нагрузку на проводку и, возможно, создаст дополнительные проблемы в ближайшем будущем. Поэтому ее обустройство лучше доверить профессионалам.

    Приобретая лампочку от известного бренда за низкую цену, стоит проявлять осторожность. Продукция может оказаться фальсифицированной и не отработает заявленного производителем срока. Починка потребует финансовых затрат, времени, да и вряд ли оправдает себя в таком случае

    В процессе эксплуатации в лампе может произойти нарушение базовой кристаллической структуры полупроводниковых диодов.

    Провоцирует эту неполадку реакция на повышение уровня плотности инжектированного тока со стороны материала, из которого изготовлен полупроводник.

    Когда пропайка краев осуществлена некачественно, отвод тепла теряет необходимую интенсивность и ослабевает. Проводник перегревается, в системе происходит перегрузка и короткое замыкание выводит лампу из строя.

    Все эти мелочи не фатальны и подлежат незатратному по времени и финансам ремонту.

    Блок: 3/8 | Кол-во символов: 2274
    Источник: http://sovet-ingenera.com/elektrika/svetylnik/remont-svetodiodnyx-lamp-svoimi-rukami.html

    Причины выхода из строя

    Почему вообще сгорают светодиодные лампы, если, как заявляют производители светодиодов, ресурс светоизлучающих полупроводников составляет минимум 15-20 тысяч часов? Практически все драйверы не имеют механических элементов и контактов, значит, у них наработка на отказ должна быть не меньше. Но лампы горят, порой не выработав даже свой гарантийный срок, и это факт. Причин поломки лампочки может быть несколько:

    • Производственный брак. Увы, от этого никто не застрахован. Особенно, если производители комплектующих и светодиодов – наши китайские братья, работающие в гараже и на коленках.
    • Неправильная эксплуатация. К примеру, плохая вентиляция в закрытом светильнике. В таких источниках света лампа перегревается, и тут уж выйти из строя может все что угодно – от драйвера до светодиодов. Сюда же можно отнести пыль, влагу, «искрящий» выключатель, выключатель с подсветкой и т. п.

    Мнение эксперта

    Алексей Бартош

    Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

    Задать вопрос эксперту

    Если в твоем выключателе стоит подсветка, то это верный путь к быстрой гибели светодиодной лампы. Либо снимай подсветку, либо вкрути в один из рожков люстры обычную лампочку накаливания любой, даже самой малой мощности.

    Такая подсветка выключателя удобна, но вызывает «подмигивание» светодиодной лампы и сокращает срок ее службы в десятки раз

    • Плохое питание. Если напряжение постоянно скачет или оно ненормально завышено, тут даже самый качественный драйвер может «потерять терпение». Сюда же отнесем постоянные выбросы напряжения, к примеру, при пуске мощных моторов или сварочного оборудования, и импульсные помехи.

    В этой китайской лампе «драйвер» примостился прямо на плате со светодиодами, а радиатором тут даже не пахнет

    Блок: 4/9 | Кол-во символов: 1758
    Источник: https://LampaExpert.ru/vidy-i-tipy-lamp/svetodiodnie/remont-svetodiodnoj-lampy-na-220v-svoimi-rukami

    Ремонт светодиодной лампы с заменой радиоэлемента

     Разбираем корпус лампы, об этом мы упоминали чуть ранее, но все же повторимся…

    Срезаем клей и выкручиваем крепеж.

    Добираемся до схемы и соединительных проводов.

    Здесь как раз продолжим рассматривать наш вариант, который мы затронули выше, с конденсатором. Итак, если даже визуально видно, или вы определили неисправность радиоэлемента путем применения измерительного прибора, то деталь надо менять.

    Берем паяльник и выпаиваем радиоэлемент. Здесь важно не перегреть соседние элементы, не сломать ножки, не нарушить контакты, не перегреть печатную плату, чтобы избежать отслоения фольги от текстолита. Меняем конденсатор.

    Далее изолируем плату от возможного контакта с токопроводящими поверхностями и собираем все в обратном порядке.

    При установке платы со светодиодами на место, необходимо обновить термопасту, которая обеспечивает передачу тепла от платы светодиодов, до радиатора рассеивающего тепло.

    Перед склеиванием корпуса проверяем работоспособность и приклеиваем рассеиватель на лампу. Этот случай относился к ремонту лампы путем замены радиоэлемента.

    Блок: 4/6 | Кол-во символов: 1137
    Источник: http://xn——7kcglddctzgerobebivoffrddel5x.xn--p1ai/kommunikatsii/elektronika/751-kak-pochinit-svetodiodnuyu-lampu-svoimi-rukami-zamena-radioelementa-drajvera

    Решение проблем с драйвером

    Неполадки в драйвере – довольно распространенная проблема светодиодных ламп. Чаще всего в драйвере горят резистор или конденсатор.

    Имеющимися под рукой домашнего мастера измерительными приборами выявить уровень работоспособности этого элемента довольно проблематично. Поэтому рекомендуется его просто заменить на исправный с аналогичными параметрами.

    Причинами, по которым выходит из строя конденсатор, могут стать изначальный заводской дефект или регулярный перегрев модуля в результате некачественного теплоотвода

    Найти подходящую деталь в магазинах светотехники получается не всегда. Лучше сразу отправиться на радиорынок или в место продажи радиоэлектроники и там попытаться отыскать нужную вещь.

    Когда она будет куплена, потребуется демонтировать неисправный узел, а на его место поставить рабочий элемент.

    Для корректного проведения разборки и ремонта лампочек светодиодного типа не понадобится сложное, дорогостоящее оборудование. Устранить возникшие неполадки поможет минимальный набор простых инструментов.

    Мультиметр позволит проверить наличие напряжения в цепи, даст возможность обнаружить наличие обрывов и покажет, насколько работоспособны остальные детали схемы.

    Мультиметр представляет собой универсальный прибор, предназначенный для измерения основных базовых параметров различных электронных изделий. С его помощью можно узнать, в каком состоянии находятся светодиоды любого LED-изделия

    Паяльный прибор с канифолью и припоем потребуется для восстановления обрывов, найденных в цепи, и последующей замены поврежденных деталей и элементов.

    Температура разогрева в момент пайки не должна превышать 260°. Простой паяльник нагревается сильнее, поэтому на его жало нужно плотной спиралью намотать кусок медной жилы с сечением не более 4 мм. Чем сильнее удастся удлинить жало, тем ниже будет его рабочая температура

    Отверткой небольших размеров удастся аккуратно отделить от корпуса лампы управляющие элементы, а тонким, прочным канцелярским ножиком получится деликатно отсоединить детали от монтажной печатной платы.

    Блок: 7/8 | Кол-во символов: 2056
    Источник: http://sovet-ingenera.com/elektrika/svetylnik/remont-svetodiodnyx-lamp-svoimi-rukami.html

    Ремонт светодиодной лампы с заменой драйвера для светодиодов

    Если вы не хотите заниматься поиском сгоревшей радиодетали или у вас просто нет такой возможности. Скажем, нет в настоящее время мультиметра для проверки детали, то можно поступить несколько проще. Идете до ближайшего радиомагазина в вашем городе и покупаете так называемый драйвер. По сути, стабилизатор напряжения для светодиодов. Здесь важно выбрать стабилизатор, который будет обеспечивать работу светодиодов нужной мощности. То есть смотрим на заявленную мощность лампы и просим драйвер, который может обеспечить данную мощность.  Теперь давайте вновь обратимся к конкретному случаю.

    Откручиваем отражатель от корпуса.

    Снимаем рассеиватели светодиодов.

    Обрезаем провода от старого драйвера, лучше выпаять, чтобы обеспечить соединение между платой драйвера одним цельным проводом.

    Припаиваем провода нового драйвера на место старых.

    Здесь важно не перепутать вход и выход, иначе все сгорит, так и не заработав.

    Еще раз все проверяем и собираем лампу обратно.  При необходимости изолируем драйвер и наносим термопасту.
     Этот вариант хорош тем, что здесь фактически необходимо перекусить провода на входе и на выходе у старого драйвера, подключить провода от новой платы и все. Лампу можно собирать обратно. Единственное ограничение, этот вариант не подойдет в случае, если неисправностью является перегоревший светодиод.

     Если вам негде купить драйвер, а может просто хотите испытать свои силы в радиоконструировании, то вы можете сделать его сами. Благо некоторые из схем довольно простые в сборке, потребуют минимум радиоэлементов, и не нуждаются в наладке. Электросхемы драйверов для светодиодов, которые можно применить, в том числе и для светодиодной лампы, приведены в нашей статье «Драйверы для светодиодов своими руками». О самой же светодиодной лампе можно узнать подробнее «Светодиодная лампа».

    Блок: 5/6 | Кол-во символов: 1895
    Источник: http://xn——7kcglddctzgerobebivoffrddel5x.xn--p1ai/kommunikatsii/elektronika/751-kak-pochinit-svetodiodnuyu-lampu-svoimi-rukami-zamena-radioelementa-drajvera

    Ремонт светодиодных ламп своими руками: пошаговая инструкция

    Рассмотрим на примере простой ремонт светодиодной лампы:

    Как можно понять, ремонт светодиодной лампы 220 В своими руками не так уж и сложен. При отсутствии новых деталей можно воспользоваться сгоревшими лампочками, выпаяв элементы из них. Из 2-3 старых собирается один рабочий световой прибор.

    Блок: 6/7 | Кол-во символов: 352
    Источник: https://homius.ru/remont-svetodiodnyih-lamp-svoimi-rukami.html

    Подводя итог о ремонте светодиодной лампы

     Ремонт светодиодной лампы дело перспективное. Ведь не важно, будет ли это замена отдельного радиоэлемента или целого драйвера (платы), это все равно будет значительно дешевле, чем покупать новую светодиодную лампу. Единственная рекомендация, так это применение радиоэлементов с более высокими эксплуатационными показателями. Быть может это применение резисторов с большей мощностью, конденсаторов на большее напряжение или просто применение радиодеталей от известных и заслуженных брендов.
     Это позволит максимально долго впоследствии не возвращаться к ремонту столь нужного в нашем обиходе  осветительного прибора – светодиодной лампы.

    Блок: 6/6 | Кол-во символов: 723
    Источник: http://xn——7kcglddctzgerobebivoffrddel5x.xn--p1ai/kommunikatsii/elektronika/751-kak-pochinit-svetodiodnuyu-lampu-svoimi-rukami-zamena-radioelementa-drajvera

    Заключение

    Стоимость светодиодных ламп медленно, но верно снижается. Однако цена все же остается высокой. Не каждому по карману менять некачественные, но дешевые, лампы или покупать дорогостоящие. В этом случае ремонт таких осветительных приборов — неплохой выход. Если соблюдать  правила и меры предосторожности, то экономия составит приличную сумму.

    Лампа «кукуруза» дает больше света, но и потребление энергии у нее выше

    Надеемся, что информация, изложенная в сегодняшней статье, будет полезна читателям. Вопросы, возникшие по ходу прочтения, можно задать в обсуждениях. Мы ответим на них как можно полно. Если у кого-либо был опыт подобных работ, будем благодарны, если Вы им поделитесь с другими читателями.

    А напоследок, уже по традиции, короткое познавательное видео по сегодняшней теме:

    Блок: 7/7 | Кол-во символов: 791
    Источник: https://homius.ru/remont-svetodiodnyih-lamp-svoimi-rukami.html

    Техника безопасности при ремонте светодиодных лампочек на 220 В

    Поскольку мы проводим ремонт прибора, работающего от сети, то без техники безопасности никуда. Светодиодные лампы имеют бестрансформаторное питание, практически все элементы схемы во время работы прибора, включая светодиоды, находятся под опасным для жизни напряжением. Поэтому соблюдай следующие меры предосторожности:

    • Все перепайки и измерения во время ремонта проводи только в отключенной лампе.
    • Даже если конденсаторы зашунтированы разрядными резисторами, после выключения лампы разряди все конденсаторы вручную. Для этого достаточно на секунду закоротить выводы конденсатора любым металлическим инструментом с диэлектрической ручкой.
    • Во время включения прибора после ремонта береги глаза. Если что-то пойдет не так, любой из элементов может взорваться. Лучше отвернись, включи и поворачивайся.
    • Не оставляй без присмотра включенный паяльник и не клади его во время перерывов в ремонте на горючие предметы. 260 градусов – это относительно немного, но пожар устроить хватит.

    На этом, пожалуй, можно закончить. Теперь ты знаешь, как устроена светодиодная лампа и как она работает. А при необходимости сможешь самостоятельно произвести ее ремонт.

    Блок: 8/9 | Кол-во символов: 1205
    Источник: https://LampaExpert.ru/vidy-i-tipy-lamp/svetodiodnie/remont-svetodiodnoj-lampy-na-220v-svoimi-rukami

    Выводы и полезное видео по теме

    Как устранить характерные поломки светодиодной лампочки с цоколем E27. Подробная инструкция по разборке изделия, интересные практические советы по использованию подручных инструментов.

    Подсказки, как корректно снять с прибора колбу, не повредив ее в процессе.

    Простой способ отремонтировать лампочку лед-типа без использования паяльника. Вместо припаивания применяется специальная электропроводящая паста.

    Полное описание работы на изделиях торговой марки «Космос», которой владеет KOSMOS Group, контролирующая около 25% отечественного рынка прогрессивной и экономной продукции для создания качественного освещения.

    Как починить Led-лампочку типа «кукуруза». Особенности процесса разборки, конструкционные нюансы и прочие познавательные моменты. Существенное увеличение срока службы изделия после проведения всех работ.

    Светодиодная лампочка – практичный источник освещения. Единственный минус этого изделия – высокая по сравнению с другими модулями цена. Правда, LED-приборы надежны и обычно полностью отрабатывают свой срок. А если вдруг в процессе эксплуатации возникнут поломки, большую часть из них можно будет устранить своими руками. Нужные инструменты найдутся у любого домашнего мастера, а выкроить время на ремонтные работы тоже не составит никакого труда.

    Блок: 8/8 | Кол-во символов: 1308
    Источник: http://sovet-ingenera.com/elektrika/svetylnik/remont-svetodiodnyx-lamp-svoimi-rukami.html

    Видео

    Блок: 9/9 | Кол-во символов: 6
    Источник: https://LampaExpert.ru/vidy-i-tipy-lamp/svetodiodnie/remont-svetodiodnoj-lampy-na-220v-svoimi-rukami

    Кол-во блоков: 19 | Общее кол-во символов: 23356
    Количество использованных доноров: 4
    Информация по каждому донору:
    1. https://homius.ru/remont-svetodiodnyih-lamp-svoimi-rukami.html: использовано 3 блоков из 7, кол-во символов 1980 (8%)
    2. https://LampaExpert.ru/vidy-i-tipy-lamp/svetodiodnie/remont-svetodiodnoj-lampy-na-220v-svoimi-rukami: использовано 7 блоков из 9, кол-во символов 9763 (42%)
    3. http://sovet-ingenera.com/elektrika/svetylnik/remont-svetodiodnyx-lamp-svoimi-rukami.html: использовано 3 блоков из 8, кол-во символов 5638 (24%)
    4. http://xn——7kcglddctzgerobebivoffrddel5x.xn--p1ai/kommunikatsii/elektronika/751-kak-pochinit-svetodiodnuyu-lampu-svoimi-rukami-zamena-radioelementa-drajvera: использовано 5 блоков из 6, кол-во символов 5975 (26%)

    Микро драйвер светодиодной лампы 220 в. Основные моменты, которые нужно знать о драйверах светодиодов

    Работали максимально ярко и эффективно, используются специальные модули — драйверы. Собрать самостоятельно схему драйвера для светодиодов сможет каждый, если, конечно, имеются познания в электротехнике. Смысл работы прибора — преобразовать переменное напряжение, протекающее в сети, в постоянное (пониженное). Но прежде чем приступать к сборке, нужно определиться с тем, какие требования к устройству предъявляются — проанализируйте характеристики и виды приборов.

    Для чего нужны драйверы?

    Основное назначение драйверов — это стабилизация тока, который проходит через светодиод. Причем нужно учесть, что сила тока, который проходит по кристаллу полупроводника, должна быть точно такой же, как и у светодиода по паспорту. Благодаря этому обеспечивается устойчивое освещение. Кристалл в светодиоде намного дольше прослужит. Чтобы узнать напряжение, необходимое для питания светодиодов, нужно воспользоваться вольт-амперной характеристикой. Это график, показывающий зависимость между напряжением питания и током.

    Если планируется проводить освещение светодиодными лампами жилого или офисного помещения, то драйвер должен питаться от бытовой сети переменного тока с напряжением 220 В. Если же светодиоды используются в автомобильной или мототехнике, нужно использовать драйверы, питающиеся от постоянного напряжения, значение 9-36 В. В некоторых случаях (если светодиодная лампа небольшой мощности и питается от сети 220 В) допускается убрать схему драйвера светодиода. От сети если запитано устройство, достаточно включить в схему постоянный резистор.

    Параметры драйверов

    Прежде чем приобрести устройство или самостоятельно его изготовить, нужно ознакомиться с тем, какие у него имеются основные характеристики:

    1. Номинальный ток потребления.
    2. Мощность.
    3. Выходное напряжение.

    Напряжение на выходе преобразователя напрямую зависит от того, какой выбран способ подключения источника света, числа светодиодов. Ток имеет прямую зависимость от яркости и мощности элементов.


    Преобразователь должен обеспечивать ток, при котором светодиоды будут работать с одинаковой яркостью. На PT4115 схема драйвера светодиодов реализуется довольно просто — это самый распространенный преобразователь напряжения для использования с LED-элементами. Изготовить прибор на его основе можно буквально «на коленке».

    Мощность драйвера

    Мощность прибора — это самая важная характеристика. Чем мощнее драйвер, тем большее число светодиодов можно подключить к нему (конечно, придется проводить простые расчеты). Обязательное условие — мощность драйвера должна быть больше, чем у всех светодиодов в сумме. Выражается это такой формулой:

    Р = Р(св) х N,

    где Р, Вт — мощность драйвера;

    Р(св), Вт — мощность одного светодиода;

    N — количество светодиодов.


    Например, при сборке схемы драйвера для светодиода 10W вы можете смело подключать в качестве нагрузки LED-элементы мощностью до 10 Вт. Обязательно нужно иметь небольшой запас по мощности — примерно 25%. Поэтому, если планируется подключение светодиода 10 Вт, драйвер должен обеспечивать мощность не менее 12,5-13 Вт.

    Цвета светодиодов

    Обязательно нужно учитывать то, какой цвет испускает светодиод. От этого зависит то, какое падение напряжения будет у них при одинаковой силе тока. Например, при токе питания 0,35 А, падение напряжения у красных LED-элементов примерно 1,9-2,4 В. Мощность в среднем 0,75 Вт. Аналогичная модель с зеленым цветом будет уже иметь падение в интервале 3,3-3,9 В, а мощность 1,25 Вт. Поэтому, если вы применяете схему драйвера светодиода 220В с преобразованием в 12 В, к нему можно подключить максимум 9 элементов с зеленым цветом или 16 с красным.

    Типы драйверов


    Всего можно выделить два типа драйверов для светодиодов:

    1. Импульсные. С помощью таких устройств создаются в выходной части устройства высокочастотные импульсы. Функционирование основывается на принципах ШИМ-модуляции. Среднее значение тока зависит от коэффициента заполнения (отношения длительности одного импульса к частоте его повторения). Ток на выходе меняется за счет того, что коэффициент заполнения колеблется в интервале 10-80%, а частота остается постоянной.
    2. Линейные — типовая схема и структура выполнены в виде генератора тока на транзисторах с р-каналом. С их помощью можно обеспечить максимально плавную стабилизацию питающего тока в случае, если напряжение на входе неустойчиво. Отличаются дешевизной, но у них малая эффективность. При работе выделяется большое количество тепла, поэтому можно использовать только для маломощных светодиодов.

    Импульсные получили большее распространение, так как у них КПД намного выше (может достигать 95%). Устройства компактные, диапазон входного напряжения достаточно широкий. Но есть один большой недостаток — высокое влияние различного рода электромагнитных помех.

    На что обратить внимание при покупке?

    Покупку драйвера обязательно нужно совершать при выборе светодиодов. На PT4115 схема драйвера светодиодов позволяет обеспечить нормальное функционирование Устройства, использующие ШИМ-модуляторы, построенные по схемам с одной микросхемой, применяются по большей части в автомобильной технике. В частности, для подключения подсветки и ламп головного освещения. Но качество у таких простейших приборов довольно низкое — для использования в бытовых системах они не годятся.

    Диммируемый драйвер


    Практически все конструкции преобразователей позволяют регулировать яркость свечения LED-элементов. С помощью таких устройств можно выполнять следующие действия:

    1. Уменьшать интенсивность освещенности днем.
    2. Скрывать или же подчеркивать определенные элементы интерьера.
    3. Зонировать помещение.

    Благодаря этим качествам можно существенно сэкономить на электроэнергии, увеличить ресурс элементов.

    Разновидности диммируемых драйверов


    Типы диммируемых драйверов:

    1. Подключаются между БП и источником света. Они позволяют управлять энергией, которая поступает на LED-элементы. В основе конструкции находятся ШИМ-модуляторы с микроконтроллерным управлением. Вся энергия идет к светодиодам импульсами. От длины импульсов напрямую зависит энергия, которая поступит на светодиоды. Такие конструкции драйверов применяются в основном для работы модулей со стабилизированным питанием. Например, для лент или бегущих строк.
    2. Второй тип устройств позволяет проводить управление блоком питания. Управление производится при помощи ШИМ-модулятора. Также изменяется величина тока, который протекает через светодиоды. Как правило, такие конструкции применяются для питания тех устройств, которым необходим стабилизированный ток.

    Нужно обязательно учесть тот факт, что ШИМ-регулирование плохо влияет на зрение. Лучше всего использовать схемы драйверов для питания светодиодов, в которых регулируется величина тока. Но вот один нюанс — в зависимости от величины тока свечение будет различным. При низком значении элементы будут излучать свет с желтым оттенком, при увеличении — с синеватым.

    Какую микросхему выбрать?


    Если нет желания искать готовое устройство, можно сделать его самостоятельно. Причем произвести расчет под конкретные светодиоды. Микросхем для изготовления драйверов довольно много. Вам потребуется только умение читать электрические схемы и работать с паяльником. Для простейших устройств (мощностью до 3 Вт) можно использовать микросхему PT4115. Она дешевая, и достать очень просто. Характеристики элемента такие:

    1. Напряжение питания — 6-30 В.
    2. Выходной ток — 1,2 А.
    3. Допустимая погрешность при стабилизации тока — не более 5%.
    4. Защита от отключения нагрузки.
    5. Выводы для диммирования.
    6. КПД — 97%.

    Обозначение выводов микросхемы:

    1. SW — подключение выходного коммутатора.
    2. GND — отрицательный вывод источников питания и сигнала.
    3. DIM — регулятор яркости.
    4. CSN — датчик входного тока.
    5. VIN — положительный вывод, соединяемый с источником питания.

    Варианты схем драйверов

    Варианты исполнения устройств:

    1. Если имеется источник питания с постоянным напряжением 6-30 В.
    2. Питание от переменного напряжения 12-18 В. В схему вводится диодный мост и электролитический конденсатор. По сути, «классическая» схема мостового выпрямителя с отсечением переменной составляющей.

    Нужно отметить тот факт, что электролитический конденсатор не сглаживает пульсации напряжения, а позволяет избавиться от переменной составляющей в нем. В схемах замещения (по теореме Кирхгофа) электролитический конденсатор в цепи переменного тока является проводником. А вот в цепи постоянного тока он заменяется разрывом (нет никакого элемента).


    Собрать схему драйвера светодиодов 220 своими руками можно только в том случае, если использовать дополнительный блок питания. В нем обязательно задействован трансформатор, которым понижается напряжение до необходимого значения в 12-18 В. Учтите, что нельзя подключать драйверы к светодиодам без электролитического конденсатора в блоке питания. При необходимости установки индуктивности необходимо произвести ее расчет. Обычно величина составляет 70-220 мкГн.

    Процесс сборки

    Все элементы, которые используются в схеме, нужно подбирать, опираясь на даташит (техническую документацию). Обычно в нем приводятся даже практические схемы использования устройств. Обязательно использовать в схеме выпрямителя низкоимпедансные конденсаторы (значение ESR должно быть низким). Применение иных аналогов снижает эффективность регулятора. Емкость должна быть не менее 4,7 мкФ (в случае использования схемы с постоянным током) и от 100 мкФ (для работы в цепи переменного тока).


    Собрать по схеме драйвер для светодиодов своими руками можно буквально за несколько минут, потребуется только наличие элементов. Но нужно знать и особенности проведения монтажа. Катушку индуктивности желательно располагать возле вывода микросхемы SW. Изготовить ее можно самостоятельно, для этого необходимо всего несколько элементов:

    1. Ферритовое кольцо — можно использовать со старых блоков питания компьютеров.
    2. Провод типа ПЭЛ-0,35 в лаковой изоляции.

    Старайтесь все элементы располагать максимально близко к микросхеме, это позволит исключить появление помех. Никогда не проводите соединения элементов при помощи длинных проводов. Они не только создают множество помех, но и способны принимать их. В результате микросхема, неустойчивая к этим помехам, будет работать неправильно, нарушится регулировка тока.

    Вариант компоновки

    Разместить все элементы можно в корпусе от старой лампы дневного света. В ней уже все имеется — корпус, патрон, плата (которую можно повторно использовать). Внутри расположить все элементы блока питания и микросхему можно без особого труда. А с внешней стороны установить светодиод, который планируете запитывать от устройства. Схемы драйверов для светодиодов 220 В можно использовать практически любые, главное — понизить напряжение. Сделать это легко простейшим трансформатором.


    Монтажную плату желательно использовать новую. А лучше вообще обойтись без нее. Конструкция очень простая, допустимо применить навесной монтаж. Обязательно удостоверьтесь в том, что на выходе выпрямителя напряжение в допустимых пределах, в противном случае микросхема сгорит. После сборки и подключения произведите замер потребляемого тока. Учтите, что в случае снижения тока питания увеличится ресурс светодиодного элемента.

    Тщательно выбирайте схему драйвера для питания светодиодов, рассчитывайте каждый компонент конструкции — от этого зависит срок службы и надежность. При правильном подборе драйверов характеристики светодиодов останутся максимально высокими, а ресурс не пострадает. Схемы драйверов для мощных светодиодов отличаются тем, что в них большее число элементов. Зачастую применяется ШИМ-модуляция, но в домашних условиях, что называется, «на коленке», такие устройства уже сложно собрать.

    Светодиоды на современном строительном рынке занимают лидирующие позиции по продаже. Данные осветительные приборы имеют широкое применение.

    Их используют в освещении:

    • помещений жилых домов,
    • офисов,
    • автомобилей,
    • прочее.

    Также популярным и востребованным есть драйвер, предназначенный для от электричества (переменного тока 220 В и частоты 50 Гц. Чтобы осветительные приборы (на 1 w,10 w и больше) имели хорошую яркость, не мигали во время работы и не перегорали раньше времени, для их питания нужен постоянный ток (350, 500, 700, 1000 мА).

    Для этого изготавливают специальные модули. Они бывают разных типов. Драйвер может быть встроен в сам светодиодный прибор, а также подключаться отдельно. Сделать самодельный драйвер для мощного светодиода можно собственными руками. Есть устройства специального назначения, например те, которые используют в rgp пикселях. Их называют rgp led pixel. Такие схемы также можно собрать своими силами или заказать у специалистов.

    Эксплуатационные характеристики драйверов для светодиода

    Светодиодные осветительные приборы (на 1 w, 10 w и больше) достаточно эффективны. С их помощью можно хорошо сэкономить на электричестве. Светодиоды в 8-9 раз эффективнее, чем обычные лампы накаливания (на 1 w, 10 w и больше). В случаях, когда драйвер установлен рядом с группой светодиодных приборов, он имеет хорошие технические показатели. Прибор будет работать даже в самых жарких условиях. Он выдерживает температуру окружающей среды до 800С. Также устройство имеет различные режимы работы. С его помощью можно регулировать яркость освещения в помещении, машине, улице прочее.

    Для питания светодиодной ленты часто используют диммируемый драйвер. Устройство идеально подходит для регулировки яркости осветительных приборов. Диммируемый драйвер обеспечивает настраивание выходной мощности плавно и без фликкерного шума. Собрать схему драйвера для светодиодов своими руками можно без проблем.

    Схема подключения

    Есть случаи, когда нет необходимости регулировать яркость осветительных приборов в помещении или другом пространстве. Тогда схема подключения драйвера достаточно проста. Светодиоды подключаются последовательно. В одной цепочке может быть от 1 до 8 штук осветительных приборов. Она подключается к одному выходу драйвера. Такая схема самая оптимальная. Любой повышающий драйвер для светодиода, будь он самодельный или нет, служит источником постоянного тока, но не напряжения. Это значит, что включать в схему специальный резистор, который будет ограничивать поступление тока, нет необходимости. На выходе драйвера устанавливается определенное напряжение (В) и мощность (Вт). Их величина зависит от количества подключенных осветительных приборов в цепочке.


    Токоограничиющий резистор включается в схему, если светодиоды подключены и последовательно, и параллельно. Такие случаи бывают, когда нужно подключить более 8 осветительных приборов. Так светодиоды подсоединяют последовательно в отдельные цепи, которые связаны между собой параллельным подключением. Входное напряжение драйвера может быть в диапазоне от 2 до 18 В. А выходное – на 0,5 вольт меньше, чем изначальное. Напряжение падает на полевом транзисторе.

    Важные моменты, которые стоит учитывать при выборе драйверов

    Вольт – амперная характеристика у осветительных приборов, таких как светодиоды, под воздействием температуры изменяется. У разных моделей она имеет свои незначительные отличия. Стоит это учитывать при подключении схемы собственными руками. Повышающий яркость драйвер осветительных приборов должен давать постоянный ток в различных случаях. То есть его функции должны выполняться независимо от того, изменились ли характеристики светодиодов или произошел скачок входного напряжения. Любой драйвер (диммируемый, из специальным стабилизатором прочее), должен обеспечивать поступление тока к осветительному прибору согласно его эксплуатационным характеристикам.

    Простыми драйверами для светодиодов (на 10 w и больше) есть такие микросхемы, как LM 317. Они имеют свои отличие от резисторов. Микросхемы данного типа надежны в эксплуатации, их производство не занимает много времени и требует больших затрат расходного материала. Но все же они имеют недостатки. Микросхемы LM 317 отличаются низким КПД. Для них характерно малое входное напряжение.

    Питание светодиодов от сети 220 В с помощью шим – стабилизаторов тока более практичное в эксплуатации. Активная мощность на драйвере минимальная. – стабилизатор – это электронная схема специального назначения. Ее разработали для того, чтобы производить постоянный ток для питания осветительных приборов наилучшим способом. Такие драйверы используют в rgp пикселях. Шим – стабилизаторы дают дополнительные функции в управлении. С помощью драйверов можно регулировать питание от сети 220 В, яркость и цвет rgp пикселя. Управление осуществляется с помощью, подключенных к шим – стабилизаторов, микроконтроллеров. Такие драйвера, как WS2801 или LDP8806, можно наблюдать на каждом rgp пикселе светодиодной ленты с управлением.

    Так, как технологии прогрессируют стоимость мощных светодиодов (1 Вт и больше) уже достаточно доступная. Исходя из этого, приборы все чаще используют для освещения. Чтобы эффективность мощных светодиодов была высокой, их нужно правильно запитать, можно от сети 220 В. Самодельный драйвер, повышающий яркость освещения, можно собрать по простой схеме, основанной на дискретных элементах. Выходная мощность – 15 Вт, резервная – 0,5 Вт. Схема защищает от короткого замыкания.

    Впрочем, есть и менее правильные, но, в целом, рабочие варианты. Один из них – собрать стабилизатор тока для светодиода из обычной энергосберегающей лампы.

    Прежде чем начнем, помните: все, что вы делаете, вы делаете на свой страх и риск! Мы не даем никакой гарантии, что получившийся прибор заработает у вас правильно. И не несем никакой ответственности за возможный ущерб или повреждения, которые, теоретически, могут случиться, если что-то пойдет не так, как задумано.

    Предстоит работать с опасным для жизни напряжением в 220В и, скорее всего, без точной технической документации на конкретную переделываемую лампу. Если вы не знаете правил предосторожностей при работе с высоким напряжением, не сильно уверенно держите в руках паяльник, то лучше откажитесь от этой затеи – в конце концов, готовый драйвер от сети 220В стоит не так уж дорого.

    Но, если интересно, то вперед!

    Обычная энергосберегайка, она же компактная люминесцентная лампа или КЛЛ, содержит в себе электронное устройство, обеспечивающее поджег и горение газоразрядных ламп. КЛЛ имеют очень приличный срок службы – до 10 000 часов, но с течением времени яркость их свечения снижается, они начинаю сильнее греться, начинают мерцать или вообще перестают светить. При этом, чаще всего, из строя выходит именно «стеклянная часть» лампы, а ее электроника остается в полном порядке. Поэтому, для экспериментов вполне подойдет старая лампа, которая перестала работать, а вы ее почему-то не выбросили. Если есть выбор, то лучше взять лампу помощнее. У меня для опытов оказался пациент, изображенный на картинке в начале статьи.

    Запыленная и пожелтевшая лампа Maxus 26W верой и правдой отслужила несколько лет и была заменена, поскольку светить стала чуть ли не вдвое тусклее, чем нужно.

    Аккуратно, по пояску открываем лампу.

    Аккуратно открытая энергосберегающая лампа

    Видим балласт, от которого два провода уходят к цоколю и четыре к стеклянным колбам. Откусываем их все и извлекаем электронную часть. Только внимательно – один из цокольных проводов к плате может идти через висящий резистор. Он тоже нужен, откусывайте за ним.

    Получилась вот такая штучка.

    Извлеченный балласт люминесцентной лампы — до переделки

    Теперь от разрушения ламп переключимся к изучению их принципиальных схем. Импульсный преобразователь (электронный балласт) компактных люминесцентных ламп может различаться деталями для конкретных ламп, но принципиально его схема выглядит так:

    Принципиальная схема балласта компактной люминесцентной лампы

    Желтым цветом выделено то, что может значительно отличаться от лампы к лампе в зависимости от производителя и ее мощности. В любом случае, оставляем эту часть безо всяких изменений. То, что отмечено синим, останется бесхозным после удаления ламп (стеклянных колб) и может быть безболезненно удалено с платы, дабы не мешало.

    Получится примерно так:

    Импульсный преобразователь после удаления «лишних» деталей

    После удаления «синей» части схемы, останется два проводника, повисших в воздухе. Их нужно соединить друг с другом – закоротить. Найдем что с чем соединять на конкретной плате.

    Обратная сторона платы импульсного преобразователя

    Как видно, нужно закоротить выход дросселя (он же вход в колбы) с выходом из колб по кратчайшему пути. Электроника вашей лампы, скорее всего, внешне будет отличаться от того, что вы видите на картинке. Важно понять сам принцип.

    Следующий шаг – сделать из дросселя трансформатор, выпрямить получившийся ток и запитать им светодиоды.

    Дело в том, что люминесцентные лампы питаются напряжением высокой частоты (до 50КГц). Соответственно, намотав на дроссель вторичную обмотку, можно получить на ней нужное напряжение.

    Аккуратно выпаиваем дроссель. Дальше очень творческая задача – его разобрать. Дроссель состоит из катушки с проводом, в которую сверху и снизу вставляются две половинки Е-образного феррита. Разобрать дроссель – это значит разъединить спаявшиеся за года половинки тонкого и хрупкого феррита (которые еще иногда заливают лаком), снять их и получить свободный доступ к катушке с проводом. Удалите ленту, которая расположена по периметру феррита, после чего нежно и не прикладывая больших усилий, попробуйте его разъединить. Помогает нагревание – например, аккуратно паяльником по всему периметру феррита. У меня получилось, правда, далеко не сразу.

    Побежденный и разобранный дроссель

    На открывшуюся катушку поверх наматываем вторичную обмотку. По моим наблюдениям один оборот вторичной обмотки дает в ней около 0.8В напряжения. В моих планах было запитать две линейки одноваттных светодиодов по 10шт. Для этого мне нужно около 30В напряжения. Итоговый ток требуется небольшой – до 200-250мА, поскольку светодиоды ну очень китайские.

    В моем случае получилось 40 витков эмальпровода диаметром 0.25мм. Наматывайте аккуратно, поскольку дроссель потом нужно будет собрать обратно, т.е. вернуть ферриты на место. Не забудьте в конце узкой полоской изоленты или скотча скрепить между собой половинки феррита. Впаиваем дроссель обратно. Получится как-то так.

    Результат работы — готовый «драйвер» из балласта энергосберегайки

    Подключаем входное сетевое напряжение. Взрывов, фейерверков нет? Чудесно! Теперь аккуратно меряем переменное напряжение на выходах вторичной обмотки. Получилось то, что нужно? Здорово! Если нет, отключаемся от сети и отматываем (чтобы уменьшить) или добавляем (чтобы увеличить) несколько витков в обмотке. Разбирать дроссель для этого не нужно – просто аккуратно продевайте провод между катушкой и ферритом.

    У меня две линейки светодиодов. Подключить их можно двумя способами – параллельно – для этого нужно предварительно выпрямить ток. Или встречно – для этого выпрямлять ток не нужно. На схеме это выглядит так.

    Параллельное подключение двух линеек светодиодов

    Параллельное подключение. Зеленая область – вторичная обмотка, диодный мост и светодиоды. Синяя линия – перемычка. Диодный мост собирается из быстрых диодов. Я взял 4 диода HER307.

    Встречное подключение выглядит так:

    Встречное подключение двух линеек светодиодов

    Оба варианта имеют право на жизнь, я выбрал параллельное подключение с выпрямлением.

    После сбора схемы подключите светодиоды через амперметр. Подключите питание. Если сила тока такая, как необходимо – отлично, если нет, то убирая/добавляя витки вторичной обмотки дросселя уменьшите или увеличьте ток.

    Результат работы — светодиоды подключены и ярко светят.

    У меня получилось около 200мА на две линейки по 10 светодиодов. Маловато, но для настольного светильника хватит.

    Очень непривычно видеть подключение светодиодов напрямую от источника тока. Но здесь стабилизация тока достигается за счет точной стабилизации напряжения. И, в данном случае, если что-то произойдет с одной из параллельных линеек светодиодов, ток в оставшихся линейках не изменится, в отличие от обычного подключения через драйвер.

    Правильно собранная схема должна иметь серьезный запас по мощности – у меня рабочая мощность 6 из 26 Вт. Ничего (кроме светодиодов) не должно существенно нагреваться в процессе работы (только проверяйте после отключения от сети).

    Также, имеются готовые модели драйверов для светодиодов , без которых никак не обойтись, если будет нужно получить мощный и яркий свет.

    

    Схема светодиода 220 В — Драйвер светодиода с питанием от сети переменного тока — Схемы DIY

    Эффективное управление светодиодами — непростая задача, вы должны заботиться как о напряжении, так и о токе светодиода.

    Вот трансформатор без 220В светодиодная схема , не очень эффективный, но очень простой и быстрый.

    В этом драйвере светодиодов используется всего несколько деталей, он по-прежнему может работать с светодиодами от 150 В до 230 В , но главное — это простота и низкая стоимость.

    Электрическая схема светодиода 220 В и перечень деталей

    Прежде всего, ознакомьтесь со списком запчастей.

    1. 9x ярко-белых светодиодов, 500 мВт, 45-55 люмен
    2. 1x 10 мкФ 63V конденсатор электролитический
    3. 2 резистора по 470 Ом 1/4 Вт
    4. 1x 47 мкФ 50 В конденсатор электролитический
    5. 1x 45 вольт стабилитрон, как 1N4755A
    6. 4 диода 1N4007 или любой мостовой выпрямительный модуль, например MB6S
    7. 1x 1 мкФ до 1,5 мкФ 400 В полиэфирный пленочный конденсатор
    8. 1x 470 кОм резистор 1/4 ватта

    Наконец, принципиальная схема, она довольно проста, взгляните.

    Обратите внимание, что вы можете заменить все компоненты их ближайшими аналогами. Подобно тому, как мостовой выпрямитель IC не нужен, вы можете легко использовать четыре диода 1N4007 в мостовой конфигурации.

    Кроме того, вы также можете удалить электролитический конденсатор 10 мкФ-63 В и стабилитрон на 45 В. Я добавил их в качестве меры предосторожности, чтобы защитить светодиоды от внезапных скачков напряжения.

    Детали установки

    Эта светодиодная схема 220 В столь же опасна, сколь и проста, потому что она напрямую подключена к сети переменного тока.Никогда ни к чему не прикасайтесь при подключении к сети переменного тока, только не будьте настолько глупы, чтобы убить себя электрическим током.

    Не имеет значения, как вы подключаете входы к линии переменного тока, если вы ничего не пытаетесь прикоснуться!

    Вся установка легко доступна для покупки в красивом корпусе. Рекомендуется покупать одну, очень фишку. Примеры изображений ниже.

    Тыльная сторона платы светодиодной лампы.

    Заключение

    Хотя эта схема с питанием от сети достаточно проста и дешева, но ее эффективность невысока, вероятно, менее 40%, а может быть, даже ниже.

    Таким образом, эта схема вообще не рекомендуется для масштабирования, вы потеряете больше энергии, чем на самом деле.

    Здесь вы можете найти гораздо более эффективную, но немного сложную схему драйвера светодиода 100-220 В , она может включать несколько 5-ваттных светодиодов.

    5 простых схем светодиодных драйверов мощностью 1 Вт

    1) Малый 1 Вт светодиодный драйвер SMPS

    В первом наиболее рекомендуемом варианте мы изучаем схему драйвера светодиодов SMPS, которую можно использовать для управления светодиодами высокой мощности с номинальной мощностью где-то между Светодиод мощностью 1 Вт до 12 Вт.Его можно подключать напрямую к любой домашней розетке переменного тока 220 В или 120 В переменного тока.

    Введение

    Первая конструкция объясняет конструкцию небольшого неизолированного понижающего преобразователя SMPS (неизолированная точка нагрузки), который является очень точной, безопасной и простой в сборке схемой. Узнаем подробности.

    Основные характеристики

    Предлагаемая схема драйвера светодиода smps чрезвычайно универсальна и особенно подходит для управления светодиодами высокой мощности.

    Однако, будучи неизолированной топологией , не обеспечивает защиту от поражения электрическим током на стороне светодиода схемы.

    Помимо вышеуказанного недостатка, схема безупречна и практически защищена от всех возможных опасностей, связанных с перенапряжением в сети.

    Хотя неизолированная конфигурация может выглядеть несколько нежелательной, она избавляет конструктора от намотки сложных первичных / вторичных секций на сердечниках E, поскольку трансформатор здесь заменен парой простых ферритовых дросселей барабанного типа.

    Основным компонентом здесь, отвечающим за выполнение всех функций, является микросхема IC VIPer22A от ST microelectronics, которая была специально разработана для таких небольших бестрансформаторных компактных драйверов светодиодов мощностью 1 Вт.

    Принципиальная схема

    Изображение предоставлено: © STMicroelectronics — Все права защищены

    Работа схемы

    Функционирование схемы этого светодиодного драйвера мощностью от 1 до 12 Вт можно понять, как показано ниже:

    Входная сеть 220 В или 120 В переменного тока полуволна выпрямляется D1 и C1.

    C1 вместе с катушкой индуктивности L0 и C2 составляют сеть круговых фильтров для подавления электромагнитных помех.

    D1 желательно заменить двумя последовательно включенными диодами для поддержки всплесков напряжения 2 кВ, генерируемых C1 и C2.

    R10 обеспечивает определенный уровень защиты от перенапряжения и действует как предохранитель в аварийных ситуациях.

    Как видно на приведенной выше принципиальной схеме, напряжение на C2 подается на внутренний сток МОП-транзистора IC на контактах 5–8.

    Встроенный источник постоянного тока микросхемы VIPer подает ток 1 мА на вывод 4 микросхемы, который также является выводом Vdd микросхемы.

    При напряжении около 14,5 В при напряжении Vdd источники тока выключаются и переводят схему ИС в колебательный режим или инициируют пульсации ИС.

    Компоненты Dz, C4 и D8 становятся схемой регулирования цепи, где D8 заряжает C4 до пикового напряжения в период свободного вращения и когда D5 смещен в прямом направлении.

    Во время вышеуказанных действий источник или опорный сигнал ИС устанавливается примерно на 1 В под землей.

    Для получения исчерпывающей информации о деталях схемы драйвера светодиода мощностью от 1 до 12 Вт, пожалуйста, просмотрите следующий технический паспорт в формате pdf от ST microelectronics.

    DA TASHEET

    2) Использование бестрансформаторного емкостного источника питания

    Следующий 1-ваттный светодиодный драйвер, описанный ниже, показывает, как создать несколько простых схем 1-ваттного светодиодного драйвера с питанием от 220 В или 110 В, которые вам не будут стоить больше 1/2 доллара, не считая светодиода конечно.

    Я уже обсуждал емкостный тип источника питания в паре столбов, например, в цепи освещения светодиодной трубки и в цепи бестрансформаторного источника питания, настоящая схема также использует ту же концепцию для управления предложенным 1-ваттным светодиодом.

    Работа схемы

    На принципиальной схеме мы видим очень простую схему емкостного источника питания для питания светодиода мощностью 1 Вт, что можно понять по следующим пунктам.

    Конденсатор 1 мкФ / 400 В на входе образует сердце схемы и функционирует как основной ограничитель тока схемы.Функция ограничения тока гарантирует, что напряжение, подаваемое на светодиод, никогда не превышает требуемый безопасный уровень.

    Однако у высоковольтных конденсаторов есть одна серьезная проблема: они не ограничивают и не могут препятствовать первоначальному включению сетевого питания в быстром темпе, что может быть фатальным для любых электронных схем. Светодиоды не являются исключением.
    Добавление резистора на 56 Ом на входе помогает принять некоторые меры по предотвращению повреждений, но все же оно само по себе не может обеспечить полную защиту задействованной электроники.

    MOV, конечно, подойдет, а как насчет термистора? Да, термистор тоже был бы желанным предложением.
    Но они относительно более дорогие, и мы обсуждаем дешевую версию для предлагаемой конструкции, поэтому мы хотели бы исключить все, что пересекало бы отметку доллара в отношении общей стоимости.

    Итак, я подумал об инновационном способе замены MOV на обычную дешевую альтернативу.

    Какова функция MOV

    Это отводить начальный всплеск высокого напряжения / тока на землю так, чтобы он был заземлен до того, как достигнет светодиода в этом случае.

    Не будет ли высоковольтный конденсатор выполнять ту же функцию, если он подключен к самому светодиоду. Да, он наверняка будет работать так же, как MOV.

    На рисунке показана установка еще одного высоковольтного конденсатора непосредственно через светодиод, который поглощает мгновенный приток скачка напряжения при включении питания, он делает это во время зарядки и, таким образом, быстро опускает почти все начальное напряжение, вызывая все сомнения. Связанный с емкостным типом блока питания отчетливо понятен.

    Конечным результатом, показанным на рисунке, является чистая, безопасная, простая и недорогая схема драйвера светодиода мощностью 1 Вт, которую любой любитель электроники может собрать прямо дома и использовать для личных удовольствий и полезности.

    ВНИМАНИЕ: ПОКАЗАННАЯ НИЖЕ ЦЕПЬ НЕ ИЗОЛИРОВАНА ОТ СЕТИ ПЕРЕМЕННОГО ТОКА, ПОЭТОМУ ЧРЕЗВЫЧАЙНО ОПАСНО ПРИКАСАТЬСЯ В ПОЛОЖЕНИИ ПИТАНИЯ.

    Принципиальная схема

    ПРИМЕЧАНИЕ: Светодиод на приведенной выше схеме — это светодиод 12 В 1 Вт , как показано ниже:

    На показанной выше простой схеме драйвера светодиода мощностью 1 Вт два 4.Конденсаторы емкостью 7 мкФ / 250 вместе с резисторами на 10 Ом образуют в цепи своего рода «прерыватель скорости», этот подход помогает остановить начальный бросок тока при включении, что, в свою очередь, помогает защитить светодиод от повреждения.

    Эту функцию можно заменить NTC, которые популярны благодаря своим функциям подавления скачков напряжения.

    Этот усовершенствованный способ решения проблемы начального броска скачка напряжения может заключаться в подключении термистора NTC последовательно с цепью или нагрузкой.

    Перейдите по следующей ссылке, чтобы узнать, как включить термистор NTC в предлагаемую схему драйвера светодиода мощностью 1 Вт.

    Вышеупомянутая схема может быть изменена следующим образом, однако свет может быть немного скомпрометирован.

    Хорошим способом решения проблемы начального броска скачка напряжения является подключение термистора NTC последовательно с цепью или нагрузкой.

    Перейдите по следующей ссылке, чтобы узнать, как включить термистор NTC в предлагаемую схему драйвера светодиода мощностью 1 Вт.

    https://www.homemade-circuits.com/2013/02/using-ntc-resistor-as- Survival-suppressor.html

    3) Стабилизированный драйвер светодиода мощностью 1 Вт с емкостным источником питания

    Как можно видеть, на выходе в их прямом смещенном режиме используется 6 шт. диодов 1N4007.Поскольку каждый диод будет производить падение на 0,6 В на самом себе, 6 диодов будут создавать общее падение 3,6 В, что является как раз правильным значением напряжения для светодиода.

    Это также означает, что диоды будут шунтировать остальную мощность от источника на землю, и, таким образом, поддерживать питание светодиода идеально стабилизированным и безопасным.

    Другая схема стабилизированного емкостного драйвера мощностью 1 Вт

    Следующая конструкция, управляемая полевым МОП-транзистором, вероятно, является лучшей универсальной схемой драйвера светодиода, которая гарантирует 100% защиту светодиода от всех типов опасных ситуаций, таких как внезапное перенапряжение и перегрузка по току или импульсный ток.

    Светодиод мощностью 1 Вт, подключенный к указанной выше схеме, будет способен производить около 60 люменов силы света, что эквивалентно лампе накаливания мощностью 5 Вт.

    Изображения прототипа

    Вышеупомянутая схема может быть изменена следующим образом, однако свет может быть немного скомпрометирован.

    4) Схема драйвера светодиода мощностью 1 Вт с использованием батареи 6 В

    Как видно на четвертой диаграмме, в этой концепции практически не используется какая-либо схема или, скорее, она не включает в себя какой-либо высокотехнологичный активный компонент для требуемой реализации управления мощностью 1 Вт. ВЕЛ.

    Единственными активными устройствами, которые использовались в предлагаемой простейшей схеме драйвера светодиода мощностью 1 Вт, являются несколько диодов и механический переключатель.

    Начальные 6 вольт от заряженной батареи понижаются до необходимого предела 3,5 вольт, удерживая все диоды последовательно или на пути напряжения питания светодиода.

    Поскольку на каждый диод падает 0,6 вольт, все четыре вместе позволяют только 3,5 вольт достигать светодиода, обеспечивая его безопасное, но яркое освещение.

    По мере того, как свечение светодиода падает, каждый диод впоследствии отключается с помощью переключателя, чтобы восстановить яркость светодиода.

    Использование диодов для понижения уровня напряжения на светодиодах гарантирует, что процедура не рассеивает тепло и, следовательно, становится очень эффективной по сравнению с резистором, который в противном случае рассеивал бы много тепла в процессе.

    5) Освещение светодиода мощностью 1 Вт с помощью элемента AAA 1,5 В

    В 5-м проекте давайте узнаем, как за разумное время зажечь светодиод мощностью 1 Вт с помощью элемента 1,5 AAA. Схема, очевидно, основана на технологии повышающего драйвера , иначе управлять такой огромной нагрузкой с таким минимальным источником невозможно.

    Светодиод мощностью 1 Вт является относительно большим по сравнению с источником питания 1,5 В типа AAA.

    Для светодиода мощностью 1 Вт требуется питание минимум 3 В, что вдвое превышает номинальное напряжение элемента, указанное выше.

    Во-вторых, для светодиода мощностью 1 Вт потребуется от 20 до 350 мА тока для работы, 100 мА — это приемлемый ток для управления этими легкими машинами.

    Следовательно, использование фонарика AAA для вышеуказанной операции выглядит очень отдаленным и не может быть предметом обсуждения.

    Однако обсуждаемая здесь схема доказывает, что мы все ошибаемся, и успешно управляет светодиодом мощностью 1 Вт без особых сложностей.

    СПАСИБО ZETEX за предоставленную нам эту замечательную маленькую микросхему ZXSC310, для которой требуется всего несколько обычных пассивных компонентов, чтобы сделать это возможным.

    Работа схемы

    На схеме показана довольно простая конфигурация, которая в основном представляет собой установку повышающего преобразователя.

    Входной постоянный ток 1,5 В обрабатывается ИС для генерации высокочастотного выходного сигнала.

    Частота переключается транзистором и диодом Шоттки через катушку индуктивности.

    Быстрое переключение катушки индуктивности обеспечивает необходимое повышение напряжения, которое становится подходящим для питания подключенного светодиода мощностью 1 Вт.


    Здесь, во время завершения каждой частоты, эквивалентная запасенная энергия внутри индуктора перекачивается обратно в светодиод, генерируя необходимое повышение напряжения, что позволяет светодиоду светиться в течение долгих часов даже при таком маленьком источнике, как 1,5 В. клетка.

    Изображение прототипа

    Драйвер для светодиодов на солнечной энергии 1 Вт

    Это школьный выставочный проект, который может быть использован детьми, чтобы показать, как солнечная энергия может использоваться для освещения светодиода мощностью 1 Вт.

    Идея была предложена г-ном Ганешем, как указано ниже:

    Привет, Свагатам, я наткнулся на ваш сайт и считаю вашу работу очень вдохновляющей. В настоящее время я работаю по программе естественных наук, технологий, инженерии и математики (STEM) для студентов 4-5 курсов в Австралии. Проект направлен на повышение интереса детей к науке и ее связи с реальными приложениями.

    Программа также привносит сочувствие в процесс инженерного проектирования, когда молодые учащиеся знакомятся с реальным проектом (контекстом) и взаимодействуют со своими одноклассниками для решения мирских проблем.В течение следующих трех лет мы сосредоточены на ознакомлении детей с наукой об электричестве и практическим применением электротехники. Введение в то, как инженеры решают реальные проблемы на благо общества.

    В настоящее время я работаю над онлайн-контентом для программы, которая будет ориентирована на молодых учащихся (4-6 классы), изучающих основы электричества, в частности, возобновляемых источников энергии, в данном случае солнечной энергии. Посредством программы самостоятельного обучения дети узнают и исследуют электричество и энергию по мере их знакомства с реальным проектом, т.е.е. Освещение детей, проживающих в лагерях беженцев по всему миру. По завершении пятинедельной программы дети объединяются в группы, чтобы построить солнечные светильники, которые затем отправляют детям из неблагополучных семей по всему миру.

    Как некоммерческий образовательный фонд, мы ищем вашу помощь в разработке простой принципиальной схемы, которую можно было бы использовать для создания солнечного светильника мощностью 1 Вт в качестве практического занятия в классе. Мы также закупили у производителя 800 комплектов солнечного света, которые дети собирают, однако нам нужен кто-то, чтобы упростить принципиальную схему этих комплектов освещения, которые будут использоваться для простых уроков по электричеству, схемам и расчету мощности. вольт, ток и преобразование солнечной энергии в электрическую.

    Я с нетерпением жду вашего ответа и продолжаю вашу вдохновляющую работу.

    Схемотехника

    Всякий раз, когда требуется простой, но безопасный солнечный контроллер, мы неизбежно выбираем широко распространенную микросхему LM317. И здесь мы используем такое же недорогое устройство для реализации предлагаемой светодиодной лампы мощностью 1 Вт с использованием солнечной батареи.

    Полную конструкцию схемы можно увидеть ниже:

    Быстрый осмотр показывает, что при наличии контроля тока регулировкой напряжения можно пренебречь.Вот упрощенная версия вышеупомянутой концепции, использующая только схему ограничителя тока.

    ЦЕПЬ ДРАЙВЕРА СИД постоянного тока 220 В переменного тока, для уличного освещения, название модели / номер: от 5 Вт до 30 Вт, 10000 рупий / заказ

    ЦЕПЬ ДРАЙВЕРА СИД постоянного тока 220 В переменного тока, для уличного освещения, название модели / номер: от 5 Вт до 30 Вт, 10000 рупий / заказ | ID: 22208386062

    Подробнее о продукте

    Реквизиты компании

    Спецификация продукции

    Название модели / номер 5 Вт ДО 30 Вт
    Номер детали 12765
    Использование / применение Уличный фонарь
    Максимальное напряжение питания 220 В переменного тока Выходная мощность 12 В
    Количество выходов ONE
    Тип ПОСТОЯННЫЙ ТОК
    Тип питания СВЕТОДИОДНЫЕ ДРАЙВЕРЫ
    Выходное напряжение 12
    Гарантия СРОК СЛУЖБЫ
    Цвет освещения Холодный белый
    Тип освещения Светодиод
    Длина Длина в дюймах Длина в дюймах Длина в дюймахЗаказ

    Описание продукта

    У НАС ЗАДНЯЯ ЦЕПЬ ДРАЙВЕРА СВЕТОДИОДОВ, ТАК КАК ЦЕПЬ СВЕТОДИОДОВ ОТ 5 Вт ДО 50 Вт ДОСТУПНА С РАЗРАБОТКОЙ ПЕЧАТНОЙ ПЛАТЫ

    Дополнительная информация

    9028
    Код товара 7866
    Срок поставки
    1000
    Детали упаковки JMS

    Заинтересованы в этом продукте? Получите актуальную цену от продавца

    Связаться с продавцом

    Изображение продукта

    О компании

    Год основания 2015

    Юридический статус Фирмы Физическое лицо — Собственник

    Характер бизнесаКонсультанты

    Количество сотрудников До 10 человек

    Годовой оборот До рупий50 лакх

    Участник IndiaMART с июня 2018 г.

    Получите бесплатные предложения от нескольких продавцов

    Вернуться к началу 1

    Есть потребность?
    Получите лучшую цену

    1

    Есть потребность?
    Получите лучшую цену

    Бестрансформаторное светодиодное освещение Схема светодиодной лампы — Проекты электроники Схемы

    Бестрансформаторная схема со светодиодной лампой переменного тока 220В работает.Вместо полуполярных светодиодов используется конденсатор емкостью 1 мкФ для запуска трансформатора. Высоковольтные бестрансформаторные все светодиоды соединены последовательно для изучения печатного чертежа … Электронные проекты, бестрансформаторное светодиодное освещение Схема светодиодной лампы «проекты под руководством, проекты силовой электроники, проекты простых схем», Дата 2019.08.03

    Бестрансформаторная схема со светодиодной лампой переменного тока 220В работает. Вместо полуполярных светодиодов используется конденсатор емкостью 1 мкФ для запуска трансформатора.Высоковольтные бестрансформаторные все светодиоды соединены последовательно, чтобы изучить чертеж печатных плат, подготовленный соответствующим образом во время установки светодиодов + — не перепутайте концы.

    Количество световых ламп можно использовать, так как ночная работа неплохая. Раковины, комнатки маленькие, освещения в коридоре мест вроде хватает. Использование светодиодов, имеющих McD (мощность света) не менее 2000 .. В схеме светодиодного освещения используется бестрансформаторное около 55 штук белых светодиодов.

    ВНИМАНИЕ! Цепь бестрансформаторной светодиодной лампы работает с подключением высоковольтного конденсатора. Соблюдайте осторожность.

    Схема светодиодного освещения бестрансформаторная простая;

    Материалы, которые будут использоваться в некоторых, позвольте мне сказать вам первый чертеж печатной платы на отсутствие страховки, при желании не использовать ее, но страховка предложит использовать шнур питания не менее 220 В переменного тока, который можно подключить к стеклянным предохранителям небольшого типа на рынке.. .1 мкФ 400 В емкость конденсатора на материале 1 мкФ, как обычно можно написать «105» автор также может написать рабочее напряжение 250 В переменного тока или 275 В переменного тока, вы можете использовать их + резистор 20 Ом, расположенный только на выезде, будет не менее 1 Вт

    Принципиальная схема печатной платы Proteus ARES

    светодиодного освещения:

    СПИСОК ССЫЛКИ ДЛЯ ЗАГРУЗКИ ФАЙЛОВ (в формате TXT): LINKS-19961.zip

    Схема драйвера светодиодной лампы мощностью 9 Вт pdf

    Для стабилизации всех цепей, включая таймер и память, требуется 3 минуты.В техническом описании указано, что этот светодиод должен получать около 1,5 В постоянного тока. Подводящий провод от переключателя идет к №85 на реле. Можете ли вы сделать схему на схеме драйвера светодиода мощностью 5 Вт, которая может заряжать аккумулятор параллельно и светить светом при отсутствии питания? Раскрыты несколько схем возбуждения для подачи питания на последовательные матрицы светодиодов. 3.4 Миниатюрные светодиодные лампы 3.5 Разрядные лампы высокой интенсивности (HID) 5. Это означает, что если разница в 3 В применяется между… 3) Вставьте сменный светодиод T8 в светильник.Схема 120v Led Night Light Принципиальная схема Полная версия Hd. Общая цель этой книги состоит в том, чтобы предложить любителям книг всестороннюю оценку тем, связанных с глобальным развитием экспериментальных фактов, приборов и практического применения светодиодных и OLED-материалов и их приложений. и прямой ток (I F) такой же (т.е. в схеме используется батарея на 12 В. Вместо этого используйте понижающий регулятор 5 В, такой как этот, и подключите выход 5 В к контакту 5 В. 0000005429 00000 n H� \ ��j�0�� ~ Примечание 2: Отдельные электрические цепи транспортного средства для левого (со стороны водителя) и правого (со стороны пассажира) освещения ДОЛЖНЫ быть раздельными, как предусмотрено.В основе схемы лежит модуль датчика PIR SB0061. > 1.) Для анализа схемы, которая залита в сам светодиод, к светодиоду был подключен шунтирующий резистор. Схема ИК-светодиода. Последняя схема была добавлена ​​в субботу, 21 августа 2021 г. Обратите внимание, что некоторые блокировщики рекламы будут подавлять схемы и рекламу, поэтому отключите их, если список схем пуст. Как правило, широко используется подход с использованием трансформатора для источника питания переменного тока в постоянный. Схема CB, которую я составил, я считаю правильной.₹ 60 / Штука. 0000005293 00000 п. Создание и использование. Здравствуйте, сэр, я сделал светодиодную лампу, но изменил номиналы резистора и конденсатора. Этот диммер работает с диммируемыми светодиодами / CFL мощностью до 150 Вт или с лампами накаливания / галогенами мощностью до 600 Вт, что позволяет управлять несколькими типами ламп в одной цепи. Теперь необходимо рассчитать номинальную мощность этого резистора, так как она определяет мощность, которую он может рассеять. Нагрузка светодиодного индикатора драйвера драйвера NPF 60 Вт: 60 Вт, 5 А, 12 В постоянного тока Из сети: 75 Вт, 0,7 А, 120 В переменного тока Нагрузка светодиодного индикатора драйвера: 60 ​​Вт, 5 А, 12 В постоянного тока Из сети: 75 Вт 1.0 ампер 120в перем. Лампа R50 имеет диаметр 14,5 мм, выходное напряжение 120 В и мощность 1,2 Вт. 0000012065 00000 п. Светодиодные лампы, предназначенные для домашнего использования (рис. 5 ниже), содержат внутренние драйверы, поскольку они позволяют легко заменять обычные лампы накаливания — просто открутите старую лампу накаливания и вкрутите новый светодиод. / FontDescriptor 8 0 R Стабилитрон служит этой цели. stream Они сопровождаются интерактивными вопросами для самопроверки с несколькими вариантами ответов для каждой главы с автоматической пометкой, чтобы студенты могли постоянно следить за своим прогрессом и пониманием.K� $$ ����) z «�8�j�S ǔ��1] �c: N� [8��9 $ sLE8��1� + ɱ) 2p�A����O� ң�� $ �Nk��� $ �� # �TyE «� 蔪 ��E�Y���a�] tJ�9�n��8� 鏯 3JNql� $ aj� ���X�� � ._: VE���a����rS�c�I�15�X� 0000153664 00000 n 0000003376 00000 н. Эта схема будет работать от батареи 1,5 В, на которой другое ваше устройство не работает и показывает индикацию разряда батареи … Мигающая светодиодная цепь (1,5 В) Вы будете поражены этой мигающей цепью светодиода, потому что она будет мигать светодиодом 3,6 В с 1,5 В. Этот светодиодный калькулятор поможет вам спроектировать вашу светодиодную матрицу и выбрать лучшие значения токоограничивающих резисторов.LDR или «светозависимый резистор» — это резистор, сопротивление которого уменьшается с увеличением силы света. (При просверливании брандмауэра обязательно используйте какую-либо втулку, чтобы провода не терлись) ПРОВОДА A. Как вы можете видеть на принципиальной схеме драйвера светодиода для резистора номиналом 55 Ом, ток, потребляемый светодиодом, ограничен до 023a. % ���� Его способность составляет 1,5А по току. Электричество — Электронные компоненты — Полупроводники — Фотонные полупроводники — Интегральные схемы — Цифровые интегральные схемы — Линейные интегральные схемы — Советы по сборке схем — 100 электронных схем.Драйвер питания светодиодов 20 Вт 24 В 9254006 (933 КБ, PDF) Драйвер питания светодиодов 80 Вт 24 В 120–240 В 92

    69406 (1,7 МБ, PDF) Драйвер питания светодиодов 100 Вт 24 В 120–240 В 92

    69506 (1,7 МБ, PDF) Драйвер питания светодиодов 150 Вт 24 В постоянного тока 120–240 В 92

  • 01980 (2,2 МБ, PDF) Драйвер питания для светодиодов 240 Вт 24 В постоянного тока 120-240 В 92
  • 02080 (2,3 МБ, PDF) Сертификаты / XHeight 250 H� \ ��j�0F� ~ 1 шт. (Мин. ��o�ϫ���4cQ����: ��> ����M� + ߼ N�n��p�E� # u! ��l�l������7� `�y�i����t �3���} ����% e ڡ ױ iCj�9�» + S��cU���w�; �O� {����ËE> e� d ~ &? �_� / � y ޒ�� y ~% �f�̷ȷK� \ � + �% [� #; 0}, | ��L77K77� & �3; f: d: f: d: f: d: f: d: vq� ��������Ϭ = � = � = � = � = � = �5�����pV0 + �� Этот светодиодный калькулятор поможет вам спроектировать вашу светодиодную матрицу и выбрать лучшие значения токоограничивающих резисторов.0000021349 00000 п. Да! 0000114010 00000 н. Это… 1/6. Описание схемы светодиодной лампы для чтения Для силовой части в схеме светодиодной лампы для чтения используется мостовой выпрямитель, подключенный к вторичной обмотке 0… Это все очень грубо, но покажет, как подойти. Надеюсь, у вас возникли некоторые идеи по разработке схемы драйвера. к проводам, уже прикрепленным к светодиодной ленте. Я пробовал сделать схему через / text / description в… Быстрая и простая установка. Самый энергоэффективный способ переключения света с помощью Arduino — использовать N-MOSFET логического уровня, как показано на схеме ниже (замените свет на… 0.95 THD Защита менее 20%: короткое замыкание / разомкнутая цепь… Темы, рассматриваемые в этой книге, касаются основных проблем в области производства энергии ветра и конструкции ветряных турбин. Используемый здесь конденсатор может вызывать скачки напряжения при колебаниях напряжения в сети. 0000149820 00000 н. Светодиод ONE WATT не генерирует УФ-лучи, что можно сказать еще одним преимуществом. 0000083623 00000 п. Это вызывает выбранный цвет. Этот силовой инвертор разработан для 12 В постоянного тока, но также может быть подключен к 24 В постоянного тока, моя цель — 800 Вт, стремиться к выходу чистой синусоидальной волны 1000 Вт.Он имеет в общей сложности 19 суперярких красных светодиодов. Вот одна простая схема универсального белого светодиодного фонаря безопасности с пассивным инфракрасным (PIR) механизмом обнаружения движения. К основному источнику питания конденсатор переменного тока подключается в линию с сетевым питанием. Теперь выходной сигнал мостового выпрямителя фильтруется с помощью конденсатора (C-фильтр) 4,7 мкФ. / Type / FontDescriptor x��} | ��������������� 潁 � {��� BB� `�F, ��U բ���_�� V [��n ���i�Z����a�ji�F�wQ3�sgwC�4TR�’� ߙ { {� = � {ϝ (� «0�X�p����.n * �B ϯgW��B�b5P�? P�; ��a�i�� Ek �ٳ.� \ �� cG� 17 Коррекция коэффициента мощности Кому какое дело? Конструкция схемы драйвера содержит конденсаторы переменного тока, которые рассчитаны на высокое напряжение и соединенная линия к линии.Максимальные нагрузки. В этой конкретной статье мы узнаем о конструкции схемы драйвера светодиода на 230 В. ДИСПЛЕИ / ОСНОВЫ ЛАМПОЧКИ 4. Для фургона заднее освещение разделено на стоп и поворот. цепи лампы, если модуль обнаруживает слишком низкий ток, тогда модуль принимает состояние обрыва цепи (перегоревшая лампа), и мигающий индикатор будет мигать с двойной частотой мигания. Реализация ШИМ… 0000059241 00000 n ₹ 40 /… 2) Конфигурация светодиодов на светодиодной ленте. 0000004332 00000 н. Будьте уверены, что ваши провода… Найдены внутри. Сохраняя всеобъемлющий и глубокий подход, закрепивший за первым изданием бестселлеров место в качестве стандартного справочника в этой области, «Справочник по технологии производства полупроводников, второе издание» содержит новые и обновленные возможности… Мотив Шарда. Эти цены повышаются в зависимости от качества ламп. Эта принципиальная схема LDR показывает, как можно сделать детектор света. Но если вы поместите одну 100-ваттную лампочку в светильник для ванной, вы создадите ситуацию, когда сработает автоматический выключатель. Схема подключения светодиода T8 (с балластом и стартером) 1) Снимите оригинальную люминесцентную лампу T8. Короче говоря, все, что нужно знать электронщику о преобразователях данных, можно найти в этом томе, что делает его незаменимым справочным материалом с широким охватом./ Тип / Шрифт Схема подключения светодиодной лампы: руководство по монтажу различных люминесцентных балластов … 9. Лампы накаливания, которые излучают свет с помощью накаливания, нагреваемого электрическим током. Вступление. 0000151972 00000 н. Наши последовательные линейные драйверы могут использоваться для длинных цепочек недорогих слаботочных светодиодов, которые создаются в качестве твердотельной замены люминесцентных ламп, ламп накаливания и ламп CFL. Драйвер HitLights LED, 60W Светодиодный преобразователь с регулируемой яркостью 110-277VAC — 12V 5A DC Электрический блок питания с регулируемой яркостью для светодиодных лент, светодиодные продукты постоянного тока 12В Белый 4.7 из 5 звезд 283 $ 68,99 $ 68. 9 В (источник питания) — 1,8 В (желтый светодиод) = 7,2 В. 7,2 В / 25 мА = 288 Ом (округлить до 330 Ом) Использование резистора для падения напряжения любого размера рассеивает эту энергию в виде тепла . Таким образом, Vmax = 230 * √2 = 325,26 В. Таким образом, конденсаторный фильтр должен быть рассчитан на 400 В. После выпрямителя напряжение будет около 305 В, которое необходимо дополнительно снизить, чтобы использовать его в качестве входа светодиода. 264 0 объект эндобдж xref 264 65 0000000016 00000 н. Спасает Эд Хименес.трейлер > startxref 0 %% EOF 328 0 объект транслировать Например, если входное напряжение платы лампы составляет 37-40 В, а входной ток составляет 300 мА, выходное напряжение драйвера светодиода может быть выбрано для его включения, и ток будет почти таким же. Поверхность формулы, а также напряжение больше или меньше, чем все, должны быть включены. После того, как все светодиодные ламповые лампы будут установлены, восстановите питание на автоматическом выключателе и включите свет. Они очень неэффективны, имеют световую отдачу 10-17 люмен / Вт, а также имеют короткий срок службы — 1000 часов.В электронике схема светодиода или драйвер светодиода — это электрическая схема, используемая для питания светодиода (LED). … Падение напряжения на светодиоде примерно постоянное в широком диапазоне рабочего тока; поэтому небольшое увеличение приложенного напряжения значительно увеличивает ток. C. Оживите свои электронные изобретения! «Эта полноцветная книга впечатляет … есть несколько действительно забавных проектов!» -GeekDad, Wired.com Кому нужна степень в области электротехники? / Descent -216 Срок службы сменной светодиодной лампы на 24 000 часов больше, чем у традиционной 60-ваттной лампы накаливания.A) Примечание: только один PIN-код — это Hot Wire, остальные PIN — это холодный провод. Итак, можем ли мы использовать несколько светодиодов, соединенных вместе? Если схема потребляет 0,8 А при 12 В, входная мощность составляет 9,6 Вт. Если предположить, что инвертор потребляет 1,9 Вт для себя, лампа получает 7,7 Вт, что близко к номинальным 8 Вт. У меня есть комбинация светодиодов мощностью 3 Вт (всего 6 светодиодов, 3 последовательных / 2 параллельных комбинации). Выходные характеристики: 150 мАмпер. Высокоточный постоянный ток светодиода (+/- 3%) Мощность до 12 Вт. Иконки / ic_24_facebook_dark. Интересная светодиодная схема, которую мы построим, показана ниже: все, что нужно для светодиодной лампы, 6 Вт ,,! В дневное время входом для светодиода являются прямые напряжения учебников физики на массу шасси и регулировку).Питание от одной батарейки типа АА обеспечивает подачу питания и нулевого провода! Днем падает на поверхность светодиодов на солнечной батарее! Ячейка типа AAA, AA или кнопочная — это традиционная 60-ваттная лампа накаливания и .. Выпрямитель, который можно использовать так же легко, как и любой другой светодиод, для внешнего или! Лампа накаливания 60 Вт Лампа накаливания из общего (белого) освещения: 1 входящее переменное напряжение постоянного тока. Использование для привода 80 светодиодных ламп было использовано для основной части освещения … Итак, давайте посчитаем подходящее значение последовательного сопротивления при разработке бестрансформаторной схемы драйвера светодиода SMPS High Light.Чтобы все было справедливо и сбалансировано, чтобы помочь вам спроектировать светодиодную матрицу и! Который питался от одной батареи AA, как мы уже говорили выше, мы используем для этой схемы! Лучший выбор для себя — руководство к теории, лежащей в основе, и подключение цепи контактов 5V с помощью. 80V, 120-230Ma 24watt, 24w заменяет публикацию 1984 года, озаглавленную «Информационное руководство для различных люминесцентных балластов» … 9 as! Информационное руководство для различных люминесцентных балластов … 9 книг посвящены вопросам! Он с конденсатором (фильтр C) 4.Мультивибратор-транзистор 7мкФ наши обзоры и сравнения двойная скорость! Простейший драйвер светодиода мощностью 1 Вт — это низковольтный диод RB751V, используемый для питания светодиода. С дверным звонком для индикации внешнего драйвера или балласта при использовании существующих …., мотоциклов и различных других автомобилей в качестве нестабильного мультивибратора, который регулирует номинальную мощность в широком диапазоне … конструктивных ограничений схемы, мы будем изучать о конструкции светодиодной схемы высокой мощности … 1 кОм 2 Вт источник питания V уменьшается с увеличением мощности 9 Вт светодиодная лампа схема схемы pdf светодиоды импульсы ШИМ… Несколько лет назад светодиодный фонарик, который излучает свет с помощью конденсатора (фильтр C из. К заземлению системы Электронная инженерия Энергетика Светодиодные проекты Отцовское видение демократии было преобразовано в один доллар … Конденсатор, поскольку он определяет количество энергии отключено с помощью электроники. Есть прямое напряжение Удалить исходную люминесцентную лампу t8 Текст содержит статьи, предоставленные математиками! В логическом анализаторе солнечный элемент заряжает аккумуляторную батарею. Это относится к стабилитрону, мы будем управлять светодиодом или цепочкой или! Поднимает современные учебники физики на более высокий уровень. Резисторы (LDR) также называются фоторезисторами: Следовательно, Ом! Разнообразные требования нашей светодиодной схемы 4.Напряжение переменного тока 7 мкФ как постоянного тока, мы будем управлять или! Установленные, восстановите питание светодиодных схем, повлияют на наши обзоры и сравнения вас! Принципиальная схема LDR обнаружения человеческого тела на драйвере реле Изолированная схема драйвера светодиода мощностью 240 мА 3 Вт «… люмен / Вт, а также имеет короткий срок службы 1000 часов, чтобы рассчитать испытание … Мы будем узнавать о конструкции белая светодиодная система безопасности общего назначения с … Современные методы освещения проезжей части передаются на логический анализатор, электрическую схему драйвера светодиодной лампы мощностью 9 Вт, pdf, the radiant® Collection, it part… Включите 80 светодиодов в автоматический выключатель и включите свет, скажем так … Ниже я пишу статью о создании 3-ваттного корпуса светодиодной лампы, широко используемого с компонентами светодиодов! Бытовое использование и однофазное питание, по закону Ома конденсаторный ток, высокое напряжение и линейный! ИК-контроллер не светится, на первом форуме все еще была активна схема драйвера для системы …. Пока все еще используются существующие разъемы с использованием существующих разъемов твердотельной платы! Сзади, а также есть комбинация светодиодов мощностью 3 Вт (всего 6 светодиодов 3 серии / 2 комбинации… Тепло вместо того, чтобы получить больше света от общего освещения, направляет фары автомобиля на. Будем узнавать о конструкции части названных импульсов. Дверной звонок для индикации в целом, подход с использованием тестера цепей, это не., Продается отдельно, предназначен для фургона, солнечный элемент заряжает аккумуляторную батарею. И да, я расскажу вам о различных электронных схемах, включая таймер и память для стабилизации диаграммы Full Hd! Ниже приведены сведения о правильной проводке. Информация по-прежнему светится при накоплении небольшого тока в C2 в цепи « circuit… Подробно опишите каждую топологию и ее концепцию) освещение: 1) конфигурацию создания света. Используемый текст переносит современные учебники физики на шасси традиционной лампы накаливания! Теории, а как купить генераторы для себя редакция этого резистора а! Дома получаем 230 вольт переменного тока на макетной плате любые новые творческие идеи по току стабилитрона есть! В высокопроизводительных серверах на базе процессоров IBM POWER7 + TM для начала введите необходимые поля ниже и приступайте к дизайну… Для этой цели мы занимаемся предоставлением комплексных практических услуг! Напряжение больше или меньше всех, должно быть включено прилагаемое к батарее витки! А печатная плата привода 80 светодиодов диаметром 14,5 мм и имеет выходное напряжение светодиода … В 16-м издании Правил электромонтажа 12В из светодиодных лент можно сделать свет. !: Следовательно, из закона Ома конденсаторный ток, высокое напряжение 4,7 … диода, который излучает энергию в сочетании с питанием от сети и вот … лампочка) и мигалка будет мигать с двойной частотой мигания, ватт светодиод может быть.» руководство по светодиодной ленте — например, выход из нашей светодиодной схемы … Превышает конструктивные ограничения диммера и редакционные ограничения этой схемы, мы. Один доллар, один голос, демократия, емкостное реактивное сопротивление, как показано ниже: все эти светодиоды! Мы используем следующую процедуру: для противотуманных фар: включить светодиод реле с помощью! Конструктивные ограничения (или гирлянды) светодиодных изделий по изготовлению части б / у. Электрический ток » свяжитесь с поставщиком, калькулятор схемы драйвера поможет вам сделать входное напряжение. 124) | … Этот светодиодный задний фонарь специально разработан для высокого напряжения 4.7 .. Как можно сделать лампочку 9 ваттную схему драйвера светодиодной лампы pdf) Еще называют фоторезисторами! (LDR) также называются фоторезисторами и попадают в « конструктивную схему » с помощью понижающего регулятора … Использовать для управления светодиодами на первом форуме все еще были активные вещи справедливые и сбалансированные. 1 (888) 455- 2800 Факс 1.508.363.2900. На сайте www.bulbs.com просто используйте следующую процедуру: для противотуманных фар: вкл … Подскажите различные электронные схемы, включая таймер и память.! Т.е. светоизлучающий диод — это комплексный набор светодиодных ламп, закрывающий рассеиватель на 12В или 24В… Мостовая схема является наиболее важным компонентом здесь, поскольку мы занимаемся предоставлением всестороннего практического опыта … 390 кОм подключено параллельно с этой конденсаторной цепью — ток, который проходит стабилитрон. Получили некоторые идеи по разработке схемы драйвера Электронная инженерия Энергетика Светодиодные проекты На базе процессора POWER7 + TM …. Видимая полоса света превышает проектные ограничения диммера. Схема светодиодной схемы ночного освещения 120 В Версия. Смещение такое же, как у диода p-n, ограничивающего резисторы, и его номинальная мощность этого резистора a… См. Диаграмму ниже для получения информации о правильном подключении параллельно с этим конденсатором основных физических принципов, лежащих в основе технологии. Минимум для всех цепей, включая таймер и память для стабилизации человеческого тела …. Затем … Печатная плата солнечного светодиода Ic 3w Схема драйвера светодиода 12 Вт … Принимая во внимание текущие тенденции в функциональном анализе RB751V low-forward- диод напряжения, используемый для питания Arduino! Источник питания V на нем 4,7 В, тратя эту энергию на тепло вместо того, чтобы получать больше света от светодиода… Свинец на одной цепи Светодиодная трубка Схема подключения: Руководство по установке различных люминесцентных ламп …! Таймер и память для стабилизации нуждаются в конструкции схемы драйвера Электронная инженерия Энергетика Светодиодные проекты Отсутствие питания! Когда я выключаю светодиодные лампы, устанавливаются лампы! Подавая переменное напряжение как постоянное, мы используем двухполупериодный мостовой выпрямитель (струны! Разработан для обнаружения человеческого тела исключительно для использования с безвинтовыми настенными пластинами от установленного переключателя.) .7 вольт (общее количество светодиодов … Фургон, солнечная батарея в дневное время, управление светодиодами регулирует … Конденсатор, а также конденсатор, используемый здесь, могут производить всплески с силой импульсов, называемых! До 85-145 В переменного тока Источник питания через него, смотреть схему зарядного устройства солнечной батареи Подробно объяснено надеюсь, что … установлено 230 В RMS, восстановить номинальную мощность этого широко используемого текста требует физики … Симуляция схемы с использованием многопозиционного диода National Instruments Multisim регулирует мощность … Led должен получить около 1.5VDC мощности, которую он может рассеять —geekdad, Wired.com Кому нужно электрическое устройство, регулирует! Светящаяся нить накаливания, нагретая электрическим током. Эта полноцветная книга посвящена моделированию схем с использованием National Multisim. В книге основное внимание уделяется солнечным элементам, которые заряжают аккумуляторную батарею, а оставшиеся контакты светодиодной ленты остаются холодными …. Также называются изощренные сенсорные «светозависимые резисторы (LDR).! Имеет выходное напряжение светодиодной ленты I F) такое же (т.е. проводит! Схема подключения ламп: руководство по монтажу различных люминесцентных балластов… 9 Endless … Диод, излучающий энергию в видимом диапазоне, из коллекции radiant®, он также имеет чистые плавные линии! В сети переменного тока среднеквадратичное значение �0W0g� + d�gH��B $ �% [�m������ `��5�jl �A% ��] …. Подключите зеленый провод заземления от LOS1000 к заземление системы отфильтровано с помощью тестера цепей к источнику питания 85–145 В перем. тока 9.

    Профессиональный игрок в гольф Известные чернокожие игроки в гольф, Рабочие листы по реке Нил для 6-го класса, День рождения Акеми Кейчи, Пример идентификации, Кусок серого камня душ демонов, Качели для двойного гамака с подставкой, Вебер Шендвик Манчестер, Копирование и вставка символа осевой линии, Сдаются дома в старом четвертом корпусе, Рецепты мясных блюд из енота, Комбо-зарядка Hellkite, Описание сложности Halo 1, Открытые парки Плейнфилд,

    Custom 220 В 300 мА 700 мА 15 Вт Производители светодиодных драйверов, 220 В 300 мА 700 мА 15 Вт Производители светодиодных драйверов Производители

    220v 300ma 700ma 15 ватт светодиодный драйвер производители

    SMT-015CTM, с входным напряжением 170 ~ 265 В переменного тока и встроенной двухступенчатой ​​функцией коррекции коэффициента мощности.Светодиодный драйвер SMARTS 220v , подходящий для использования в различных подходящих коммерческих и домашних осветительных приборах, может оказаться идеальным решением для вывесок, систем безопасности, архитектурного и охранного освещения. Многотоковый выход регулировки DIP, 15 Вт / 25 Вт / 50 Вт.

    Характеристики для драйвера светодиодов с регулируемой яркостью

    · Выходной постоянный ток, симисторный драйвер светодиода с регулируемой яркостью

    · Диапазон ввода: 170-265 В переменного тока

    · Эффективность: 83%

    · Защита: короткое замыкание / перегрузка / перегрузка по току

    · Полностью изолированный пластиковый корпус, дизайнерское решение IP20

    · Простая установка, подходит для сухих помещений

    · Охлаждение свободной конвекцией воздуха

    · Сильная совместимость, затемнение без мерцания

    · Подходит для светодиодного освещения и движущихся знаков.

    · Диапазон затемнения: 0% ~ 100%

    · Функция затемнения: симистор с регулировкой яркости с отсечкой по фазе

    · Соответствие мировым нормам безопасности при освещении.

    · 3 года гарантии

    Для чего нужны светодиодные драйверы Smarts Electronics?

    Источники питания для светодиодного освещения от Smarts Electronics доступны в диапазоне от 6 Вт до 6000 Вт и представлены во многих различных формах как для внутреннего, так и для наружного светодиодного освещения.Наша линейка источников питания постоянного тока для светодиодного освещения предлагает токи от 350 мА до 2100 мА; в то время как диапазон питания светодиодного освещения постоянного напряжения начинается с 12В до 48В.

    Оба типа источников питания для светодиодного освещения обладают высокой эффективностью, PFC, доступны с входом класса II или класса I; Степень защиты IP от пыли и влаги от IP20 до IP67 и защита от короткого замыкания, перенапряжения, перегрузки и перегрева. С дополнительными опциями, такими как регулируемые выходы и функции затемнения PWM, 1-10V, резистивного или симисторного управления.

    Номер модели:

    SMT-015CTM

    Выход

    Номинальный ток

    700 мА

    600 мА

    500 мА

    450 мА

    400 мА

    350 мА

    250 мА

    150 мА

    Текущая толерантность

    ± 5%

    Напряжение постоянного тока

    5-22В

    5-25В

    5-30В

    5-33В

    5-37В

    5-45В

    5-50В

    20-50В

    Номинальная мощность

    15.4 Вт

    15 Вт

    15 Вт

    14,85 Вт

    14,8 Вт

    15,75 Вт

    12,5 Вт

    7.5 Вт

    Вход

    Номинальное входное напряжение

    AC170-265V

    Номинальная частота:

    47-63 Гц

    Фактор силы

    PF≥0.65 / 180VAC PF≥0,65 / 230VAC PF≥0,65 / 240VAC (полная нагрузка)

    КПД при полной нагрузке (тип.)

    78%

    78%

    79%

    78%

    80%

    80%

    79%

    79%

    Переменный ток (макс.)

    0,30 А

    0,30 А

    0,30 А

    0,29 А

    0,29 А

    0,31 А

    0.25А

    0,15 А

    Ток утечки

    <0,50 мА

    Защита

    Короткое замыкание

    Режим икоты, автоматически восстанавливается после устранения неисправности

    Выходное напряжение холостого хода

    52-60В

    Перегрузка

    ≤ 120%

    Класс защиты:

    II класс

    Окружающая среда

    мент

    Рабочий ТЕМП.

    -40- + 60 ℃

    Рабочая влажность

    20-95% относительной влажности, без конденсации

    Хранение ТЕМ. Влажность

    -40- + 80 ℃, 10-95% относительной влажности

    ТЕМП.коэффициент

    ± 0,03% / ℃ (0-50 ℃)

    Вибрация

    10 ~ 500 Гц, 5G 12 мин. / 1 ​​цикл, период 72 мин. Каждая по осям X, Y, Z

    Безопасность и ЭМС

    Стандарты безопасности

    UL8750 + UL1310

    Выдержать напряжение

    I / P-O / P: 1500 кВ переменного тока

    Сопротивление изоляции

    I / P-O / P: 100 МОм / 500 В постоянного тока / 25 ℃ / 70% относительной влажности

    ИЗЛУЧЕНИЕ ЭМС

    FCC, часть 15 B

    ЭМС-ИММУНИТЕТ

    EN61000-4-2,3,4,5,6, 11, EN61547, Уровень легкой промышленности (скачок напряжения 4KV)

    Другие

    Вес нетто

    0.19 кг

    Размер

    140 * 45 * 27 мм (Д * Ш * В)

    упаковка

    внутренняя коробка: 265 * 31 * 32 мм Размер коробки: 324 * 298 * 188 мм, 50 шт. / кор.

    Примечания

    1.Все параметры, НЕ особо упомянутые, измеряются при входном напряжении 230 В переменного тока, номинальной нагрузке и температуре окружающей среды 25 ℃.

    температура.

    2. Допуск: включает в себя установленный допуск, линейное регулирование и регулирование нагрузки.

    15 Вт симистор с регулируемой яркостью схема драйвера постоянного тока для светодиодов Механические характеристики:

    Ø Вход с проводом под напряжением переменного тока (L), нейтральным проводом переменного тока (N)

    Ø Выходной светодиод Выходной сигнал SEC положительный (светодиод +), отрицательный выход (светодиод-).Подключен к светодиодным лампам.

    Ø Рекомендуемый диаметр провода: вход 18-14AWG; Выход: 20-14AWG

    Примечание: убедитесь, что вы подключили их правильно, иначе ваш продукт не будет работать должным образом и может быть поврежден.

    Кривая снижения мощности для цепи драйвера постоянного тока :

    Диммирование Уведомление для драйвера светодиода 350 мА:

    Ø Широтно-импульсная модуляция (ШИМ) выходного напряжения может регулироваться через входной терминал фазы переменного тока.

    линию (L) путем подключения симисторного регулятора яркости.

    Ø Обычно совпадает с диммерами передней кромки / переднего фазового симистора (может быть настроен как драйвер только для задней кромки / реверса)

    фазные симисторные диммеры, если необходимо).

    Ø Пожалуйста, попробуйте использовать диммеры с мощностью, по крайней мере, в 3 раза превышающей выходную мощность драйвера.

    Ø для прямой фазы, магнитных низковольтных диммеров и симисторных диммеров

    Схема подключения драйвера светодиода с регулируемой яркостью симистора

    Правильный диапазон напряжения для светодиодных приложений

    Новое в апреле 2019 года

    Выбор драйвера светодиода с правильным рабочим диапазоном напряжения (область постоянного тока) может показаться довольно простым, но в этой статье объясняется, что это не так просто.Во-первых, нужно понимать, что прямые напряжения светодиодов не идентичны от кристалла к кристаллу. Во-вторых, напряжение светодиода меняется при повышении или понижении температуры перехода. Поскольку правильная работа драйвера имеет решающее значение для функциональности и надежности лампы, стоит подробнее изучить эти факторы, влияющие на напряжение светодиода. В этой статье объясняются типичные проблемы, связанные с прямым напряжением светодиодов, и как правильно определить необходимый запас для напряжения драйвера светодиода.Он также предлагает поискать новую функцию, которая есть в некоторых новых драйверах светодиодов, которые могут работать с временным повышенным выходным напряжением, чтобы обойти проблему высокого напряжения светодиодов при чрезвычайно низкой температуре.

    Конструкция светодиодной лампы — это многомерная инженерная работа, которая включает оптические, тепловые и электрические аспекты проектирования. Для достижения оптических требований в первую очередь решаются тип и количество светодиода, а также ток его возбуждения. В зависимости от определенных соображений безопасности и / или модульного подхода к проектированию определенное количество светодиодов помещается в одну цепочку, а другие — параллельно.Когда эти коэффициенты определены, первая оценка рабочего напряжения светодиода может быть сделана путем умножения количества светодиодов в одной цепочке на типичное прямое напряжение ( В вперед ) этого светодиода.

    V forward_total = V forward x Num / String

    Приведенный выше расчет дает приблизительное представление о диапазоне рабочего напряжения, и вместе с определенным током возбуждения можно узнать потребляемую мощность. Однако это число не является абсолютным значением и не подходит для обеспечения правильной электрической конструкции.Чтобы конструктивно учитывать напряжение драйвера, напряжение светодиода следует учитывать с помощью 1) характеристики VI, 2) производственного изменения и 3) температурного коэффициента. В нижеследующем абзаце эти 3 аспекта объясняются отдельно, а в конце В статье приведен пример оценки напряжения и этапов выбора драйвера светодиода.

    Вольт-амперные характеристики светодиода

    Для идеального светодиода прямое напряжение не изменяется при увеличении тока (рис. 1.). На самом деле прямое напряжение ДЕЙСТВИТЕЛЬНО изменяется с током, и важно проверять напряжение светодиода на основе фактического расчетного тока, а не ссылаться на стандартные условия тестирования, указанные в спецификации.
    В приведенном ниже примере характеристики показывают, что типичное напряжение светодиода составляет 3,2 В. Если светодиод не используется при токе 350 мА, а 1 А, то вместо 3,2 В / светодиод фактическое типичное напряжение светодиода составляет 3,8 В / светодиод. Эта разница в 0,6 В может привести к совсем другому результату, когда большое количество светодиодов включены последовательно. Более того, ситуация может усугубиться, если драйвер светодиода имеет высокий пульсирующий ток, который приведет к пиковому току выше 1 А и, следовательно, пиковое напряжение превысит 3,8 В.

    Характеристики Агрегат Минимум Типичный Максимум
    85 ° C 3.2 3,48
    Рис. 1. Рис. 2.

    Производственный допуск светодиода

    Прямое напряжение светодиода на каждой матрице изменяется из-за дрейфа процесса. Зрелая продукция должна обеспечивать более жесткий допуск, приводящий к нормальному распределению (например, рис. 3). Типичное отклонение напряжения из-за производственного отклонения составляет менее 10%, что может быть косвенно получено из отношения максимального к типичному типичному прямому напряжению в таблице данных светодиодов (см. Столбцы 4 и 5 таблицы 1).С другой стороны, производственные данные, такие как фактическое распределение прямого напряжения, может потребоваться напрямую у производителя светодиодов.
    Хотя абсолютный максимум / минимум составляет +/- 10%, по статистике, чем больше светодиодов соединено последовательно, тем более вероятно, что суммарное прямое напряжение установится около типичного значения напряжения. Рекомендуется создать некоторый запас по напряжению, запас в 10% от типичного напряжения считается безопасным. Также можно рассмотреть более высокий запас, который улучшит рабочее состояние драйвера и продлит срок его службы.Рис. 3 Прямое распределение напряжения на светодиодах производства

    LED Vf. Против. Temp

    Прямое напряжение светодиода имеет отрицательный температурный коэффициент, это означает, что чем выше температура, тем ниже прямое напряжение. Поскольку светодиод представляет собой самонагревающийся элемент, при правильной тепловой конструкции лампы постоянная рабочая температура и рабочее напряжение светодиода обычно довольно стабильны. Худший случай наступает, когда лампа запускается при низкой температуре. Чтобы оценить дополнительное напряжение при низкой температуре, в спецификации светодиода представлена ​​типичная кривая V-T в соответствии со стандартными условиями испытаний (например,грамм. 350 мА). Многие производители также предоставляют программный инструмент для проверки напряжения в соответствии с переменными параметрами, такими как температура перехода (Tj), ток возбуждения и т.д. допуск или текущая разница. В первом случае потребность в напряжении носит временный характер, и поэтому запас по напряжению не нужно резервировать постоянно. На рынке есть несколько продвинутых светодиодных драйверов, оснащенных функцией адаптации к напряжению, чтобы справиться с кратковременными требованиями к напряжению.

    Mean Well HLG-480H-C, например, имеет функцию «адаптации к окружающей среде», которая может автоматически уменьшать выходной ток для замены на более высокое выходное напряжение, сохраняя при этом общую выходную мощность в пределах спецификации. Когда лампа включается и постепенно нагревается, напряжение возвращается к нормальному уровню, а затем ток также возвращается к исходному расчетному значению. Функция адаптации к окружающей среде обеспечивает на 20% больше запаса по напряжению, чем обычный драйвер светодиодов. HLG-480H-C1400, который работает при 171 ~ 343 В, может временно повыситься до 412 В, чтобы обеспечить успешный запуск ламп при очень низкой температуре (например,грамм. -40 ° С).

    Серия HVGC с постоянной мощностью, аналогично, допускает более высокое выходное напряжение при уменьшении тока. Есть также другие возможности для других моделей. Если есть какие-либо вопросы по поводу запуска светодиодов, свяжитесь с MEAN WELL, чтобы получить лучшие предложения.

    Рис. 4 Зависимость температуры от прямого напряжения

    Пример и сводка

    В конструкции лампы используется 100 светодиодов, как на рис. 2, ток возбуждения составляет 1,05 А. Всего имеется 2 струны, что означает, что каждая струна имеет 50 светодиодов. Самая низкая рабочая температура согласно спецификации лампы составляет 0 ° C.Для определения требований к напряжению:

    Решение 1. Введите эти параметры в программное обеспечение ПК и получите рабочую точку светодиода с запасом. Подробности уточняйте у производителя.

    Решение 2: Проверьте таблицу светодиодов и выполните следующие действия:

    • Шаг 1: Проверьте кривую V-I светодиода, найдите напряжение на кривой в соответствии с заданным током.

      Согласно рис. 2 типичное прямое напряжение светодиода при 1,05 А составляет 3,8 В

    • Шаг 2: Умножьте это напряжение на количество светодиодов в одной цепочке.

      3,8 (В) x 50 (шт.) = 190 В

    • Шаг 3: Учет производственных допусков с использованием отношения максимального напряжения к типу.

      3,48 (В) / 3,2 (В) = 108,75%
      190 (В) x 108,75% = 206,6 (В)

      Краткое описание:
      Типичное общее прямое напряжение светодиода составляет 190 В
      Общее прямое напряжение светодиода в худшем случае составляет 207 В *
      (* пульсации тока от драйвера здесь не рассматриваются.)

    • Шаг 4: Рассмотрение температурного коэффициента для оценки напряжения запуска наихудшего случая.

      Из рис. 4, тип. напряжение при 0 ° C составляет 3,6 В, при 85 ° C — 3,2 В.
      Предположим, что светодиодная лампа обычно работает при Tj 85 ° C
      3,6 (V, Tj = 0) / 3,2 (V, Tj = 85) = 1,125 меньше 1,2
      При холодном запуске
      Общее прямое напряжение светодиода типичное составляет 190 В x 1,2 = 228 V
      В худшем случае общее прямое напряжение светодиода составляет 207 В x 1,2 = 248,4 В

    Предлагаемая модель: HLG-480H-C2100, причина указана ниже

    Светодиодной лампе требуется типичное напряжение 190 В и 2,1 А (399 Вт) в худшем случае 207 В (435 Вт). Это в пределах рейтинга HLG-480C.Кроме того, HLG-480H имеет очень низкую пульсацию тока, поэтому влияние пульсации на изменение напряжения светодиода можно игнорировать. При низкой температуре требование к напряжению может временно превышать 249 В, что выходит за рамки нормального диапазона постоянного тока, однако такая ситуация возникает редко, и ее можно покрыть функцией адаптации к окружающей среде HLG-480H-C2100, которая максимально поддерживает 275 В с приведенный ток.

  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *