Схема подключения датчика давления воды к электричеству: схема подключения, устройство и отзывы

Содержание

схема подключения к погружному насосу и поверхностному, принцип работы

Эффективность автономного водоснабжения в частном доме или на дачном участке во многом обеспечивает реле давления воды для насоса, однако для его корректной работы необходимо правильно установить и эксплуатировать оборудование. Поняв принцип работы этого устройства, вы сможете оценить его необходимость и важность безотказной эксплуатации.

Назначение реле давления и принцип работы

Насосные станции обычно оснащаются автоматикой для контроля и управления работой, так как включение и отключение перекачивающего оборудования в автономном режиме крайне необходимо. Выполнение этих операций вручную потребует постоянного внимания к системе и не даст обитателям дома заниматься своими делами, работать и отдыхать.

Достаточный уровень контроля обеспечивает реле давления. Оно представляет собой блок с пластиковым кожухом. Внутри корпуса находятся две пружины, каждая из которых «отвечает» за настройку значения крайнего положения (параметров включения и отключения насоса).

Схема устройства реле давления воды для насоса

Реле функционально соединено с гидроаккумулятором, в котором в находятся вода и сжатый воздух, среды соприкасаются через гибкую эластичную мембрану. В рабочем положении находящаяся в резервуаре вода через разделяющую перегородку давит на воздух, создавая определенное давление. Когда вода расходуется, ее объем уменьшается, снижается давление. При достижении определенного (выставленного на реле) значения, включается насос и вода закачивается в резервуар до достижения выставленного на второй пружине значения.

Схема подключения реле давления воды для насоса предусматривает соединение оборудования с водопроводом, насосом и сетью электрического питания.

Выбор места установки

Для корректной работы оборудования подключение реле давления к насосу должно выполняться таким образом, чтобы избежать влияния турбулентности и резких перепадов давления в моменты включения перекачивающего оборудования и в процессе его работы. Наилучшее место для этого — в непосредственной близости от гидроаккумулятора.

Перед установкой реле давления обратите внимание на рекомендованный производителем режим эксплуатации, в частности, на допустимые значения температуры и влажности. Некоторые модели могут работать только в отапливаемых помещениях.

В классической схеме подключения реле давления к глубинному насосу автономного водоснабжения перед реле устанавливается следующее оборудование:

При использовании многих современных моделей перекачивающих агрегатов поверхностного типа установка реле давления воды для насоса может быть намного проще: проводится блочный монтаж, когда реле устанавливается вместе с насосом. Перекачивающий агрегат имеет специальный штуцер, поэтому пользователю нет необходимости самостоятельно искать наиболее подходящее место монтажа. Обратный клапан и фильтры для очистки воды в таких моделях часто бывают встроенными.

Подключение реле давления к погружному насосу также может быть проведено, если разместить гидроаккумулятор в кессоне и даже в самом колодце, так как часто требуется влагозащищенное исполнения оборудования контроля и условия эксплуатации реле давления могут позволять его нахождение в таких местах.

Схема подключения реле давления и насосной станции с поверхностным насосом незначительно отличается от схемы с погружным агрегатом последовательностью расположения некоторых элементов

Очевидно, что выбор способа и места установки зависит от исполнения оборудования, обычно все рекомендации в этом отношении указываются производителем в сопроводительной документации.

Подключение реле давления

Существует две часто используемые схемы, по которым производится подключение автоматики насоса и реле давления. Рекомендуемый производителем способ всегда указывается в сопроводительной документации, однако полезно будет ознакомится с возможными схемами.

Важно: При работе нужно соблюдать последовательность: сначала реле подключается к водопроводу, а затем к электрической сети.

1 способ

Реле монтируется на трубопроводе (выбор места делается с учетом указанных выше правил и рекомендаций). Монтаж выполняется при помощи тройника, соединенного с переходящим штуцером (его может заменить отводной шланг).

2 способ

Гидроаккумулятор оснащается штуцером, имеющим пять выходов, к которым подсоединяют:

  • трубопровод от источника забора воды,
  • реле,
  • манометр,
  • трубопровод, подающий воду в дом,
  • собственно гидроаккумулятор.

Реле, в свою очередь, соединяется с погружным или наружным насосом и электропитанием 220 В.

Схема подключения реле давления воды к погружному насосу

 

Для обоих вариантов справедливы следующие рекомендации:

  • Необходимость герметизации резьбовых соединений с помощью пеньковой подмотки и герметика или с использованием ФУМ-ленты,
  • Для того, чтобы выполнить соединение, потребуется вращение прибора на фитинге, но альтернативой может стать использование соединения «американки».
  • Электроподключение должно выполняться с помощью кабеля, сечение которого выбирается в соответствие с мощностью перекачивающего агрегата (обычно используется оборудование не более 2 кВт, для которого достаточно проводника с сечением 2,5 кв. мм).
  • Клеммы для подключения обычно имеют маркировку для более простого монтажа, однако, если подобная маркировка отсутствует, это не будет большой проблемой – предназначение каждой клеммы не сложно определить по схеме.
  • Наличие заземляющей клеммы делает выполнение заземления для оборудования обязательным.

Все нюансы определяет прилагающаяся к технике схема подключения погружного насоса с реле давления или аналогичное соединение для наружного перекачивающего агрегата.

Правила подбора оборудования

  • Для автономных систем водоснабжения следует выбирать реле бытового назначения. Подобные системы характеризуются основными параметрами: максимальное значение давления – не более 5 атмосфер, рабочие значения давления обычно находятся в пределах от 1,4 до 2,8 атм.
  • При настройке реле важно помнить, что величина разности между предельными значениями (настройками на пружинах) напрямую влияет на объем воды, который насос при таких настройках станет закачивать в резервуар гидроаккумулятора.
    Большой объем способствует тому, что перекачивающий агрегат станет включаться реже, однако нельзя превышать в этом отношении технические возможности системы.
  • Не стоит экономить чрезмерно, приобретая реле неизвестного происхождения. Такая техника не только не сможет обеспечить корректной работы, но и с большой долей вероятности станет причиной более поломки другого оборудования, входящего в систему.
  • Подключение автоматики насоса и реле давления совместно с качественным манометром, установленным рядом с реле, позволит контролировать параметры работы системы и поможет обнаружить нарушения на ранней стадии, когда внешние проявления еще отсутствуют.

Распространенные неисправности насосной станции и их устранение описаны в нашей отдельной статье. Практически все работы можно провести самостоятельно.

Про гидроаккумуляторы у нас есть информация тут. Какие бывают модели и что важно при их выборе.

О способах чистки колодца мы рассказали в этом материале.

Настройка

Для настройки реле давления необходимо установить в системе рабочее давление. Для этого после сборки схемы оборудование следует включить и подождать автоматического отключения при срабатывании реле. После этого снимают крышу и настройку выполняют в такой последовательности:

  1. Ослабляют гайку, которая прижимает меньшую пружину.
  2. Устанавливают требуемое значение минимального значения давления (параметр включения насоса). Вращение по часовой стрелке гайки большой пружины – увеличение выставляемого значения давления, в обратную сторону – уменьшение.
  3. Открыв кран, опустошают систему, контролируя по манометру порог срабатывания автоматики. При неудовлетворительном результате корректируют настройку.
  4. Аналогичным образом производится настройка параметра выключения насоса, вращением гайки на второй (меньшей) пружине.

Подключение скважинного насоса к электричеству. Схема подключения водяного скважинного насоса для индивидуального водоснабжения

Водяную скважину целесообразно оборудовать стационарной насосной станцией только после промывки. Монтаж водяного насоса в скважину выполняют после проведения подготовительных процедур – очистки и раскачки, чтобы уберечь дорогостоящее оборудование от засорения и повреждения песком, глиной и грязной водой. Проблем с выбором и установкой не возникает, если обустройством занимаются профессионалы.

Если необходимо самостоятельно установить оборудование, то сначала придется изучить технологию монтажа и грамотно подобрать элементы насосной группы, предварительно выбрав схему обустройства.

Схема водозабора с погружным оборудованием

Виды насосного оборудования для скважин

В зависимости от технических особенностей скважины, планируемого среднесуточного объема выкачивания воды, выбирают тип устройства и схему установки. Существуют 2 метода обустройства: установка погружного оборудования и монтаж поверхностной насосной группы. Разводку труб планируют, исходя из регулярности планируемой эксплуатации: сезонный водопровод организовывают гибкими шлангами по поверхности, круглогодичный – подземной проводкой ниже уровня промерзания грунта.


Погружное или поверхностное оборудование: отличия в монтаже систем

Поверхностные станции

Поверхностные устройства устанавливают в приямки, кессоны или подвалы (цокольные этажи) дома. В сезонных летних системах можно оставлять оборудование на открытом грунте. Особенности монтажа и применения поверхностных скважинных насосов:

  • Необходимо устанавливать группу в непосредственной близости к источнику, лучше – в приямке. При значительном удалении устройства потребуется насос большей мощности, чтобы обеспечить постоянную подачу воды из глубины скважины.


Идеальное место для монтажа поверхностного устройства – изолированный приямок

  • Подающий шланг необходимо оборудовать хорошим фильтром, чтобы внутрь корпуса не попала грязь со дна источника.
  • Оборудование работает шумно, даже маломощные модели требуют установки в звукоизолированном пространстве.
  • Обязательна установка защиты и гидроаккумулятора – от частого включения насос быстро выйдет из строя.

Главное преимущество оборудования – мобильность и простота монтажа. Также поверхностное оборудование всегда можно осмотреть и проверить, в отличие от глубинных устройств.

Глубинные насосы

Монтаж погружного (глубинного) водяного насоса выполняется непосредственно в скважину. Вода – рабочая среда, которая функционирует как охлаждающая жидкость и одновременно смазка для деталей двигателя. Скважинные устройства выпускают разных размеров, диаметра и мощности. В отличие от колодезных, скважинные насосы имеют меньший диаметр корпуса, встроенную защиту и большую мощность.


Глубинный насос работает в воде

Классификация погружных устройств в зависимости от принципа работы двигателя:

  • Вибрационные. Недорогие модели, не предназначенные для постоянной работы. Применяют в качестве временных устройств для полива, промывки и чистки скважин, откачки жидкостей. Вода всасывается через патрубок насоса после открывания входного штока под воздействием электромагнитного поля.
  • Центробежные. Устройства средней ценовой категории, которые оборудованы заводской защитой. Устанавливаются в системах для постоянного обеспечения водой коттеджей, дач. Оборудование работает абсолютно бесшумно, может устанавливаться в скважинах с любым дебитом и глубиной.

Подбор оборудования согласно техническим характеристикам и дебиту водозабора

Как выбрать погружной насос, который нужно установить в скважину, при этом сэкономить деньги и не ошибиться? Достаточно просчитать всего 4 параметра:

  • Дебит источника: фактическое количество воды, прибывающее в ствол скважины за единицу времени (час, сутки).


  • Напор: высота водяного столба от точки забора до крайней точки водоразбора в доме. К этому значению необходимо добавить значение, которое рассчитывают по суммарной длине горизонтальной проводки. В среднем, 10 м трубы равны 1 м водяного столба.
  • Количество потребляемой воды в час – максимальное значение. Суммируют объем, который вытекает за 1 час из всех точек водоразбора в доме.
  • Диаметр скважинной колонны: необходимо учесть минимальный диаметр. Труба может сужаться в местах соединений.

Для семьи из 3 – 4 человек достаточно купить оборудование, способное обеспечить до 3 кубометров в час, и с максимальным напором до 60 м. Не стоит покупать более мощные модели: при условии установки гидроаккумулятора необходимый объем жидкости накапливается в баке. Не нужно экономить, покупая слабый маломощный насос: оборудование будет постоянно работать на предельных оборотах, что сократит срок службы.

Техника установки и подключения насосной группы: монтаж погружных насосов

Чтобы правильно и как можно надежней установить насос в скважину, нужно подготовить детали соединения и необходимые материалы для обвязки. Понадобится:

  • ПВХ или пластиковый жесткий шланг (труба) для подачи воды от насоса. Стандартный диаметр, который применяют для водопровода – 32 мм.
  • Бочонок и обратный клапан. Большинство насосов оборудуют 1-дюймовым выходным патрубком.


Детали для клапанной группы обвязки

  • Фитинг-переходник от клапана к трубе.
  • Гидроизоляционные материалы: лен (пакля), герметик, фум лента.
  • Трос для того, чтобы привязать насос к скважине. Используют как стальной, так и полиэтиленовый, синтетический материал. Предпочтительнее применять пластик, который не подвержен коррозии, или трос из металла в герметичной оплетке.


Готовый трос, чтобы закрепить погружной насос в скважине с петлями

  • Зажимы, которыми фиксируют петли троса. Если используют металлические, понадобится водостойкая изолента.


  • Крюк с карабином, чтобы закрепить насос на оголовке скважины.
  • Гидроаккумулятор, защита: реле давления, манометр. Фитинги и переходники соответствующего диаметра.

Обвязка насоса: монтаж клапана и трубы

Перед тем, как крепить насос в скважине, выполняют обвязку. Сначала оборудуют отводящий патрубок клапаном. Обратный клапан минимизирует риск включения насоса без воды. Когда двигатель останавливается, клапан закрывается, и вода не стекает вниз через корпус.

Клапан соединяют с бочонком: на резьбу наносят герметик, наматывают льняную нить, скручивают. Соединенный с бочонком клапан скручивают с фитингом, к которому будет присоединена отводящая труба. Для герметизации резьбы используют специальный пастообразный герметик для соединения пластика с металлом.


Все соединения необходимо тщательно изолировать

Собранный клапанный узел соединяют с патрубком – выходящим отверстием насоса. К нижнему, всасывающему, патрубку желательно прикрутить дополнительный фильтр. Он защитит внутреннюю камеру от засасывания ила.


Собранный клапан соединяют с корпусом

Как правильно присоединить трос и кабель

Как правильно прикрепить страховочный трос к скважинному глубинному насосу? Трос разматывают, продевают одним концом через оба отверстия (ушки), обхватывая корпус. Короткий конец троса соединяют с длинным двумя или тремя зажимами. Вместо специальных металлических можно использовать пластиковые хомуты – их не нужно защищать от влаги. Если используются самосжимающиеся пластиковые крепежи, стоит зафиксировать петлю через каждые 5 см.


Трос фиксируют зажимами, формируя петлю

Металлические фиксаторы лучше обмотать в несколько слоев изолирующей лентой на водостойкой клеевой основе. Под действием влаги сталь быстро разрушится без защиты.

Готовый насос с обвязкой укладывают на ровной поверхности. Нужно отмерить необходимую длину троса и сформировать еще одну петлю на конце, для того, чтобы закрепить тросом скважинный насос на поверхности. Петлю схватывают зажимами.


Кабель фиксируют на трубе на ровной поверхности

Кабель необходимо отсоединить от коробки с конденсаторами. По всей длине шланга, который подсоединен к насосу, кабель придется зафиксировать изолентой с шагом в 20 – 25 см. Необходимо следить, чтобы провод не перегибался и не был перекручен.

Сборка гидроаккумулятора и защиты

До того, как крепить погружной насос в стволе скважины, необходимо собрать гидроаккумуляторный узел. Реле давления устанавливают непосредственно на баке. Тонкую настройку производят с помощью манометра. Обычно включение насоса настраивают на падение давления до 1,5 бар, выключение – на показателе в 2,5 – 3 бар.

Бак подсоединяют к трубопроводу фитингами. Переходники могут понадобиться 2 видов: угловые, если вход расположен снизу, а бак – вертикальный; или прямые, если бак – горизонтальный. Соединения герметизируют влагостойкой пастой и льняной нитью.


Переходники на входе в бак нужно герметизировать

Насос в скважине может устанавливаться как с подключением к гидроаккумулятору, так и с прямым подключением к отводящей трубе. Но экономить на резервуаре не стоит: запас воды защитит мотор от коротких циклов работы.

Как правильно установить и закрепить внутри скважины насос

Чтобы правильно установить скважинный насос, необходимо как можно точнее просчитать глубину опускания оборудования. Минимальное расстояние от фильтра на входе до дна – от 1 – 1,5 м. Верхний край насоса должен находиться на расстоянии от 1,5 м до уровня воды.

Опускают оборудование в строго вертикальном положении, плавно. Держать устройство за электрокабель нельзя. Опускают насос тросом. После достижения требуемой глубины погружения фиксируют верхнюю петлю троса на стальном крюке или карабине. Кабель проводят через отверстие в крышке и подсоединяют конденсаторную коробку.


Трос закрепляют на металлическом крюке оголовка

Крышку оголовка закрепляют на обсадной трубе – устройство готово к пробному пуску. Если после включения из шланга плавно, с хорошим напором течет чистая вода – можно завершать подключение. Шланг на выходе из скважины обрезают, подсоединяют фитинги, собирают отвод для полива. Трубы подключают к гидроаккумулятору.

Видео: подключение насоса к скважине

Полезный видеоурок от профессионала о том, как собрать, установить и надежно закрепить погружной насос в скважине.

Особое внимание в организации автономного водопровода уделяют подбору оборудования: без помощи квалифицированного мастера не обойтись. Установка насоса требует навыков и опыта. Из-за того, что оборудование постоянно находится в воде, выявить ошибки в монтаже или недостаточную герметизацию не удастся до того момента, пока насос не выйдет из строя.

Уважаемые посетители!!!

На фотоснимке, представлен насос БЦН с соответствующей электрической схемой \рис.1\ данного насоса. Электрическая схема насоса БЦН содержит следующие элементы электродвигателя, это:

  1. ротор;
  2. две обмотки статора;
  3. конденсатор;
  4. корпус насоса

и соответственно кабель трех проводной, один провод из которых является заземляющим проводником.

Назначение данного типа насоса — полив земельного участка на даче либо в частном доме.

Электрические схемы-водяных насосов

рис. 1

Рассмотрим электрическую схему \рис.1\ водяного насоса:

Фазный провод соединен через тепловое реле с общим выводом двух обмоток статора. Нулевой провод, как это показано по схеме, имеет разветвление и далее, соединен с рабочей и пусковой обмотками статора.

Заземляющий провод соединен с металлическим корпусом водяного насоса.

Какие могут быть возможные неисправности водяного насоса? Причины неисправности, по которым водяной насос может не работать, следующие:

  • Разрыв электропроводки кабеля на определенном участке;
  • неисправность реле;
  • неисправность конденсатора;
  • перегорание обмоток статора электродвигателя;
  • разрыв проводки кабеля в соединении со штепсельной вилкой;
  • отсутствие контакта с одной из обмоток статора

и другие причины.

Как определить подобные причины неисправности? Визуально найти причину здесь невозможно. Как и для всей бытовой техники, диагностика проводится прибором — мультиметр, где имеются такие функции для определения:

  • емкости конденсатора;
  • наличия сопротивления в обмотках статора;
  • прозвонки кабеля \от штепсельной вилки до соединения проводов кабеля с электродвигателем \.

При перегорании обмоток статора электродвигателя насоса,- статор с обмотками можно заменить на новый либо это устранить своими силами, то есть выполнить перемотку статора. При такой перемотке, учитывается как сечение медного провода так и количество витков.

Замена перегоревшего конденсатора проводится с учетом соответствующей его емкости и номинального значения напряжения, на которую рассчитан конденсатор.

Устранение возможных других причин, сложности Вам никаких не составит.

Рассмотрим следующий тип водяного насоса » Водолей» БЦПЭ 0,5-32 и соответственно электрическую схему для такого типа насоса \рис.2\.

рис.2

В этом примере представлен погружной тип водяного насоса, предназначенный для водоснабжения из колодцев. Схема рис.2 в общем то отличается от первой схемы тем, что здесь имеются два конденсатора, подключенных последовательно. Сетевой кабель через разъемное соединение соединен со схемой водяного насоса. Конденсаторная коробка выполнена герметичным способом. Статор, как обычно, состоит из двух обмоток (рабочей и пусковой). Корпус водяного насоса соединен с защитным заземлением.

Современные модели насосов снабжаются поплавковым выключателем.

На представленном рисунке наглядно видно, что при малом уровне воды поплавковый выключатель размыкает контакты питающей линии, при достаточном уровне воды — насос будет находиться во включенном режиме.

Насос погружается в емкость с водой на стальном тросе, удобство такого типа насоса состоит в том, что можно заполнять всевозможные емкости с водой как для заполнения под питьевую воду, для полива земельного участка и других нужд.

Устройство вибрационного насоса

Вибрационный насос состоит из таких деталей как:

  • проушина для троса;
  • шнур питания;
  • всасывающее отверстие;
  • патрубок;
  • клапан;
  • поршень;
  • шток;
  • упор;
  • диафрагма;
  • муфта;
  • корпус насоса;
  • амортизатор;
  • якорь;
  • корпус;
  • заливочный компаунд;
  • катушка;
  • сердечник.

Вибрационные насосы \рис.3\ еще называют электромагнитными. При протекании тока по обмотке катушки образовывается электромагнитное поле.

Под воздействием электромагнитного поля втягивается сердечник, соединенный с резиновой диафрагмой. При возвратно — поступательном движении резиновой диафрагмы, в приборе создается постоянный поток воды.

Устройство такого типа насосов — простое в своем исполнении. При какой либо перегрузке, может выйти из строя обмотка сердечника. Ремонт таких насосов выглядит как бы упрощенно и не требует больших познаний в электротехнике.

Вибрационный насос состоит из электрической \рис.4\ и механической частей. В зазоре электромагнита возникает переменное магнитное поле, которое приводит в движение рычаг. Рычаг соединен с сильфоном \S\, сильфон пульсируя — прокачивает жидкость через клапаны \k\.


Вибрационный \электромагнитный\ погружной электронасос

Принцип работы центробежного насоса

Центробежная сила воды таких насосов создается за счет вращения лопастей рабочего колеса. Производительность насоса соответственно будет зависеть от скорости вращения ротора электродвигателя. То есть здесь создается энергия давления, струя воды под напором выталкивается в трубопровод.

Электрическая схема центробежного насоса \рис.5\ состоит из:

  • конденсатора;
  • шнура \сетевого кабеля\;
  • пусковой и рабочей обмоток статора
  • теплового \токового\ реле.


Насос погружной центробежный, калибр НПЦ

Центробежный насос-принцип работы

К неисправностям, можно отнести такие же неисправности, состоящие в описании элементов электрической схемы рис.5.

Определение причины неисправности электродвигателя проводится способом диагностирования для отдельных участков электрических соединений, способ подобного диагностирования приведен в этом сайте.

Устройство вихревого насоса

Принцип работы допустим вихревого водяного насоса построен по такому же принципу как и центробежные насосы. В этих типах насосов центробежная сила воды создается вращением металлического плоского диска с небольшими лопастями. Устройство вихревого насоса показано на рис.6.

Вихревой электронасос состоит из следующих деталей:

  • подшипник насоса верхний или нижний;
  • втулка распорная \подшипниковая\;
  • втулка лопаточного отвода;
  • колесо рабочее;
  • втулка диафрагмы;
  • диафрагма;
  • муфта;
  • подшипник;
  • пята;
  • подшипник упорный.

Ну вот мы и получили вкратце представление об электрических водяных насосах.

Данная тема будет иметь дополнение как по электрической так и по механической части.

Буровая скважина, предназначенная для обеспечения приусадебного участка и домостроения водой, не может все время находиться в режиме ручного управления. Эффективному ее использованию способствует автоматика для скважинного насоса. С ее помощью удается защитить электрооборудование и поспособствовать увеличению срока службы всей системы.

Автоматика играет важнейшую роль в функционировании всей системы водоснабжения любого дома. Без нее насос — это просто агрегат, предназначенный для перекачивания жидкости из одной емкости в другую. Система водоснабжения — это комплекс оборудования, труб, переходников, кабелей и муфт, которые запускает в работу именно автоматика, позволяющая полностью исключить из схемы необходимость присутствия человека.

Основные функции

Современная автоматика для насоса скважинного востребована за счет своих основных функций:

  • Давление в системе удерживается на установленном уровне, поэтому при открытии крана нет необходимости ждать, пока жидкость проделает длинный путь из глубины скважины.
  • Электроэнергия потребляется максимально эффективно. Этому способствует периодическое своевременное включение блока автоматики для насоса, который добирает воду до необходимого объема.
  • Стенки скважины получают бо́льшую защиту во время низкого притока, что удерживает их от разрушения.
  • Механизм предохраняется от сухого хода, а также от проникновения нежелательных крупных инородных частичек.
  • Электромотор находится под контролем автоматики для насоса, что уберегает его от превышений по напряжению в сети, давлению в системе, а также от чрезмерно высокой температуры.

Разнообразие «автоматов»

Схема подключения скважинного насоса с реле давления и остальными элементами автоматизации зависит от базовых элементов всей конструкции. Для погружаемых аппаратов устанавливаются компактных модули с герметичными корпусами. В наружных конструкциях схема включает реле, различные системы датчик и т.п.

В этом списке автоматики для скважины выделяются системы, имеющие в своей конструкции гидроаккумуляторы. Сборка всех реле, датчиков и разводка будет иметь принципиально другую схему.

Как правило, автоматика для глубинного насоса монтируется одновременно с самим насосом после завершения всех буровых работ. В процессе работы потребуется учесть такие входные данные:

  • перед тем, как подключить скважинный насос, необходимо получить расчетную и эмпирическую величину производительности скважины;
  • разновидности насосов и их физические характеристики;
  • степень защищенности, так как в некоторых случаях требуется многоуровневая защита.

Некоторые модели современного оборудования способны обходится без гидроаккумуляторов, при этом имеют ряд дополнительных функций. При этом принцип работы остается точно таким же — контроль уровня давления в трубопроводе, с определенной реакцией на его понижение или повышение.

Поплавковые схемы

Это первое поколение автоматики, образующее простейшую схему работы. Полностью автономное функционирование системы они не создают, поскольку вмешательство человека в любом случае требуется. Но от этих приборов другого и не требуют.

Подключение скважинного насоса к автоматике, схема которой включает поплавковый механизм, является наиболее распространенным вариантом компоновки «автоматов». Принцип работы ее достаточно прост: если уровень жидкости начинает превышать максимально допустимый, то автоматика для насосов принудительно откидывает подачу электроэнергии на насос. Для мониторинга уровня используется накопительная емкость либо включенный в систему расширительный бачок.

Применяется один из типов датчиков сухого хода для насоса, схема подключения у них немного отличается:

  1. Датчики, изготовленные из пластика (контейнерные), применяются в установленных снаружи емкостях.
  2. Датчики уменьшенного габарита и с качественно герметизированным корпусом, востребованы для погружаемых моделей насосов.

Поплавковая схема подключения скважинного насоса обладает своими преимуществами перед другими конструкциями:

  • легкость установки;
  • невысокая итоговая цена;
  • электромотор эксплуатируется в щадящем режиме.

Стоит отметить, что поплавковая автоматика для скважины с погруженным насосом должна оснащаться защитой от чрезмерно коротких циклов старта и остановки, так как они негативно влияют на работоспособность насоса. Он быстро выходит из строя. Забор жидкости осуществляется до определенного настройками уровня, а после этого происходит сброс большой части воды. На малый расход объема электромотор не будет реагировать.

Дополнительной автоматической системой во время монтажа скважинного насоса является наличие водозабора с емкостью небольшого объема. Поплавковая камера оснащается мониторингом давления, за счет реле давления для насоса воды.

Самое главное, что требуется от поплавка — защитить оборудование от работы в некорректных условиях, например, при обмелении источника, резком падении давлении воды, отсутствии воды, если перекачка идет из какой-то емкости.

Все погружные модели должны быть оснащены поплавковой системой. При этом неважно, идет ли речь о скважинных насосах или о дренажных. Конструкция поплавка разработана таким образом, чтобы при изменении его положения относительно агрегата, реагировать отключением или, соответственно, включением. Такое устройство, хотя и является простейшим, позволяет исключить поломку оборудования и избавить от дорогостоящего ремонта.

Системы мониторинга давления

Второе поколение, включающее уже более сложную систему контроля давления воды в трубопроводе. В таких моделях может использоваться электронный прибор с рядом датчиков, вмонтированными в сам насос, трубопровод и еще в одном-двух местах, для того, чтобы мониторить состояние одновременно с нескольких позиций. В дальнейшем информация поступает на микросхему, задача которой проконтролировать работу оборудования и обеспечить наиболее комфортные условия ее работы.

Автоматика для насосов водоснабжения без гидроаккумулятора или с ним, контролирующая давление во время эксплуатации применяет:

  • реле, смонтированное на трубопроводе, которое заботится о защите погруженного водозабора;
  • бак, имеющий наружный или внутрискважинный насос, что допустимо для мембранных моделей.

Функционирование автомата, имеющего реле давления для скважинного насоса, зависит от правильных регулировок. На модулях ставятся максимальные и минимальные параметры давления. Если уровень падает к критическим значениям, то идет команда на отключение электропитания. Также ему перекрывается подача тока при допустимом наивысшем значении давления.

Насосная станция с гидроаккумулятором

В схеме применяется реле давления для гидроаккумулятора с пружинными регулировками. Проводится настройка минимальных и максимальных параметров в ручном режиме. Уровень сжатия пружины задает пиковое значение max. С помощью настроечной гайки выводят значение min.

Недостатком дешевых схем управления насосом по давлению является необходимость их точной ручной периодической настройки. Также бытовые реле имеют меньший ресурс использования.

Третье поколение автоматики

Это самые мощные и практически совершенные системы, которые стоят дороже простых аналогов, но в течение короткого времени отрабатывают вложенные деньги с лихвой. Конструктивно это такая же автоматика, но с гораздо большим набором функций, среди которых особенно выделяется тонкий контроль двигателя.

Связано это с тем, что у 99% моделей насоса работа мотора не регулируется. Он все время работает с одинаковой скоростью и мощностью. И если даже в ванной просто включить воду, чтобы помыть руки, насос начнет подкачивать воду с точно такой же мощностью, как если бы он закачивал воду в пустой резервуар.

Автоматический блок управления позволяет контролировать работу двигателя и определять, когда требуется незначительная подкачка, а когда необходимо запускать работу оборудования в полную силу. Фактически, автоматика последнего поколения не только запускает работу агрегата, но и регулирует уровень напряжения в сети, тем самым снижая расходы на электроэнергию и уменьшая износ оборудования.

Кроме того, это дает возможность настраивать агрегаты по нескольким направлениям, что особенно важно, когда в доме выстроена нестандартная схема водоснабжения.

Проточные системы

В специализированных магазинах можно обнаружить более дорогие многофункциональные устройства, способные в комплексе обезопасить скважинную систему. Существует две крупные группы, имеющие сходную схему подключения глубинного насоса к блоку автоматики:

  • пускозарядные;
  • релейные.

В первом случае применяется исключительно автоматические модули. В конструкции имеются печатные платы, но недостатком их является малый срок эксплуатации.

Во втором случае монтаж модуля выполняется в разводящих трубах. Встроенное электронное реле давления воды для насоса самостоятельно проводит фиксацию давления и контролирует наличие воды в системе.

Самодельное оборудование

Изготавливать самостоятельно всю автоматику сможет только специалист высокого уровня. От правильности входных параметров и напрямую зависти работоспособность будущей системы. Самостоятельно можно ставить автомат, только при наличии в системе элементов с близкими мощностыми характеристиками.

ВИДЕО: Универсальный блок автоматики

Собственный водопровод считается огромным плюсом практически на любом дачном участке. Он не требует от хозяина больших усилий для того, чтобы добыть воду. Если воды не хватает, тогда при необходимости вы легко можете обустроить скважину. Из нее легко можно добывать воду, но для этого вам потребуется выполнить подключение скважинного насоса.

Из-за простоты конструкции в скважину устанавливают погружные насосы, которые также могут называть глубинными. Из названия можно понять о том, что конструкция будет полностью находиться в воде. Здесь мы расскажем о том, как выполнить подключение погружного насоса к сети и системе водоснабжения своими руками. При необходимости можете прочесть про .

Подготовительные работы

Чтобы на участке была обеспечена бесперебойная система подачи воды, вам необходимо следить за работой устройства.


Чтобы обеспечить добычу воды может потребоваться минимальный комплект. На сегодняшний день минимальный комплект для подачи воды из колодца либо скважины должен состоять из:

  1. Глубинного насоса.
  2. Обратного клапана.
  3. Поплавковый датчик.
  4. Реле для обеспечения проверки давления.
  5. Бака гидроаккумулятора.
  6. Блок управления.

Теперь необходимо рассмотреть каждое устройство по отдельности. Благодаря этому вы сможете понять для чего они предназначены.

Насос – это силовой элемент, который способен выполнять подачу воды из скважины. Обратный клапан – специальная мембрана, установка которой обязательно должна выполнять на выходе силового агрегата. Также конструкция позволяет предотвратить обратный отток воды.


Поплавковый датчик – этот элемент можно отнести к автоматике. Он следит за уровнем воды в скважине. От его положения в большинстве случаев зависит будет ли дано разрешение на запуск мотора. Иногда вместо этого устройства могут устанавливать датчик уровня. Если вы не знаете, как выполнить подключение, тогда ниже мы представили схему.


Реле давления – это еще один элемент, который можно отнести к автоматике. Он управляет запуском погруженного агрегата и сможет регулировать давление в водопроводе.


Гидроаккумулятор – это специальная пассивная система, которая позволяет поддерживать давление в трубе. Устройство способно сглаживать резкие скачки напора. Система не может работать самостоятельно и в паре можно использовать реле давления.


Теперь вы знаете все элементы системы, которые могут потребоваться для подключения погружного насоса к автоматике.

Выполнить подключение скважинного насоса вы можете через УЗО. Оно позволяет контролировать изоляцию входящих в комплект устройств и кабеля. Если проблема будет выявлена вовремя, тогда можно значительно сэкономить свои средства.

Чтобы установить насос и обеспечить нормальную подачу воды могут потребоваться следующие материалы:

  1. Водопроводный агрегат.
  2. Специальный бак.
  3. Реле давления. Это устройство, вам необходимо выбрать исходя из емкости бака.
  4. Муфта «американка».
  5. Цанговая муфта.
  6. Фитинги.

Установку и подключение погружного насоса начинают производить из обвязки гидроаккумулятора. Если вы не знаете, как выполнить сборку, тогда вам следует изучить фото, которые мы поместили ниже:


К первому этапу можно отнести процесс подготовки. На втором фото вы можете увидеть, как происходит обмотка резьбового соединения. Теперь следует установить соединение «американка». Теперь вам следует выполнить установку реле давления и манометра, который потребуется для визуального контроля. После завершения этого этапа можно приступить к демонтажу отходящего колена, которое изготовлено из ПВХ. На следующем снимке вы увидите установку цангового зажима и напорной трубы. На 10 фото вы увидите, как готовая группа будет подключаться к водопроводу.

К последним шагам можно отнести вскрытие и подключение блока реле. Если система будет состоять из одного узла автоматики и датчика давления, тогда на клеммах устройства обозначают вход «LINE» и «MOTOR». Если вы выберите совершенную автоматику, тогда она будет состоять из электронного блока. Блок управления способен обеспечивать бесперебойную подачу воды в систему. Благодаря этому двигатель будет защищен от пересыхания. Если уровень воды уменьшится или увеличится, тогда блок сможет выполнить плавный пуск или стоп. Ниже вашему вниманию представлена схема блока управления.


Если вы желаете детально ознакомиться с информацией, тогда на видео ниже вы сможете увидеть технологию сборки системы повышения давления воды. Также мы представили видео, где показан процесс установки погружного насоса в скважину.

Это была подробная инструкция, которая рассказывает, как сделать подключение погружного насоса к сети и системе водопровода. Как видите, справиться с подобной задачей может каждый, но следует ответственно подойти к задаче и тогда все получится.

Подключение скважинного насоса – один из самых важных и ответственных этапов сооружения системы автономного водоснабжения. От правильности подключения и запуска насосного оборудования будет зависеть срок службы и нормальная работа системы.

Мы расскажем, как подключить насос к скважине своими руками.

Монтаж насосного оборудования

Поверхностный


Важно!
Устанавливаемое на поверхности насосное оборудование позволяет выкачивать воду с небольшой глубины – не более 8 – 9 метров.
Это обусловлено силой атмосферного давления, которая не способна поднять столб выше, а если вместо воды использовать ртуть, то высота столба составит 760 мм, которая известна как нормальное атмосферное давление.

Поэтому данное оборудование используется для обслуживания абиссинских скважин и неглубоких колодцев, а также для откачки воды из подвалов, полива и прочих работ .

Поверхностные насосы чаще всего представляют собой станции, в состав которых входит непосредственно помпа с электродвигателем, гидроаккумулирующий бак, система автоматического пуска и отключения, реле давления и манометр.

Собрать саму станцию не представляет никакого труда, для этого достаточно внимательно прочитать инструкцию производителя и выполнить простые манипуляции, соединив части между собой.

Намного более ответственная задача – подключение поверхностного насоса к скважине и его запуск.

Для удобства нашими специалистами составлена пошаговая инструкция:

  1. В том месте, где будет стоять насосная станция, следует сделать надежный постамент или крепежную арматуру, к которой следует жестко прикрепить раму устройства, на которой должны присутствовать крепежные отверстия или ножки. Для уменьшения вибрации и шума под агрегат лучше подложить резиновый коврик;


  1. Отрезаем кусок ПНД-трубы необходимой длины, и с одного из концов монтируем на нее латунную или пластиковую муфту с внутренней резьбой, ниппель и обратный клапан. Также не лишней будет фильтрующая сетка грубой очистки;

  1. Другой конец трубы также снабжаем муфтой и подсоединяем к входному отверстию нашей станции. Чаще всего такие отверстия снабжены внутренней резьбой, которую следует уплотнить ФУМ-лентой или льняным уплотнителем. Если необходимо (для эжекторных моделей) монтируем шланг системы рециркуляции;


  1. Далее подключаем выходное отверстие насоса к водопроводным трубам через шаровые краны. Это может быть одна или несколько разводок, поэтому вам может понадобиться одинарное колено или тройник. Для работы используем только качественные латунные или пластиковые фитинги и муфты;


  1. Включаем штекер в розетку электропитания 220 В/50 Гц;
  2. В специальное отверстие на корпусе станции (обычно в районе помпы) заливаем воду согласно рекомендациям производителя;


  1. Производим пуск аппарата и ждем, пока не сработает система автоматического отключения. После этого проверяем давление в аккумуляторном бачке по манометру и сверяем его с паспортными данными. Если значения не совпадают, настраиваем реле давления с помощью специальных винтиков в его механизме;


  1. Когда бак наполнен, открываем краны и проверяем напор и общую работу водопровода и сантехники.

Важно!
Перед тем, как подключить поверхностный насос к скважине, убедитесь в том, что общая длина вертикальной и горизонтальной подающей трубы не превышает предельно допустимых значений, указанных в паспорте к устройству.

Погружной

Для закачки воды из глубоких , которые не ограничены высотой водяного столба и силой атмосферного давления .

Их установка отличается от монтажа поверхностных станций:

  1. В первую очередь к насосу подключают водоподъемную трубу из полиэтилена низкого давления (ПНД). Для этого к ее концу присоединяют соединительную латунную муфту, на которую накручивают обратный клапан. Затем берут ниппель с двойной внешней резьбой и с его помощью соединяют клапан с входным отверстием насоса;


  1. Далее к водоподъемной трубе хомутами или изолентой присоединяют электрический кабель питания аппарата через каждые три метра;


  1. В комплекте к насосу обычно идет страховочный трос из капрона или другого материала. Трос необходимо продеть в крепежные уши на корпусе агрегата и закрепить двумя (!) зажимами;


  1. Затем насос вместе с трубой, кабелем и тросом аккуратно опускают в обсадную трубу скважины, при этом стараются не цеплять стенки трубы. Для страховки на корпус прибора можно надеть резиновое кольцо. Глубина погружения обычно принимается такой, чтобы аппарат находился на 2 – 3 метра ниже динамического уровня воды, но на метр-полтора выше дна забоя;


  1. Трубу продевают в и фиксируют зажимами. Там же находится крепление для страховочного троса – крепим трос к этому креплению;

  1. Закрываем , выходящий кабель через гермоввод (обычно идет в комплекте) подключаем к электросети. Производим пробный пуск насоса, если вода не пошла, втягиваем ртом воздух из трубы для того, чтобы сработал обратный клапан;


  1. После успешного пуска соединяем водоподъемную трубу с водопроводом.


Важно!
Если насос укомплектован внутренним обратным клапаном, его следует все равно продублировать внешним металлическим устройством, так как внутренние клапаны ненадежны.

Вывод

Подключение и пуск насосного оборудования – весьма важная и ответственная задача, от корректности выполнения которой зависит нормальная работа системы, цена которой очень велика. Тем не менее, справиться с этой работой можно самостоятельно, просто выполняя шаг за шагом согласно нашему руководству. Чтобы увидеть процесс непосредственно, можно просмотреть видео в этой статье.

Схемы подключения MyHeat PRO — MyHeat

Схема подключения датчиков протечки

  • Подключение датчиков протечки осуществляется согласно схеме при помощи входов DI на контроллере и дискретном блоке расширения MY HEAT DI6

  • Датчики протечки подключаются кабелем UTP категории не ниже 5 (витая пара)

  • Для удобства и надежности подключения используйте винтовые зажимы или клеммники

  • При необходимости можно подключить клапан запорной арматуры, который при срабатывании датчика протечки будет перекрывать подачу воды в дом

  • Для подключения используется проводной датчик контроля протечки Нептун или Водолей — Р

Вариант №1: Датчики протечки подключаются в шлейф, при срабатывании одного из датчиков в шлейфе контроллер MyHeat PRO оповестит пользователя по SMS или Push уведомлению и задействует клапан запорной арматуры

Вариант №2: Каждый датчик протечки подключается на отдельный вход DI, при срабатывании датчика контроллер MyHeat PRO оповестит пользователя по SMS или Push уведомлению о сработке конкретного датчика и задействует клапан запорной арматуры

Настройка

Для настройки подключенного к устройству датчика протечки необходимо выполнить следующие действия:

  • Выберите в навигационном меню пункт Датчики

  • Все дискретные входы на контроллере определяются автоматически (в том числе, если к контроллеру подключен дискретный блок расширения MY HEAT DI6)

  • Для редактирования параметров датчика нажмите на значок зеленого карандаша

Для добавления сигнала тревоги в интерфейсе контроллера:

  • Выберите в навигационном меню Сигналы тревоги

  • В выпадающем списке выберите подпункт Добавить (на рис. пункты 1 и 3)

  • Также выбрав в навигационном меню Системы тревоги

  • В выпадающем списке выберите подпункт Все сигналы

  • В открывшемся окне нажмите кнопку Добавить (на рис. пункты 1, 2 и 4)

  • Для редактирования параметров сигналов тревоги, нажмите на значок зеленого карандаша

  • Для удаления – нажмите на значок красной корзины

Настройка

Для настройки подключенного к устройству датчика движения необходимо выполнить следующие действия:

  • Выберите в навигационном меню пункт Датчики

  • Все дискретные входы на контроллере определяются автоматически (в том числе, если к контроллеру подключен дискретный блок расширения MY HEAT DI6)

  • Для редактирования параметров датчика нажмите на значок зеленого карандаша

Для добавления сигнала тревоги в интерфейсе контроллера:

  • Выберите в навигационном меню Сигналы тревоги

  • В выпадающем списке выберите подпункт Добавить (на рис. пункты 1 и 3)

  • Также выбрав в навигационном меню Системы тревоги

  • В выпадающем списке выберите подпункт Все сигналы

  • В открывшемся окне нажмите кнопку Добавить (на рис. пункты 1, 2 и 4)

  • Для редактирования параметров сигналов тревоги, нажмите на значок зеленого карандаша

  • Для удаления – нажмите на значок красной корзины

Настройка

Для настройки подключенного к устройству датчика давления необходимо выполнить следующие действия:

  • Выберите в навигационном меню пункт Датчики

  • Токовый вход на контроллере определяется автоматически

  • Для редактирования параметров датчика нажмите на значок зеленого карандаша

Для добавления насоса в интерфейсе контроллера MyHeat PRO:

  • Выберите в навигационном меню Инженерия

  • В выпадающем списке выберите подпункт Добавить (на рис. пункты 1 и 3)

  • Также выбрав в навигационном меню Инженерия

  • В выпадающем списке выберите подпункт Вся инженерия

  • В открывшемся окне нажмите кнопку Добавить (на рис. пункты 1, 2 и 4)

  • Для редактирования параметров инженерного оборудования нажмите на значок зеленого карандаша

  • Для удаления – нажмите на значок красной корзины

Для добавления 2 — ходового клапана в интерфейсе контроллера MyHeat PRO:

  • Выберите в навигационном меню Инженерия

  • В выпадающем списке выберите подпункт Добавить (на рис. пункты 1 и 3)

  • Также выбрав в навигационном меню Инженерия

  • В выпадающем списке выберите подпункт Вся инженерия

  • В открывшемся окне нажмите кнопку Добавить (на рис. пункты 1, 2 и 4)

  • Для редактирования параметров инженерного оборудования нажмите на значок зеленого карандаша

  • Для удаления – нажмите на значок красной корзины

После настройки датчика и насоса приступаем к настройке привода 3 — ходового клапана. Для добавления сервопривода в интерфейсе контроллера MyHeat PRO:

  • Выберите в навигационном меню Инженерия

  • В выпадающем списке выберите подпункт Добавить (на рис. пункты 1 и 3)

  • Также выбрав в навигационном меню Инженерия

  • В выпадающем списке выберите подпункт Вся инженерия

  • В открывшемся окне нажмите кнопку Добавить (на рис. пункты 1, 2 и 4)

  • Для редактирования параметров инженерного оборудования нажмите на значок зеленого карандаша

  • Для удаления – нажмите на значок красной корзины

Для добавления котла в интерфейсе контроллера:

  • Выберите в навигационном меню Отопители

  • В выпадающем списке выберите подпункт Добавить (на рис. пункты 1 и 3)

  • Также выбрав в навигационном меню Отопители

  • В выпадающем списке выберите подпункт Все отопители

  • В открывшемся окне нажмите кнопку Добавить (на рис. пункты 1, 2 и 4)

  • Для редактирования параметров отопителей, нажмите на значок зеленого карандаша

  • Для удаления – нажмите на значок красной корзины

Настройки

Для настройки подключенного к устройству модуля резервного питания, необходимо выполнить следующие действия:

  • Выберите в навигационном меню пункт Система

  • В выпадающем списке выберите подпункт Настройки устройства

  • В открывшемся окне в поле Вход для подключения сигнала обратной связи от АКБ выберите дискретный вход к которому подключен модуль. По умолчанию установлено значение АКБ не подключена

  • Нажмите кнопку Сохранить

«Реле давления FSG 2 с защитой от сухого хода»

Реле давления FSG 2 с защитой от сухого хода предназначено для автоматизации работы электронасоса, поддержания давления в системе водоснабжения загородного дома, коттеджа, дачи и отключения насоса при отсутствии воды в источнике водоснабжения. Проще говоря, при падении давления в системе водоснабжения дома ниже определенного уровня (заводская настройка 0,4атм), заданного на регуляторе давления FSG 2, электронасос не сгорит, а просто отключится.

Характеристики реле сухого хода FSG 2:
Напряжение сети — 220-230 В, 50 Гц.
— Максимальный коммутируемый ток — 10A.
— Максимальное рабочее давление — 5 бар.
— Диапазон регулирования давления — 1,1 – 5,0 бар.
— Заводские настройки — 1,4 – 2,8 бар (при изменении заводских настроек изменяется порог отключения электронасоса по сухому ходу).
— Регулируемая разница (дельта) включения и выключения не менее 1 бар. 
— ОГРАНИЧЕНИЕ — водяной столб между реле переключения по давлению FSG 2 и самой высокой точкой отбора воды не должен превышать 3м.

Подключение реле давления с защитой по сухому ходу FSG 2:
При снятой крышке завести в реле давления провода от электросети и от электронасоса. Произвести их подключение к клеммам в соответствии с ниже представленным рисунком.


Провода электросети подключаются к клеммам 1 и 3, от насоса к клеммам 2 и 4. Провода заземления подсоединяются к двум зеленым винтам, которые расположены рядом с клеммной коробкой.

Запуск регулятора давления с защитой по сухому ходу FSG 2:
Из рисунка, который представлен ниже, видно, что на крышке реле имеется 3 положения рычага, с помощью которого реле FSG 2 приводится в рабочее положение.

Положение «AUTO» соответствует стандартной работе прибора. Положение «START» предназначено для запуска реле давления FSG 2 и не фиксируется. После запуска прибора рычаг автоматически возвращается в положение «AUTO». Положение «OFF» является фиксированным и служит для отключения реле давления. Для запуска насоса необходимо перевести рычаг из положения «AUTO» в положение «START» и удерживать несколько секунд, пока давление в системе не поднимется выше 0,4атм. После этого отпустить рычаг, который автоматически вернется в положение «AUTO» и ваша система водоснабжения будет готова к работе. Для выключения насоса на продолжительное время необходимо перевести рычаг в положение «OFF».

Регулирование давления FSG 2:
 — Отключить питание;
 — Снять крышку реле FSG 2;
 — За давление включения насоса отвечает большая пружина. Поворот по часовой стрелке увеличивает давление включения насоса, а поворот против часовой стрелки уменьшает стартовое давление включения насоса. Один полный оборот гайки соответствует изменению давления примерно на 1атм.
 — За давление отключения насоса отвечает малая пружина. Поворот по часовой стрелке увеличивает давление отключения насоса, а поворот против часовой стрелки уменьшает давление отключения насоса. Один полный оборот гайки соответствует изменению давления на 0,2атм.
 
Оптовые цены для торгующих и монтажных организаций предоставляются по запросу

Заинтересованы в развитии сети сбыта по Санкт-Петербургу и Северо-Западному региону

Как установить и подключить реле давления

Если у вас есть собственная система водоснабжения из колодца, реле давления является ее неотъемлемой частью. Реле давления сообщает насосу, который подает воду в ваш дом, когда включать и выключать. Когда давление в системе упадет до заданного низкого значения, насос включится (обычно называемое давлением включения). Когда давление в системе поднимается до заданного максимального значения, насос отключается (обычно это называется давлением отключения).Их можно подключить к сети 115 или 230 вольт.

Осторожно! Электричество может быть очень опасным , , особенно если у вас нет опыта. Всегда соблюдайте осторожность при работе с электричеством и выключайте источники питания / автоматические выключатели при тестировании компонентов или выполнении любых регулировок в электрической системе. Если вы не уверены на 100%, что сможете безопасно выполнить любой из этих тестов, обратитесь к профессионалу.

Обладая базовыми электрическими знаниями, реле давления может быть установлено и подключено с помощью нескольких инструментов и материалов.

Необходимые инструменты и материал: отвертка, кусачки для зачистки проводов, плоскогубцы или аналогичные предметы, тефлоновая лента

Дополнительно: вилочные соединители, зажимы, несмываемый маркер

  1. Отключите питание насоса на главной панели.
  2. Проверьте проводку от главной панели, чтобы убедиться, что питание отключено.
  3. Слейте всю воду под давлением из системы через штуцер для шланга на тройнике бака или ближайший кран.
  4. Если вы заменяете старый переключатель, удалите существующие провода и удалите старый переключатель из системы.
  5. Закрепите новый переключатель на струйном насосе или установите на трубопровод существующей системы погружных скважинных насосов. Используйте тефлоновую ленту на входе реле давления, чтобы предотвратить утечки. Нажмите здесь, чтобы посмотреть видео Как правильно нанести тефлоновую ленту
  6. Снимите крышку нового реле давления с помощью плоскогубцев и отложите в сторону. Схема подключения обычно находится на внутренней стороне крышки.
  7. Ослабьте (не снимайте) винты на клемме реле давления с помощью отвертки, повернув против часовой стрелки.
  8. Пропустите провода от двигателя насоса и основного источника питания через отверстия с обеих сторон переключателя.
  9. Подсоедините провода двигателя насоса к двум клеммам в центре, помеченным «M» или «Нагрузка» (T1 / T2). Присоедините провод заземления к зеленому винту заземления.

  10. Подключите источник питания от главного выключателя к внешним клеммам, обозначенным «Line» (L1 / L2). Присоедините провод заземления к зеленому винту заземления.

  11. Установите на место крышку переключателя и снова подключите питание.
  12. Протестируйте реле давления в течение нескольких циклов, чтобы убедиться, что оно работает правильно.

Хотите узнать больше о реле давления? Нажмите ниже, чтобы посмотреть наши видеоролики RC Worst на YouTube.

Устранение неисправностей и обслуживание реле давления

Выключатель низкого давления воды | Реле давления Square D M4 с отсечкой по низкому давлению

Как отрегулировать реле давления

У вас есть дополнительные вопросы о реле давления или других частях вашей системы водоснабжения? В таком случае звоните нашим специалистам по номеру 855. 329,4519.

Датчики давления | Монтажные и электрические схемы

Преобразователи

OMEGA имеют три основных типа электрических выходов; милливольты (мВ), вольты (В) и ток (мА). Для пользователя важно знать, какой выход подходит для его применения, чтобы обеспечить правильный выбор преобразователя.

Далее будут описаны преимущества, недостатки и схемы подключения датчиков с выходом милливольта, напряжения и тока.

ВЫХОДЫ ПРЕОБРАЗОВАТЕЛЯ И ИХ КОНФИГУРАЦИЯ ЭЛЕКТРОПРОВОДКИ

Преобразователи с выходом в милливольтах обычно используются в лабораторных условиях.Они дешевы, имеют небольшие размеры и требуют регулируемого источника питания. Помня, что милливольтный сигнал имеет очень низкий уровень, он ограничен короткими расстояниями (до 200 футов обычно считается пределом) и очень подвержен паразитным электрическим помехам от других близлежащих электрических сигналов (другие приборы, линии высокого напряжения переменного тока и т. .). Типичные конфигурации проводки показаны на рисунке 1.
Рисунок 1 Преобразователи
с усиленным выходным напряжением обычно используются в легкой промышленности и в системах компьютерного интерфейса, где требуется более высокий уровень сигнала постоянного тока.Благодаря встроенному преобразователю сигнала они дороже и больше по размеру, чем выходные преобразователи милливольт. Сигналы с усиленным напряжением могут распространяться на средние расстояния и обладают большей устойчивостью к паразитным электрическим помехам, чем сигнал милливольт. Типичные конфигурации проводки показаны на рисунке 2.

Преобразователь выдает милливольты, усиленное напряжение или выходной ток. Передатчик выдает только токовый выход. Опять же, из-за встроенного преобразования сигнала передатчики дороже и больше по размеру, чем выходные преобразователи милливольт.В отличие от выходных преобразователей милливольт и напряжения, токовый сигнал невосприимчив к любым паразитным электрическим помехам, что является ценным активом на заводе. Токовый сигнал также может передаваться на большие расстояния. Типичные конфигурации проводки показаны на рисунке 3.

ОБРАЩЕНИЕ, УСТАНОВКА И УСТАНОВКА ПРЕОБРАЗОВАТЕЛЕЙ фигура 2
  • A. Мембрана — Не нажимайте и не касайтесь диафрагмы, так как вы можете повредить или изменить ее калибровку, особенно в моделях с низким диапазоном давления.
  • B. Фитинги и оборудование — Используйте соответствующие фитинги и оборудование, рассчитанные на давление. Убедитесь, что у вас есть подходящий тип резьбы и размер. При необходимости используйте ограничители давления, камеры емкости, демпферы и т. Д.
  • C. Эксплуатация при температуре окружающей среды — Расположите датчик в месте, где его можно будет легко проверить и отремонтировать. Температура окружающей среды должна соответствовать техническим характеристикам датчика. Влияние температурного коэффициента на общую точность преобразователя можно свести к минимуму, чем ближе температура окружающей среды к 25 ° C. Избегайте мест с чрезмерной вибрацией.
  • D. Установка — Установка должна выполняться только квалифицированным персоналом, знакомым с правилами техники безопасности и знакомым со всеми принятыми отраслевыми стандартами, касающимися систем давления. Калибровка датчика и / или ноль могут смещаться, если при установке он будет чрезмерно затянут. После установки проверьте смещение нуля. При установке датчиков обращайтесь к стандартным отраслевым данным по крутящему моменту для определения размера резьбы и типа материала.
Рисунок 3

ОПРЕДЕЛЕНИЕ, СКОЛЬКО ДАТЧИКОВ МОЖЕТ БЫТЬ ВОЗБУЖДЕН ОТ ОДНОГО ИСТОЧНИКА ПИТАНИЯ

От одного источника питания можно возбуждать несколько преобразователей. Количество преобразователей, которые можно использовать, просто определяется потребляемым током каждого преобразователя и текущей мощностью источника питания. Сумма потребляемого преобразователями тока не может превышать общую токовую нагрузку источника питания. Например, если у вас есть 50 преобразователей, потребляющих 13 миллиампер, вам понадобится источник питания, имеющий не менее 650 миллиампер (50 x 13).Также нет ничего плохого в том, чтобы подключить только один датчик к источнику питания с высокой допустимой токовой нагрузкой.

Рис. 6. Несколько преобразователей подключены к одному измерителю и одному переключателю (преобразователи со встроенной регулировкой нуля и диапазона, одинаковые выходы и одинаковые диапазоны давления)

Рисунок 7. Преобразование тока в напряжение для контрольно-измерительных приборов, настроенных для измерения напряжения.

ПОДКЛЮЧЕНИЕ ОДНОГО ДАТЧИКА К НЕСКОЛЬКИМ ЧТЕНИЯМ, ЗАПИСИ, КОМПЬЮТЕРАМ И Т.Д.

Датчики давления, которые выдают миллиамперные сигналы, могут подключаться к нескольким устройствам последовательно.Тот факт, что они могут передавать сигналы на большие расстояния без помех, упрощает подключение устройства миллиамперного сигнала к нескольким измерительным приборам. На этой схеме показана правильная проводка. Одним из больших преимуществ токового сигнала является простота настройки системы с несколькими инструментами. Передача на большие расстояния от прибора к прибору без электрических помех упрощает работу с мультиинструментальными системами. Например, в центре тестирования материалов может быть одна диспетчерская для всех различных тестовых лабораторий, что позволяет работать из одного центрального пункта.Калибровка прибора и поиск и устранение неисправностей просты в токовой петле с несколькими приборами. Единственное ограничение для количества приборов — это величина напряжения от источника питания, управляющего токовой петлей. Минимальное необходимое напряжение определяется законом Ома, V-IR (напряжение равно току, умноженному на сопротивление). Это показано и поясняется на рисунке 4. Рисунок 4

ГДЕ:
RLINE = сопротивление из-за провода
RLOAD = комбинированные измерительные сопротивления
VsTRANSDUCER = минимальное напряжение питания для преобразователя.

Например, предположим, что у вас есть следующее:

  1. Датчик давления (4-20 мА) с напряжением питания 12-30 В постоянного тока;
  2. Панельный измеритель с входным сопротивлением 10 Ом;
  3. Регистратор с входным сопротивлением 25 Ом;
  4. Компьютер с входным сопротивлением 200 Ом;
  5. Подводящий провод сопротивлением 5 Ом.
Рисунок 5.
Минимальное необходимое напряжение = (0,020). (5 + 10 + 25 + 200) + 12 = 16,8 В 24 В — наиболее распространенный источник питания в токовой петле 4-20 мА. Также можно подключить сигнал напряжения или милливольт к нескольким приборам, но это не так просто и не имеет преимуществ калибровки и устранения неисправностей, присущих системе с токовой петлей. Сигнал напряжения или милливольт может быть подключен параллельно к нескольким приборам, как показано на рисунке 5. Этот метод предполагает очень высокий входной импеданс подключаемых приборов. В противном случае можно использовать аналоговый выход для ретрансляции сигнала.

Практический пример

, если вы подключаете миллиамперный датчик выходного давления PX409 к быстродействующему измерителю технологического процесса DP400TP, вы должны подключить все приборы последовательно. В этом случае DP400TP также может служить источником питания, обеспечивая 12 В или дополнительные 20 В постоянного тока, необходимые для управления устройством PX409.

Тестирование системы Устройство PX409 можно программировать по беспроводной сети с помощью устройства ближней связи (NFC), например мобильного телефона.Затем сигнал PX409 может быть подан на измеритель серии PLATINUM, который является еще одним типом измерителя с быстрым откликом. Все измерители PLATINUM имеют выходы USB, поэтому их можно напрямую подключать к компьютеру.

После установки системы вы можете проверить ее работоспособность. Чтобы проверить, выполните следующие три шага:

  1. Подайте давление на датчик с помощью ручного насоса.
  2. Следите за изменением давления на всех трех агрегатах.
  3. Убедитесь, что когда давление станет стабильным и статичным, все три устройства отображают одинаковые показания давления.
Этот процесс можно использовать для настройки системы, которая будет регистрировать, записывать и графически отображать данные датчика давления.

ПОДКЛЮЧЕНИЕ НЕСКОЛЬКИХ ПРЕОБРАЗОВАТЕЛЕЙ К ОДНОМ УСТРОЙСТВУ, ЗАПИСИ, КОМПЬЮТЕРУ И Т.Д.

При измерении нескольких давлений распространенной ошибкой является попытка использовать несколько преобразователей, переключающее устройство и только один панельный счетчик, что позволяет сэкономить деньги на нескольких панельных счетчиках (или любых других приборах). Проблема в том, что каждый преобразователь имеет уникальную нулевую точку, а на индикаторе только один винт нуля.В результате общая точность увеличивается примерно до 3%, даже если точность каждого датчика давления составляет 0,5%. В большинстве случаев такая большая ошибка недопустима.

Правильный метод использования нескольких датчиков с одним устройством считывания — это использование датчиков со встроенными винтами регулировки нуля и диапазона, одинаковым выходным сигналом (напряжение или ток) и одинаковым диапазоном давления. Каждый датчик настраивается путем приложения известного давления, так что все они имеют одинаковые выходные сигналы. Когда все они имеют одинаковые выходы, измеритель масштабируется, и можно использовать переключатель.

Рисунок 6 Еще одно решение для использования нескольких датчиков с одним показанием — использование сканера вместо измерителя и переключателя. Есть много типов сканеров. Тип сканера, который работает с несколькими датчиками давления, должен иметь независимое масштабирование на каждом канале.

Некоторые сканеры, помимо независимого масштабирования на каждом канале, также предлагают независимые входы тока, напряжения или милливольт для каждого канала. Эти типы сканеров позволяют использовать преобразователи с разными выходами, а также с разными диапазонами давления с одним и тем же прибором.

Рис. 2. Типовая конфигурация проводки для выходного преобразователя напряжения (-возбуждение и -сигнал являются общими)
Рис. 1. Типовая конфигурация проводки выходного преобразователя милливольт.
Рис. 3. Типовая конфигурация проводки датчика с токовым выходом.
Рис. 4. Токовая петля 4-20 мА для нескольких приборов (панельные измерители, самописец, компьютеры и т. Д.)

Требуемое минимальное напряжение = (0,20 А) (R LINE + R LOAD) + Vs ДАТЧИКА

Рисунок 5.Несколько приборов, подключенных параллельно к выходному преобразователю напряжения


ИСПОЛЬЗОВАНИЕ МИЛЛИАМПЕРСКОГО СИГНАЛА С ВХОДНЫМ ПРИБОРОМ НАПРЯЖЕНИЯ

Большинство приборов настроено на получение напряжения. Часто задаваемый вопрос — как использовать токовый сигнал с приборами, настроенными для измерения напряжения. Это просто делается путем установки резистора на входные клеммы контрольно-измерительной аппаратуры. Номинал резистора определяется законом Ома (V = IR). Например, установка резистора на 500 Ом преобразует 20 мА в 10 вольт (V = IR =.020 х 500). Это показано на рисунке 7. Единственное другое соображение — это смещение нуля. Поскольку большинство токовых петель имеют нижний предел 4 мА, произойдет смещение нуля. При использовании резистора того же номинала, что и выше, 4 мА преобразуются в 2 вольта.

Рисунок 7 R = V / I

Где:
R
= размер резистора
В = желаемое напряжение
I = Текущий

Пример:
для преобразования 4-20 мА в 2-10 В
R = V / I = 10 /.02 = 500 Ом Резистор 500 Ом должен быть установлен между (+) и (-) выводами прибора

Монтаж трубы датчика давления

Для установки трубопровода датчика давления требуется профессионал, имеющий практический опыт настройки датчиков давления. Причина выбора профессионального обслуживания заключается в том, что неправильная установка может привести к утечкам жидкости, которые могут быть опасны как для человека, так и для машины.

Способ установки и расположение датчика давления будет зависеть от рабочей среды (жидкость, газ или пар) и ориентации трубы.Выбор между внутренним или внешним креплением датчика давления также зависит от настройки.

заявка Техническое обучение Типы датчиков давления

— Руководство

Датчики давления

— это инструменты или устройства, которые преобразуют величину физического давления, оказываемого на датчик, в выходной сигнал, который можно использовать для определения количественного значения давления.Доступно множество различных типов датчиков давления, которые работают одинаково, но основаны на различных базовых технологиях для перевода между давлением и выходным сигналом. В этой статье будут рассмотрены наиболее распространенные типы датчиков давления, описаны принципы работы датчиков давления, рассмотрены общие спецификации, связанные с датчиками давления, и представлены примеры приложений.

Следует отметить одно отличие: датчики давления отличаются от манометров. Манометры по своей конструкции обеспечивают прямое считывание значения давления, называемого манометрическим давлением. Это может быть аналоговый (механический) дисплей с использованием стрелки и градуированной шкалы или прямой цифровой дисплей показаний давления. Датчики давления, с другой стороны, напрямую не обеспечивают считываемый выходной сигнал давления, а вместо этого генерируют значение выходного сигнала, которое пропорционально показанию давления, но которое сначала необходимо подготовить и обработать, чтобы преобразовать уровень выходного сигнала в калиброванное считывание давления.

Чтобы узнать больше о других типах датчиков, см. Наши соответствующие руководства, которые охватывают различные типы датчиков или использование датчиков для расширения возможностей Интернета вещей (IoT). Чтобы узнать больше о других устройствах для измерения давления, см. Наши соответствующие руководства по манометрам и цифровым манометрам.

Датчики давления, преобразователи давления и преобразователи давления

Есть несколько общих терминов, связанных с устройствами измерения давления, которые часто используются как взаимозаменяемые. Эти термины — датчики давления, датчики давления и датчики давления. Производители и поставщики этих устройств могут использовать один или несколько из этих терминов для описания своих продуктовых предложений. Как правило, основное различие между этими терминами связано с генерируемым электрическим выходным сигналом и выходным интерфейсом устройства. Имейте в виду, что у разных поставщиков есть различия в том, как классифицируются их устройства.

Один из способов понять разницу между датчиками давления и датчиками давления.Датчики давления и датчики давления не имеют встроенной электроники, обеспечивающей формирование сигнала и усиленный выходной сигнал, в отличие от двух других.

Датчики давления, хотя и используются как общий термин для всех этих трех типов устройств, обычно вырабатывают выходной сигнал в милливольтах. Относительно низкое выходное напряжение в сочетании с потерями сопротивления, которые происходят с проводкой, подразумевает, что длина проводов должна быть небольшой, что ограничивает использование устройств примерно 10-20 футами от электроники, прежде чем возникнут слишком большие потери сигнала. Выходной сигнал будет пропорционален напряжению питания, используемому с датчиком. Так, например, датчик, который генерирует выходной сигнал 10 мВ / В, используемый с источником питания 5 В постоянного тока, будет генерировать выходной сигнал в диапазоне от 0 до 50 мВ по величине. Милливольтные выходы позволяют инженеру спроектировать преобразование сигнала в соответствии с требованиями приложения и помогают снизить как стоимость, так и размер корпуса датчика. Ограничения этих устройств заключаются в том, что необходимо использовать регулируемые источники питания, поскольку выходная мощность на полномасштабном уровне пропорциональна напряжению питания.Кроме того, низкий выходной сигнал означает, что эти устройства менее подходят для использования в электрически зашумленной среде. Иллюстрация полумостовой схемы с выходом в милливольтах показана на Рисунке 1 ниже.

Рисунок 1: Датчик давления с тензометрическим датчиком с использованием моста Уитстона

Изображение предоставлено: https://www. avnet.com/wps/portal/abacus/solutions/technologies/sensors/pressure-sensors/output-signals

Преобразователи давления

генерируют более высокий уровень выходного напряжения или частоты за счет наличия дополнительных встроенных возможностей усиления сигнала для повышения амплитуды выходного сигнала, скажем, до 5 В или 10 В, и частотного выхода до 1-6 кГц.Повышенная мощность сигнала позволяет использовать датчики давления на большем расстоянии от электроники, скажем, в 20 футах. Эти устройства используют более высокий уровень напряжения питания, например 8–28 В постоянного тока. Более высокое выходное напряжение снижает потребление тока, что позволяет использовать датчики давления в приложениях, где оборудование работает от батарей.

В то время как датчики давления и преобразователи давления генерируют выходной сигнал напряжения, датчики давления вырабатывают выходной ток с низким сопротивлением, обычно используемый в качестве аналоговых сигналов 4–20 мА в 2-проводной или 4-проводной конфигурации. Датчики давления обладают хорошей устойчивостью к электрическим помехам (EMI / RFI) и поэтому подходят для приложений, где необходимо передавать сигналы на большие расстояния. Эти устройства не требуют регулируемых источников питания, но более высокий выходной ток и потребляемая мощность делают их непригодными для приложений с батарейным питанием, когда устройства работают при полном или близком к нему давлении.

Для простоты в этой статье мы будем использовать общий термин датчики давления, а не делать четкие представления датчиков давления и датчиков давления.

Терминология по давлению

В этом разделе представлена ​​основная терминология, относящаяся к датчикам давления.

  • Манометрическое давление — это измерение давления относительно давления окружающей среды. Типичным примером этого является использование манометра для измерения давления воздуха в автомобильной шине. Если манометр показывает 35 фунтов на квадратный дюйм, это означает, что давление в шинах на 35 фунтов на квадратный дюйм выше местного давления окружающей среды.
  • Абсолютное давление — это измерение, производимое относительно чистого вакуума, например космического вакуума.Этот тип измерения давления важен для применения в аэрокосмической технике, поскольку давление воздуха изменяется с высотой.
  • Дифференциальное давление — это измерение разности давлений между двумя значениями давления, следовательно, измерение того, насколько они отличаются друг от друга, а не их величины относительно атмосферного давления или другого эталонного давления.
  • Вакуумное давление — это измерение давления, значение которого находится в отрицательном направлении по отношению к атмосферному давлению.

На рисунке 2 ниже эти термины показаны на диаграмме, показывающей относительные отношения между каждым из них.

Рисунок 2: Взаимосвязь различных измерений давления

Изображение предоставлено: https://www.engineeringtoolbox.com

Технологии измерения давления

Для измерения давления используются шесть основных датчиков давления. Это:

  • Потенциометрические датчики давления
  • Индуктивные датчики давления
  • Датчики давления емкостные
  • Пьезоэлектрические датчики давления
  • Тензометрические датчики давления
  • Датчики давления с переменным сопротивлением

Потенциометрические датчики давления используют трубку Бурдона, капсулу или сильфон, которые приводят в движение рычаг стеклоочистителя, обеспечивая относительно нормальные измерения давления.

Индуктивные датчики давления используют линейный регулируемый дифференциальный трансформатор (LVDT) для изменения степени индуктивной связи, которая возникает между первичной и вторичной обмотками трансформатора.

Емкостные датчики давления используют диафрагму, которая отклоняется под действием приложенного давления, что приводит к изменению значения емкости, которая затем может быть откалибрована для получения показаний давления.

Пьезоэлектрические датчики давления основаны на способности таких материалов, как керамика или металлизированный кварц, генерировать электрический потенциал, когда материал подвергается механической нагрузке.

Тензометрические датчики давления основаны на измерении изменения сопротивления, которое происходит в таком материале, как кремний, когда он подвергается механическому воздействию, известному как пьезорезистивный эффект.

Датчики давления с переменным сопротивлением используют диафрагму, которая находится в магнитной цепи. Когда к датчику прикладывается давление, отклонение диафрагмы вызывает изменение сопротивления контура, и это изменение можно измерить и использовать в качестве индикатора приложенного давления.

Типы датчиков давления

С помощью датчика давления можно проводить измерения давления для определения диапазона различных значений и различных типов давления в зависимости от того, выполняется ли измерение давления относительно атмосферы, условий вакуума или других эталонных уровней давления. Датчики давления — это инструменты, которые могут быть спроектированы и настроены для определения давления по этим переменным. Датчики абсолютного давления предназначены для измерения давления относительно вакуума, и они разработаны с эталонным вакуумом, заключенным внутри самого датчика.Эти датчики также могут измерять атмосферное давление. Точно так же датчик избыточного давления определяет значения, относящиеся к атмосферному давлению, и часть устройства обычно находится в условиях окружающей среды. Это устройство можно использовать для измерения артериального давления.

Важным аспектом промышленных процессов определения давления является сравнение нескольких уровней давления. Датчики перепада давления используются для этих приложений, которые могут быть сложными из-за наличия как минимум двух различных давлений на одной механической конструкции.Датчики перепада давления имеют относительно сложную конструкцию, поскольку они часто необходимы для измерения мельчайших перепадов давления при больших статических давлениях. Принципы трансдукции и механического измерения давления являются общими для большинства стандартных датчиков давления, независимо от их категории как приборы дифференциального, абсолютного или манометрического давления. Ниже мы рассмотрим наиболее распространенный тип датчиков давления.

Датчики анероидного барометра

Барометр-анероид состоит из полого металлического корпуса с гибкими поверхностями сверху и снизу.Каков принцип работы датчика атмосферного давления? Изменения атмосферного давления заставляют этот металлический корпус менять форму, а механические рычаги усиливают деформацию, чтобы обеспечить более заметные результаты. Уровень деформации также можно повысить, изготовив датчик в сильфонной конструкции. Рычаги обычно прикреплены к циферблату со стрелкой, которая переводит деформацию под давлением в масштабированные измерения или на барограф, который регистрирует изменение давления во времени. Датчики-анероидные барометры компактны и долговечны, в их работе не используется жидкость. Однако масса элементов измерения давления ограничивает скорость отклика устройства, что делает его менее эффективным для проектов измерения динамического давления.

Датчики манометра

Манометр — это датчик давления жидкости, имеющий относительно простую конструкцию и более высокий уровень точности, чем у большинства барометров-анероидов. Он выполняет измерения, регистрируя влияние давления на столб жидкости. Наиболее распространенной формой манометра является U-образная модель, в которой давление прикладывается к одной стороне трубки, вытесняя жидкость и вызывая падение уровня жидкости на одном конце и соответствующее повышение на другом.Уровень давления обозначается разницей в высоте между двумя концами трубки, и измерение производится по шкале, встроенной в устройство.

Точность считывания можно повысить, наклонив одну из ножек манометра. Также можно прикрепить резервуар для жидкости, чтобы сделать уменьшение высоты одной из ножек незначительным. Манометры могут быть эффективными в качестве манометрических датчиков, если одна ветка U-образной трубки выходит в атмосферу, и они могут функционировать как дифференциальные датчики, когда давление прикладывается к обеим ногам. Однако они эффективны только в определенном диапазоне давлений и, как и барометры-анероиды, имеют низкую скорость отклика, что неадекватно для измерения динамического давления.

Датчики давления с трубкой Бурдона

Хотя они работают в соответствии с теми же основными принципами, что и анероидные барометры, в трубках Бурдона вместо полой капсулы используется спиральный или С-образный чувствительный элемент. Один конец трубки Бурдона зафиксирован в соединении с давлением, а другой конец закрыт.Каждая трубка имеет эллиптическое поперечное сечение, которое заставляет трубку выпрямляться при приложении большего давления. Инструмент будет продолжать выпрямляться до тех пор, пока давление жидкости не сравняется с упругим сопротивлением трубки. По этой причине разные материалы трубок связаны с разными диапазонами давления. Зубчатый механизм прикреплен к закрытому концу трубки и перемещает указатель по шкале с градуировкой для получения показаний. Устройства с трубкой Бурдона обычно используются в качестве датчиков избыточного давления и дифференциальных датчиков, когда две трубки соединены с одним указателем. Как правило, спиральная трубка более компактна и обеспечивает более надежную работу, чем С-образный чувствительный элемент.

Вакуумные датчики давления

Давление вакуума ниже атмосферного, и его может быть сложно обнаружить механическими методами. Датчики Пирани обычно используются для измерений в диапазоне низкого вакуума. Эти датчики основаны на нагретом проводе, электрическое сопротивление которого зависит от температуры. Когда вакуумное давление увеличивается, конвекция уменьшается, а температура проволоки повышается.Электрическое сопротивление увеличивается пропорционально и калибруется по давлению, чтобы обеспечить эффективное измерение вакуума.

Ионные датчики или датчики с холодным катодом обычно используются для областей применения с более высоким вакуумом. Эти инструменты основаны на нити накала, которая генерирует эмиссию электронов. Электроны переходят на сетку, где они могут сталкиваться с молекулами газа, вызывая их ионизацию. Устройство для сбора заряженных частиц притягивает заряженные ионы, и количество накапливаемых им ионов напрямую соответствует количеству молекул в вакууме, таким образом обеспечивая точное считывание давления в вакууме.

Герметичные датчики давления

Герметичные датчики давления используются, когда необходимо получить измерение давления относительно эталонного значения (например, атмосферного давления на уровне моря), но когда невозможно открыть датчик непосредственно для этого эталонного давления. Например, на подводных транспортных средствах герметичный датчик давления может использоваться для определения глубины транспортного средства путем измерения давления окружающей среды и сравнения его с атмосферным давлением, имеющимся в герметичном устройстве.

Технические характеристики датчика давления

Датчики давления

обычно имеют размер и характеристики, определяемые несколькими общими параметрами, которые показаны ниже. Обратите внимание, что спецификации для этих устройств могут отличаться от производителя к производителю, а также обратите внимание, что характеристики могут отличаться в зависимости от конкретного типа датчика давления, который поставляется. Базовое понимание этих спецификаций упростит процесс поиска или определения одного из этих датчиков.

  • Тип датчика — отражает тип давления, на которое рассчитан датчик. Это может включать абсолютное давление, сложное давление, дифференциальное давление, манометрическое давление или вакуумное давление.
  • Диапазон рабочего давления — обеспечивает диапазон давлений, в котором датчик может работать и генерировать выходной сигнал.
  • Максимальное давление — абсолютное максимальное значение давления, при котором устройство может надежно работать без повреждения датчика.Превышение максимального давления может привести к отказу устройства или неточному выходному сигналу.
  • Полная шкала — это разница между максимальным давлением, которое может измерять датчик, и нулевым давлением.
  • Тип выхода — описывает общий характер характеристик выходного сигнала датчика давления. Примеры включают аналоговый ток, аналоговое напряжение, частоту или другие форматы.
  • Выходной уровень — диапазон выходного сигнала, например 0-25 мВ, связанный с датчиком давления в пределах его рабочего диапазона. Для выходных электрических сигналов это обычно будет диапазон милливольт или вольт или диапазон выходного тока в миллиамперах.
  • Точность — мера отклонения между уровнем давления, определенным выходным сигналом датчика, и истинным значением давления. Точность часто выражается в виде диапазона единиц давления +/- (например, фунт / кв. Дюйм или миллибар) или ошибки +/- в процентах. Точность датчиков давления обычно определяется по прямой, наилучшим образом подходящей для значений выходных сигналов, по отношению к различным показаниям приложенного давления.
  • Разрешение — представляет собой наименьшую разницу в выходном сигнале, которую может различить датчик.
  • Дрейф — мера постепенного изменения откалиброванного состояния датчика с течением времени.
  • Напряжение питания — величина источника напряжения, необходимого для питания датчика давления, измеряется в вольтах, чаще всего выражается как допустимый диапазон входного напряжения.
  • Диапазон рабочих температур — крайние значения температуры (высокие и низкие), при которых датчик рассчитан на надежную работу и выдачу выходного сигнала.

Применение датчиков давления

Датчики давления

находят широкое применение в ряде рынков, включая медицину, общепромышленность, автомобилестроение, HVAC и энергетику. Важно понимать, что, хотя эти устройства измеряют давление, их можно использовать для выполнения других важных измерений, поскольку существует взаимосвязь между зарегистрированным давлением и значениями этих других параметров.

Некоторые примеры использования датчика давления приведены ниже:

  • В автомобильных тормозных системах датчики давления могут использоваться для обнаружения неисправностей в гидравлических тормозах, которые могут повлиять на их работоспособность.
  • В автомобильных двигателях используются датчики давления для оптимизации топливовоздушной смеси при изменении условий движения и для контроля уровня давления масла в работающем двигателе.
  • Датчики давления в автомобилях могут использоваться для обнаружения столкновений и активации устройств безопасности, таких как подушки безопасности.
  • В аппаратах ИВЛ датчики давления используются для контроля давления кислорода и для помощи в управлении смесью воздуха и кислорода, подаваемой пациенту.
  • Гипербарические камеры используют датчики давления для отслеживания и контроля давления, применяемого в процессе лечения.
  • Датчики давления используются в приборах спирометрии, которые измеряют объем легких пациентов.
  • Автоматизированные системы доставки лекарств, которые вводят лекарство пациенту в виде жидкости для внутривенного вливания, используют датчики давления для доставки нужной дозы в нужное время суток.
  • В системах HVAC датчики давления могут использоваться для контроля состояния воздушных фильтров. Поскольку фильтры забиваются твердыми частицами, перепад давления на фильтре возрастает и может быть обнаружен.
  • Скорость воздушного потока можно контролировать с помощью датчиков давления, поскольку скорость воздушного потока пропорциональна разности давлений.
  • В промышленных процессах датчики давления могут обнаруживать засорение фильтра в технологическом потоке, оценивая разницу между давлением на входе и выходе.
  • Уровни жидкости в резервуаре можно эффективно контролировать с помощью датчиков давления, размещенных на дне резервуара. По мере того, как уровень жидкости в резервуаре уменьшается, давление напора (вызванное весом объема жидкости над датчиком) также уменьшается.Это измерение является прямым индикатором количества жидкости в резервуаре и не зависит от формы резервуара, а зависит исключительно от высоты жидкости. Здесь датчики давления представляют собой альтернативу другим формам датчиков уровня жидкости.
  • Улучшенное местоположение по GPS обеспечивается датчиками давления. Измерение высоты может быть сделано путем определения барометрического давления из-за взаимосвязи между барометрическим давлением и высотой в атмосфере.
  • В высокоэффективных стиральных машинах могут использоваться датчики давления для определения объема воды, который следует добавить для очистки партии грязной одежды, что позволяет наилучшим образом использовать природные ресурсы.
  • Датчики давления используются в носимых устройствах для наблюдения за пациентами и пожилыми людьми в условиях проживания с обслуживанием, определения того, когда могло произойти падение, и уведомления персонала или члена семьи. Измеряя небольшие изменения давления воздуха порядка 2 миллибар, эти датчики могут обнаруживать изменение высоты на расстоянии порядка 10 см.

Сводка

В этой статье представлен обзор датчиков давления, включая их описание, типы, основные характеристики и примеры применения.Для получения информации по другим темам обратитесь к нашим дополнительным руководствам или посетите платформу Thomas Supplier Discovery Platform, где вы можете найти потенциальные источники поставок для более чем 70 000 различных категорий продуктов и услуг.

Источники:
  1. https://www.avnet.com/
  2. https://www.variohm.com/news-media/technical-blog-archive/working-principle-of-a-pressure-sensor
  3. https://www.hbm.com/
  4. https://www.te.com/usa-en/products/sensors/pressure-sensors/pressure-transducers/pressure-sensor-vs-transducer-vs-transmitter.HTML
  5. https://allsensors.com/applications/medical-pressure-sensor-applications
  6. https://meritsensor. com/applications/

Датчики прочие изделия

Прочие «виды» изделий

Больше от Instruments & Controls

% PDF-1.4 % 7409 0 объект > эндобдж xref 7409 306 0000000016 00000 н. 0000016430 00000 п. 0000016555 00000 п. 0000018613 00000 п. 0000019034 00000 п. 0000019073 00000 п. 0000019188 00000 п. 0000032400 00000 п. 0000045392 00000 п. 0000045517 00000 п. 0000060068 00000 п. 0000060193 00000 п. 0000072593 00000 п. 0000086364 00000 н. 0000099402 00000 п. 0000099666 00000 п. 0000100289 00000 н. 0000100821 00000 н. 0000100907 00000 н. 0000101020 00000 н. 0000101544 00000 н. 0000102167 00000 н. 0000115232 00000 н. 0000130428 00000 п. 0000130659 00000 н. 0000131039 00000 н. 0000131189 00000 н. 0000131507 00000 н. 0000131606 00000 н. 0000131919 00000 н. 0000132018 00000 н. 0000132380 00000 н. 0000132504 00000 н. 0000132838 00000 н. 0000133176 00000 н. 0000133352 00000 п. 0000133686 00000 н. 0000134021 00000 н. 0000134409 00000 н. 0000134613 00000 н. 0000134844 00000 н. 0000134996 00000 н. 0000135227 00000 н. 0000135633 00000 н. 0000136035 00000 н. 0000136186 00000 п. 0000136527 00000 н. 0000136912 00000 н. 0000137297 00000 н. 0000137447 00000 н. 0000137678 00000 н. 0000138066 00000 н. 0000138190 00000 н. 0000138420 00000 н. 0000138793 00000 н. 0000139164 00000 н. 0000139316 00000 н. 0000139698 00000 п. 0000139823 00000 п. 0000140205 00000 н. 0000140590 00000 н. 0000140742 00000 н. 0000141067 00000 н. 0000141243 00000 н. 0000141643 00000 н. 0000141742 00000 н. 0000141973 00000 н. 0000142251 00000 н. 0000142400 00000 н. 0000142750 00000 н. 0000142953 00000 н. 0000143341 00000 п. 0000143440 00000 н. 0000143671 00000 н. 0000143968 00000 н. 0000144117 00000 п. 0000144399 00000 н. 0000144548 00000 н. 0000144936 00000 н. 0000145263 00000 н. 0000145655 00000 н. 0000145859 00000 н. 0000146246 00000 н. 0000146397 00000 н. 0000146628 00000 н. 0000146987 00000 н. 0000147375 00000 н. 0000147524 00000 н. 0000147754 00000 н. 0000148142 00000 н. 0000148530 00000 н. 0000148682 00000 н. 0000148912 00000 н. 0000149293 00000 н. 0000149674 00000 н. 0000149826 00000 н. 0000150201 00000 н. 0000150325 00000 н. 0000150724 00000 н. 0000150823 00000 н. 0000151108 00000 н. 0000151453 00000 н. 0000151684 00000 н. 0000151989 00000 н. 0000152342 00000 н. 0000152518 00000 н. 0000152749 00000 н. 0000153031 00000 н. 0000153385 00000 н. 0000153535 00000 н. 0000153766 00000 н. 0000154038 00000 н. 0000154366 00000 н. 0000154516 00000 н. 0000154781 00000 н. 0000155047 00000 н. 0000155171 00000 н. 0000155478 00000 н. 0000155762 00000 н. 0000155938 00000 н. 0000156290 00000 н. 0000158940 00000 н. 0000163555 00000 н. 0000192290 00000 н. 0000192521 00000 н. 0000192881 00000 н. 0000193112 00000 н. 0000193262 00000 н. 0000193649 00000 н. 0000193773 00000 н. 0000194139 00000 н. 0000194370 00000 н. 0000194493 00000 н. 0000194881 00000 н. 0000194980 00000 н. 0000195309 00000 н. 0000195540 00000 н. 0000195664 00000 н. 0000195895 00000 н. 0000196230 00000 н. 0000196354 00000 н. 0000196698 00000 н. 0000196874 00000 н. 0000197215 00000 н. 0000197391 00000 н. 0000197622 00000 н. 0000197990 00000 н. 0000198221 00000 н. 0000198372 00000 н. 0000198718 00000 н. 0000198869 00000 н. 0000199203 00000 н. 0000199327 00000 н. 0000199558 00000 н. 0000199892 00000 н. 0000200228 00000 н. 0000200616 00000 н. 0000200844 00000 н. 0000201048 00000 н. 0000201373 00000 н. 0000201549 00000 н. 0000201876 00000 н. 0000201975 00000 н. 0000202344 00000 н. 0000202443 00000 н. 0000202831 00000 н. 0000202930 00000 н. 0000203199 00000 н. 0000203463 00000 н. 0000203728 00000 н. 0000203904 00000 н. 0000204210 00000 н. 0000204588 00000 н. 0000204819 00000 н. 0000204995 00000 н. 0000205226 00000 н. 0000205536 00000 н. 0000205779 00000 н. 0000206008 00000 н. 0000206185 00000 н. 0000208416 00000 н. 0000208797 00000 н. 0000209237 00000 н. 0000210766 00000 н. 0000210807 00000 н. 0000220287 00000 н. 0000220328 00000 н. 0000222214 00000 н. 0000222255 00000 н. 0000222643 00000 н. 0000222742 00000 н. 0000222936 00000 н. 0000223130 00000 н. 0000223317 00000 н. 0000223514 00000 н. 0000223715 00000 н. 0000223917 00000 н. 0000224119 00000 н. 0000224308 00000 н. 0000224500 00000 н. 0000224693 00000 п. 0000224892 00000 н. 0000225087 00000 н. 0000225286 00000 н. 0000225485 00000 н. 0000225682 00000 н. 0000225880 00000 н. 0000226074 00000 н. 0000226273 00000 н. 0000226466 00000 н. 0000226659 00000 н. 0000226850 00000 н. 0000227044 00000 н. 0000227236 00000 н. 0000227431 00000 н. 0000227632 00000 н. 0000227829 00000 н. 0000228029 00000 н. 0000228222 00000 н. 0000228421 00000 н. 0000228621 00000 н. 0000228820 00000 н. 0000229017 00000 н. 0000229217 00000 н. 0000229406 00000 н. 0000229605 00000 н. 0000229804 00000 н. 0000229995 00000 н. 0000230192 00000 н. 0000230386 00000 п. 0000230584 00000 н. 0000230774 00000 п. 0000230963 00000 н. 0000231152 00000 н. 0000231351 00000 н. 0000231549 00000 н. 0000231747 00000 н. 0000231946 00000 н. 0000232149 00000 н. 0000232346 00000 н. 0000232539 00000 н. 0000232739 00000 н. 0000232940 00000 н. 0000233143 00000 п. 0000233341 00000 п. 0000233535 00000 н. 0000233732 00000 н. 0000233931 00000 н. 0000234123 00000 п. 0000234319 00000 п. 0000234518 00000 н. 0000234712 00000 н. 0000234901 00000 н. 0000235091 00000 н. 0000235281 00000 п. 0000235479 00000 н. 0000235678 00000 н. 0000235877 00000 н. 0000236076 00000 н. 0000236279 00000 н. 0000236476 00000 н. 0000236677 00000 н. 0000236871 00000 н. 0000237073 00000 н. 0000237276 00000 н. 0000237470 00000 н. 0000237671 00000 н. 0000237866 00000 н. 0000238060 00000 н. 0000238255 00000 н. 0000238451 00000 н. 0000238644 00000 н. 0000238836 00000 н. 0000239024 00000 н. 0000239217 00000 н. 0000239407 00000 н. 0000239605 00000 н. 0000239798 00000 н. 0000239985 00000 н. 0000240182 00000 н. 0000240377 00000 н. 0000240571 00000 н. 0000240764 00000 н. 0000240955 00000 н. 0000241143 00000 н. 0000241340 00000 н. 0000241539 00000 н. 0000241729 00000 н. 0000241919 00000 н. 0000242108 00000 н. 0000242307 00000 н. 0000242506 00000 н. 0000242705 00000 н. 0000242904 00000 н. 0000243107 00000 н. 0000243184 00000 н. 0000243383 00000 н. 0000243816 00000 н. 0000243893 00000 н. 0000244357 00000 н. 0000244434 00000 н. 0000244895 00000 н. 0000244972 00000 н. 0000245172 00000 н. 0000245607 00000 н. 0000006416 00000 н. трейлер ] / Назад 6294587 >> startxref 0 %% EOF 7714 0 объект > поток hz \ S $ 0-De4oaUqd- * ڰ / «» (!, EVmXDlZTHAQq7z ~ o̙fo}

Проводка датчика давления 4-20 мА

Принцип работы

Рисунок 1

Это типичное использование двухпроводных датчиков давления 4-20 мА для большинства клиентов, показанных на рисунке 1.После включения датчика давления ток контура пропорционален давлению, чтобы генерировать сигнал 4-20 мА путем сбора давления. Ток протекает через резистор выборки (обычно 100 Ом, 250 Ом), который последовательно подключается к контуру, а затем преобразуется в сигнал напряжения, используемый для внутренней системы сбора данных. Как правило, резисторы для отбора проб будут интегрированы в устройство для сбора данных.

Рисунок 2

Это схема моделирования реального приложения на рисунке 2.Синяя стрелка указывает текущий ток 4-20 мА. При использовании мультиметра в качестве устройства для сбора данных сопротивление выборки составляет 250 Ом, нулевой ток составляет 4 мА, а измеренное напряжение составляет около 0,997 В (0,004 мА × 250 Ом = 1 В). )

Неисправности и решения

Общая ошибка № 1: Сигнал давления не собирается, и значение явно ненормальное.

У этой проблемы много причин, например, проблемы с оборудованием для сбора данных, ошибки в проводке или проблемы с качеством продукции.Чтобы решить эту проблему, сначала убедитесь, что передатчик работает нормально после включения;

Решения:

а. Проверить проводку:

Проверьте проводку в соответствии с этикеткой на корпусе преобразователя или в руководстве. Для наших продуктов, как правило, черный провод подается на питание, а красный провод имеет положительный вывод.

Если вы обнаружите, что провод перевернут, не беспокойтесь о повреждении. Обычные продукты имеют антиреверсивную конструкцию, и, пожалуйста, повторно подключите проводку, чтобы устранить проблему.

г. Напряжение измерения:

После проверки проводки настройте мультиметр на значение напряжения, чтобы измерить напряжение между положительным и отрицательным выходом преобразователя. Значение напряжения должно быть в пределах диапазона напряжения питания преобразователя, который указан на этикетке продукта или в руководстве по эксплуатации.

Если измеренное значение напряжения неверно, проверьте исправность оборудования.

c: Ток измерительной петли:

Отключите передатчик «положительный выход», настройте мультиметр на текущую серию положений в токовой петле, чтобы проверить значение тока петли.Как правило, состояние без давления составляет около 4 мА (нижний предел диапазона датчика избыточного давления равен 0).

При выполнении вышеуказанного теста обратите внимание на настройку положения тока и напряжения мультиметра. См. Настройки двух вышеупомянутых мультиметров.

После трех шагов, описанных выше, поскольку мультиметр работает нормально для тестирования, если значение тока контура по-прежнему не составляет около 4 мА (точность 0,5% полной шкалы, 3,92 ~ 4,08 мА), сначала это может быть расценено как неисправность изделия, пожалуйста свяжитесь с отделом послепродажного обслуживания для дальнейшего анализа.

Общая неисправность № 2: Тест датчика неточный, вне допуска, нет изменений давления и т. Д.

Решения:

(1) Рекомендуется статически поднять изделие в воздух, чтобы проверить, в норме ли напряжение источника питания. Поместите продукт в вертикальном направлении, проверьте ток цепи, является ли точность 4 мА. Для продуктов с точностью 0,5% полной шкалы нулевой ток должен находиться в пределах от 3,92 до 4,08 мА.

(2) Если нулевой ток продукта является нормальным, рекомендуется проверить, исправно ли оборудование, открыт ли запорный клапан, заблокирован ли напорный трубопровод и т. Д.

(3) Проверьте чувствительную к давлению диафрагму преобразователя. Если диафрагма повреждена, преобразователь следует возвращать на завод только для ремонта;

(4) Если вышеуказанные решения не могут решить проблему, обратитесь в отдел послепродажного обслуживания для дальнейшего анализа.

Кроме того, мы суммировали 4 типичных устранения неполадок датчиков давления 4 ~ 20 мА постоянного тока, чтобы помочь клиентам быстро решить проблемы на месте, как показано ниже.

3. Нет отображения, нет вывода

Проверка и проверка

Решения

Проверьте, не реверсирован ли источник питания.

Поставьте правильно.

Проверьте источник питания датчика давления, если он составляет 24 В постоянного тока.

Убедитесь, что на датчик давления подается питание ≥12 В (интеллектуальный тип) ≥ 15 В (общий тип).

Если нет источника питания, проверьте, не разорвана ли цепь, и определите сопротивление выборки вторичного прибора / ПЛК (входное сопротивление должно быть ≤250 Ом).

Если это отображаемый датчик давления, проверьте, не поврежден ли индикатор (сначала можно замкнуть два провода индикатора.Если после короткого замыкания в норме, значит индикатор поврежден).

Заменить индикатор.

Подключите амперметр к цепи питания 24 В и проверьте, нормальный ли ток.

Если это нормально, датчик давления исправен. В этом случае проверьте, исправны ли другие приборы в цепи.

Проверьте, не ослаблена ли проводка.

Сделайте его затянутым и хорошо соединенным.

Убедитесь, что источник питания правильно подключен к входной клемме питания.

Подключите к клемме источника питания правильно в соответствии с требованиями к источнику питания.

4. Выходной сигнал датчика давления составляет ≥20 мА.

Проверка и проверка

Решения

Проверить исправность электропитания датчика давления.

Если оно меньше 12 В постоянного тока, проверьте, нет ли большой нагрузки в цепи. Допустимая нагрузка датчика давления должна соответствовать RL ≤ (напряжение питания датчика -12 В) / (0,02 А) Ом.

Проверить, не превышает ли фактическое давление пределы полного диапазона.

Замените датчик давления на соответствующий диапазон.

Проверить, не поврежден ли датчик давления.Сильная перегрузка иногда приводит к повреждению изолированной диафрагмы.

Верните преобразователь давления на завод для обслуживания.

Проверьте правильность подключения электропитания.

Неправильно поставил.

5. Выходной сигнал датчика давления ≤4 мА.

Проверка и проверка

Решения

Проверить исправность электропитания датчика давления.

Если оно меньше 12 В постоянного тока, проверьте, нет ли большой нагрузки в цепи. Допустимая нагрузка датчика давления должна соответствовать RL≤ (напряжение питания датчика -12 В) / (0,02 А) Ом.

Проверьте, не ослаблена ли проводка, что приводит к увеличению контактного сопротивления. Это эквивалентно увеличению нагрузки.

Подключите провод и затяните его, нагрузка в соответствии с RL≤ (напряжение питания передатчика -12В) / (0.02A) Ом.

Проверить, превышает ли фактическое давление выбранный диапазон датчика давления.

Замените датчик давления на соответствующий диапазон.

Проверить, не поврежден ли датчик давления. Сильная перегрузка иногда приводит к повреждению изолированной диафрагмы

Верните преобразователь давления на завод для обслуживания

6.Неправильный дисплей / выходной сигнал с ошибкой.

Проверка и проверка

Решения

Проверить исправность электропитания датчика давления.

Если оно меньше 12 В постоянного тока, проверьте, нет ли большой нагрузки в цепи. Допустимая нагрузка датчика давления должна соответствовать RL ≤ (напряжение питания датчика -12 В) / (0.02A) Ом.

Проверьте правильность значения эталонного давления.

Замените датчик давления того же типа. Если ошибка повторяется, проверьте эталонный датчик давления. Если точность измерителя низкая, вам необходимо заменить прибор с большей точностью.

Проверьте, соответствует ли диапазон вторичного измерителя диапазону преобразователя давления.

Отрегулируйте диапазон вторичного прибора, чтобы убедиться, что он соответствует диапазону датчика давления.

Емкость нагрузки датчика давления должна соответствовать RL≤ (напряжение питания датчика -12 В) / (0,02 А) Ом.

Если это не так, примите меры в соответствии с различными условиями: например, повышение напряжения источника питания (но должно быть ниже 36 В постоянного тока), уменьшение нагрузки и т. Д.

Проверить надежность заземления соответствующего корпуса устройства.

Если нет, надежно заземлите.

Проверить, есть ли на объекте отдельно сильное и слабое электричество.

Убедитесь, что проводка соответствует требованиям стандартов и соответствует требованиям, чтобы избежать помех для нестабильности / ошибки сигнала датчика давления.

Мембрана датчика давления легко деформируется. Перегрузка и твердые предметы могут повредить изолированную диафрагму.

Верните преобразователь давления на завод для обслуживания.

Проверьте трубопровод Если в трубопроводе есть примеси, это может повлиять на точность измерения.

Очистите от загрязнений и установите сетку фильтра перед портом давления.

Свяжитесь с нами

Micro Sensor предоставляет решения для практического промышленного применения, свяжитесь с нами по адресу [email protected] , и мы готовы предложить вам продукты и решения с индивидуальным дизайном!

Как измерить давление с помощью датчиков давления

Давление определяется как сила на единицу площади, которую жидкость оказывает на окружающую среду. [1] Например, давление P является функцией силы F и площади A.

P = F / A


Контейнер, полный газа, содержит бесчисленное количество атомов и молекул, которые постоянно отскакивают от его стенок. Давление было бы средней силой этих атомов и молекул на его стенках на единицу площади контейнера. Более того, давление не нужно измерять вдоль стенки контейнера, его можно измерить как силу на единицу площади вдоль любой плоскости. Например, давление воздуха зависит от веса воздуха, толкающего Землю.Таким образом, с увеличением высоты давление уменьшается. Точно так же, когда аквалангист или подводная лодка погружается все глубже в океан, давление увеличивается.

Единицей измерения давления в системе СИ является Паскаль (Н / м2), но другие распространенные единицы давления включают фунты на квадратный дюйм (PSI), атмосферы (атм), бары, дюймы ртутного столба (в Hg) и миллиметры ртутного столба. (мм рт. ст.).

Измерение давления можно описать как статическое или динамическое. Давление в случаях, когда движение не происходит, называется статическим давлением .Примеры статического давления включают давление воздуха внутри воздушного шара или воды внутри бассейна. Часто движение жидкости изменяет силу, приложенную к окружающей среде. Такое измерение давления известно как измерение динамического давления. Например, давление внутри воздушного шара или на дне резервуара с водой будет изменяться, когда воздух выходит из воздушного шара или когда вода выливается из резервуара.

Напор (или напор) измеряет статическое давление жидкости в резервуаре или трубе.Напор P зависит исключительно от высоты жидкости h и плотности w измеряемой жидкости, как показано на рисунке 1 ниже.


Рисунок 1. Измерение давления напора


Давление на аквалангиста, плавающего в океане, будет равняться глубине водолаза, умноженной на вес океана (64 фунта на кубический фут). У аквалангиста, ныряющего на 33 фута в океан, на каждый квадратный фут его тела будет приходиться 2112 фунтов воды. Это означает 14.7 фунтов на квадратный дюйм. Интересно, что атмосферное давление воздуха на уровне моря также составляет 14,7 фунтов на квадратный дюйм или 1 атм. Таким образом, 33 фута воды создают такое же давление, как 5 миль воздуха! Общее давление на аквалангиста глубиной 33 фута в океане будет комбинированным давлением, вызванным весом воздуха и воды, то есть 29,4 фунтов на квадратный дюйм или 2 атм.

Измерение давления может дополнительно описываться типом выполняемого измерения. Существует три типа измерения давления: абсолютное, манометрическое и дифференциальное.Абсолютное давление измеряется относительно вакуума (рисунок 2). Часто для описания абсолютного давления используются аббревиатуры PAA (абсолютные паскали) или PSIA (фунты на квадратный дюйм абсолютного давления).

Рисунок 2. Датчик абсолютного давления [3]


Манометрическое давление измеряется относительно атмосферного давления окружающей среды (Рисунок 3). Подобно абсолютному давлению, для описания манометрического давления используются сокращения PAG (Pascals Gauge) или PSIG (Pounds per Square Inch Gauge).

Рисунок 3. Датчик избыточного давления [3]

Дифференциальное давление аналогично манометрическому давлению, но вместо измерения по отношению к окружающему атмосферному давлению, дифференциальные измерения проводятся по отношению к определенному эталонному давлению (Рисунок 4). Кроме того, для описания перепада давления используются аббревиатуры PAD (разность паскалей) или PSID (разность в фунтах на квадратный дюйм).


Рисунок 4. Датчик перепада давления [3]

gravity__water_pressure_sensor_sku__sen0257-DFRobot

  • ДОМ
  • СООБЩЕСТВО
  • ФОРУМ
  • БЛОГ
  • ОБРАЗОВАНИЕ
ДОМ ФОРУМ БЛОГ
  • Контроллер
    • DFR0010 Arduino Nano 328
    • DFR0136 Сервоконтроллер Flyduino-A 12
    • DFR0225 Romeo V2-Все в одном контроллере R3
    • Arduino_Common_Controller_Selection_Guide
  • DFR0182 Беспроводной геймпад V2.0
  • DFR0100 Комплект для начинающих DFRduino для Arduino V3
  • DFR0267 Блуно
  • DFR0282 Жук
  • DFR0283 Мечтатель клен V1.0
  • DFR0296 Блуно Нано
  • DFR0302 MiniQ 2WD Plus
  • DFR0304 Беспроводной геймпад BLE V2
  • DFR0305 RoMeo BLE
  • DFR0351 Romeo BLE mini V2.0
  • DFR0306 Блуно Мега 1280
  • DFR0321 Узел Wido-WIFI IoT
  • DFR0323 Блуно Мега 2560
  • DFR0329 Блуно М3
  • DFR0339 Жук Блуно
  • DFR0343 Контроллер с низким энергопотреблением UHex
  • DFR0355 SIM808 с материнской платой Leonardo
  • DFR0392 DFRduino M0 материнская плата, совместимая с Arduino
  • DFR0398 Контроллер роботов Romeo BLE Quad
  • DFR0416 Bluno M0 Материнская плата
  • DFR0575 Жук ESP32
  • DFR0133 X-Доска
  • DFR0162 X-Board V2
  • DFR0428 3.5-дюймовый сенсорный TFT-экран для Raspberry Pi
  • DFR0494 Raspberry Pi ШАПКА ИБП
  • DFR0514 DFR0603 IIC 16X2 RGB LCD KeyPad HAT V1.0
  • DFR0524 5.5 HDMI OLED-дисплей с емкостным сенсорным экраном V2.0
  • DFR0550 5-дюймовый TFT-дисплей с сенсорным экраном V1.0
  • DFR0591 модуль дисплея raspberry pi e-ink V1.0
  • DFR0592 Драйвер двигателя постоянного тока HAT
  • DFR0604 HAT расширения ввода-вывода для Pi zero V1.0
  • DFR0566 Шляпа расширения ввода-вывода для Raspberry Pi
  • DFR0528 Шляпа ИБП для Raspberry Pi Zero
  • DFR0331 Romeo для контроллера Edison
  • DFR0453 DFRobot CurieNano — мини-плата Genuino Arduino 101
  • TEL0110 CurieCore Intel® Curie Neuron Module
  • DFR0478 Микроконтроллер FireBeetle ESP32 IOT (V3.0) с поддержкой Wi-Fi и Bluetooth
  • DFR0483 FireBeetle Covers-Gravity I O Expansion Shield
  • FireBeetle Covers-24 × 8 светодиодная матрица
  • TEL0121 FireBeetle Covers-LoRa Radio 433 МГц
  • TEL0122 FireBeetle Covers-LoRa Radio 915 МГц
  • TEL0125 FireBeetle охватывает LoRa Radio 868MHz
  • DFR0489 FireBeetle ESP8266 Микроконтроллер IOT
  • DFR0492 FireBeetle Board-328P с BLE4.1
  • DFR0498 FireBeetle Covers-Camera & Audio Media Board
  • DFR0507 FireBeetle Covers-OLED12864 Дисплей
  • DFR0508 FireBeetle Covers-Двигатель постоянного тока и шаговый драйвер
  • DFR0511 FireBeetle Covers-ePaper Черно-белый дисплейный модуль
  • DFR0531 FireBeetle Covers-ePaper Черно-белый и красный дисплейный модуль
  • DFR0536 Плата расширения геймпада с микробитами
  • DFR0548 Плата расширения микробитового драйвера
  • ROB0148 micro: Maqueen для micro: bit
  • ROB0150 Microbit Круглая плата расширения для светодиодов RGB
  • MBT0005 Micro IO-BOX
  • SEN0159 Датчик CO2
  • DFR0049 DFRobot Датчик газа
  • TOY0058 Датчик атмосферного давления
  • SEN0220 Инфракрасный датчик CO2 0-50000ppm
  • SEN0219 Гравитационный аналоговый инфракрасный датчик CO2 для Arduino
  • SEN0226 Датчик барометра Gravity I2C BMP280
  • SEN0231 Датчик гравитации HCHO
  • SEN0251 Gravity BMP280 Датчики атмосферного давления
  • SEN0132 Датчик угарного газа MQ7
  • SEN0032 Трехосный акселерометр — ADXL345
  • DFR0143 Трехосевой акселерометр MMA7361
  • Трехосный акселерометр серии FXLN83XX
  • SEN0072 CMPS09 — Магнитный компас с компенсацией наклона
  • SEN0073 9 степеней свободы — бритва IMU
  • DFR0188 Flymaple V1.1
  • SEN0224 Трехосевой акселерометр Gravity I2C — LIS2DH
  • SEN0140 Датчик IMU с 10 степенями свободы, версия 2.0
  • SEN0250 Gravity BMI160 6-осевой инерционный датчик движения
  • SEN0253 Gravity BNO055 + BMP280 интеллектуальный 10DOF AHRS
  • SEN0001 URM37 V5.0 Ультразвуковой датчик
  • SEN0002 URM04 V2.0
  • SEN0004 SRF01 Ультразвуковой датчик
  • SEN0005 SRF02 Ультразвуковой датчик
  • SEN0006 SRF05 Ультразвуковой датчик
  • SEN0007 SRF08 Ультразвуковой датчик
  • SEN0008 SRF10 Ультразвуковой датчик
  • SEN0149 URM06-RS485 Ультразвуковой
  • SEN0150 URM06-UART Ультразвуковой
  • SEN0151 URM06-PULSE Ультразвуковой
  • SEN0152 URM06-ANALOG Ультразвуковой
  • SEN0153 Ультразвуковой датчик URM07-UART
  • SEN0246 URM08-RS485 Водонепроницаемый гидролокатор-дальномер
  • SEN0304 Ультразвуковой датчик URM09 (Gravity-I2C) (V1.0)
  • SEN0304 Ультразвуковой датчик URM09 (Gravity-I2C) (V1.0)
  • SEN0300 Водонепроницаемый ультразвуковой датчик ULS
  • SEN0301 Водонепроницаемый ультразвуковой датчик ULA
  • SEN0307 URM09 Аналог ультразвукового датчика силы тяжести
  • SEN0311 A02YYUW Водонепроницаемый ультразвуковой датчик
  • SEN0312 ME007YS Водонепроницаемый ультразвуковой датчик
  • SEN0313 A01NYUB Водонепроницаемый ультразвуковой датчик
  • DFR0066 SHT1x Датчик влажности и температуры
  • DFR0067 DHT11 Датчик температуры и влажности
  • SEN0137 DHT22 Модуль температуры и влажности
  • DFR0023 Линейный датчик температуры DFRobot LM35
  • DFR0024 Gravity DS18B20 Датчик температуры, совместимый с Arduino V2
  • DFR0024 Gravity DS18B20 Датчик температуры, совместимый с Arduino V2
  • SEN0114 Датчик влажности
  • Датчик температуры TOY0045 TMP100
  • TOY0054 SI7021 Датчик температуры и влажности
  • SEN0206 Датчик инфракрасного термометра MLX

  • SEN0227 SHT20 Водонепроницаемый датчик температуры и влажности I2C
  • SEN0236 Gravity I2C BME280 Датчик окружающей среды Температура, влажность, барометр
  • SEN0248 Gravity I2C BME680 Датчик окружающей среды VOC, температура, влажность, барометр
  • DFR0558 Цифровой высокотемпературный датчик силы тяжести типа К
  • SEN0308 Водонепроницаемый емкостный датчик влажности почвы
  • SEN0019 Регулируемый переключатель инфракрасного датчика
  • SEN0042 DFRobot Инфракрасный датчик прорыва
  • SEN0143 SHARP GP2Y0A41SK0F ИК-датчик рейнджера 4-30 см
  • SEN0013 Sharp GP2Y0A02YK ИК-датчик рейнджера 150 см
  • SEN0014 Sharp GP2Y0A21 Датчик расстояния 10-80 см
  • SEN0085 Sharp GP2Y0A710K Датчик расстояния 100-550 см
  • Модуль цифрового ИК-приемника DFR0094
  • DFR0095 Модуль цифрового ИК-передатчика
  • SEN0018 Цифровой инфракрасный датчик движения
  • DFR0107 ИК-комплект
  • SEN0264 TS01 ИК-датчик температуры (4-20 мА)
  • SEN0169 Аналоговый pH-метр Pro
  • DFR0300-H Gravity: аналоговый датчик электропроводности (K = 10)
  • DFR0300 Гравитационный аналоговый датчик электропроводности V2 K = 1
  • SEN0165 Аналоговый измеритель ОВП
  • SEN0161-V2 Комплект гравитационного аналогового датчика pH V2
  • SEN0161 PH метр
  • SEN0237 Гравитационный аналоговый датчик растворенного кислорода
  • SEN0204 Бесконтактный датчик уровня жидкости XKC-Y25-T12V
  • SEN0205 Датчик уровня жидкости-FS-IR02
  • SEN0244 Gravity Analog TDS Sensor Meter для Arduino
  • SEN0249 Комплект измерителя pH с аналоговым наконечником копья силы тяжести для применения в почве и пищевых продуктах
  • SEN0121 Датчик пара
  • SEN0097 Датчик освещенности
  • DFR0026 Датчик внешней освещенности DFRobot
  • TOY0044 УФ-датчик
  • SEN0172 LX1972 датчик внешней освещенности
  • SEN0043 TEMT6000 датчик внешней освещенности
  • SEN0175 УФ-датчик v1.0-ML8511
  • SEN0228 Gravity I2C VEML7700 Датчик внешней освещенности
  • SEN0101 Датчик цвета TCS3200
  • DFR0022 Датчик оттенков серого DFRobot
  • Датчик отслеживания линии SEN0017 для Arduino V4
  • SEN0147 Интеллектуальный датчик оттенков серого
  • SEN0212 TCS34725 Датчик цвета I2C для Arduino
  • SEN0245 Gravity VL53L0X Лазерный дальномер ToF
  • SEN0259 TF Mini LiDAR ToF Laser Range Sensor
  • SEN0214 Датчик тока 20A
  • SEN0262 Гравитационный аналоговый преобразователь тока в напряжение для приложений 4 ~ 20 мА
  • SEN0291 Gravity: Цифровой ваттметр I2C
  • DFR0027 Цифровой датчик вибрации DFRobot V2
  • DFR0028 DFRobot Датчик наклона
  • DFR0029 Цифровая кнопка DFRobot
  • DFR0030 DFRobot емкостный датчик касания
  • Модуль цифрового зуммера DFR0032
  • DFR0033 Цифровой магнитный датчик
  • DFR0034 Аналоговый звуковой датчик
  • SEN0038 Колесные энкодеры для DFRobot 3PA и 4WD Rovers
  • DFR0051 Аналоговый делитель напряжения
  • DFR0052 Аналоговый пьезодисковый датчик вибрации
  • DFR0076 Датчик пламени
  • DFR0053 Аналоговый датчик положения ползуна
  • DFR0054 Аналоговый датчик вращения V1
  • DFR0058 Аналоговый датчик вращения V2
  • Модуль джойстика DFR0061 для Arduino
  • DFR0075 AD Клавиатурный модуль
  • Модуль вентилятора DFR0332
  • SEN0177 PM2.5 лазерный датчик пыли
  • Модуль датчика веса SEN0160
  • SEN0170 Тип напряжения датчика скорости ветра 0-5 В
  • TOY0048 Высокоточный двухосевой датчик инклинометра, совместимый с Arduino Gadgeteer
  • SEN0187 RGB и датчик жестов
  • SEN0186 Метеостанция с анемометром Флюгер Дождь ведро
  • SEN0192 Датчик микроволн
  • SEN0185 датчик Холла
  • FIT0449 DFRobot Speaker v1.0
  • Датчик сердечного ритма SEN0203
  • DFR0423 Самоблокирующийся переключатель
  • SEN0213 Датчик монитора сердечного ритма
  • SEN0221 Датчик угла Холла силы тяжести
  • Датчик переключателя проводимости SEN0223
  • SEN0230 Инкрементальный фотоэлектрический датчик угла поворота — 400P R
  • SEN0235 Модуль поворотного энкодера EC11
  • SEN0240 Аналоговый датчик ЭМГ от OYMotion
  • SEN0232 Гравитационный аналоговый измеритель уровня звука
  • SEN0233 Монитор качества воздуха PM 2.5, формальдегид, датчик температуры и влажности
  • DFR0515 FireBeetle Covers-OSD Модуль наложения символов
  • SEN0257 Датчик гравитационного давления воды
  • SEN0289 Gravity: Цифровой датчик встряхивания
  • SEN0290 Gravity: Датчик молнии
  • DFR0271 GMR Плата
  • ROB0003 Pirate 4WD Мобильная платформа
  • Мобильная платформа ROB0005 Turtle 2WD
  • ROB0025 NEW A4WD Мобильный робот с кодировщиком
  • ROB0050 4WD MiniQ Полный комплект
  • ROB0111 4WD MiniQ Cherokey
  • ROB0036 Комплект роботизированной руки с 6 степенями свободы
  • Комплект наклонно-поворотного устройства FIT0045 DF05BB
  • ROB0102 Мобильная платформа Cherokey 4WD
  • ROB0117 Базовый комплект для Cherokey 4WD
  • ROB0022 4WD Мобильная платформа
  • ROB0118 Базовый комплект для Turtle 2WD
  • Робот-комплект ROB0080 Hexapod
  • ROB0112 Мобильная платформа Devastator Tank
  • ROB0114 Мобильная платформа Devastator Tank
  • ROB0124 Мобильная платформа HCR с всенаправленными колесами
  • ROB0128 Devastator Tank Мобильная платформа Металлический мотор-редуктор постоянного тока
  • ROB0137 Explorer MAX Робот
  • ROB0139 Робот FlameWheel
  • DFR0270 Accessory Shield для Arduino
  • DFR0019 Щит для прототипирования для Arduino
  • DFR0265 IO Expansion Shield для Arduino V7
  • DFR0210 Пчелиный щит
  • DFR0165 Mega IO Expansion Shield V2.3
  • DFR0312 Плата расширения Raspberry Pi GPIO
  • DFR0311 Raspberry Pi встречает Arduino Shield
  • DFR0327 Arduino Shield для Raspberry Pi 2B и 3B
  • DFR0371 Экран расширения ввода-вывода для Bluno M3
  • DFR0356 Щит Bluno Beetle
  • DFR0412 Gravity IO Expansion Shield для DFRduino M0
  • DFR0375 Cookie I O Expansion Shield V2
  • DFR0334 GPIO Shield для Arduino V1.0
  • DFR0502 Gravity IO Expansion & Motor Driver Shield V1.1
  • DFR0518 Micro Mate — мини-плата расширения для микробита
  • DFR0578 Gravity I O Expansion Shield для OpenMV Cam M7
  • DFR0577 Gravity I O Expansion Shield для Pyboard
  • DFR0626 MCP23017 Модуль расширения с IIC на 16 цифровых IO
  • DFR0287 LCD12864 Экран
  • DFR0009 Экран ЖК-клавиатуры для Arduino
  • DFR0063 I2C TWI LCD1602 Модуль, совместимый с Gadgeteer
  • Модуль DFR0154 I2C TWI LCD2004, совместимый с Arduino Gadgeteer
  • Светодиодная матрица DFR0202 RGB
  • DFR0090 3-проводной светодиодный модуль
  • TOY0005 OLED 2828 модуль цветного дисплея.Совместимость с NET Gadgeteer
  • Модуль дисплея TOY0006 OLED 9664 RGB
  • Модуль дисплея TOY0007 OLED 2864
  • Модуль дисплея FIT0328 2.7 OLED 12864
  • DFR0091 3-проводной последовательный ЖК-модуль, совместимый с Arduino
  • DFR0347 2.8 TFT Touch Shield с 4 МБ флэш-памяти для Arduino и mbed
  • DFR0348 3.5 TFT Touch Shield с 4 МБ флэш-памяти для Arduino и mbed
  • DFR0374 Экран LCD клавиатуры V2.0
  • DFR0382 Экран со светодиодной клавиатурой V1.0
  • DFR0387 TELEMATICS 3.5 TFT сенсорный ЖК-экран
  • DFR0459 Светодиодная матрица RGB 8×8
  • DFR0460 Светодиодная матрица RGB 64×32 — шаг 4 мм / Гибкая светодиодная матрица 64×32 — Шаг 4 мм / Гибкая светодиодная матрица 64×32 — Шаг 5 мм
  • DFR0461 Гибкая светодиодная матрица 8×8 RGB Gravity
  • DFR0462 Гибкая светодиодная матрица 8×32 RGB Gravity
  • DFR0463 Gravity Гибкая светодиодная матрица 16×16 RGB
  • DFR0471 Светодиодная матрица RGB 32×16 — шаг 6 мм
  • DFR0472 Светодиодная матрица RGB 32×32 — шаг 4 мм
  • DFR0464 Gravity I2C 16×2 ЖК-дисплей Arduino с подсветкой RGB
  • DFR0499 Светодиодная матрица RGB 64×64 — шаг 3 мм
  • DFR0506 7-дюймовый дисплей HDMI с емкостным сенсорным экраном
  • DFR0555 \ DF0556 \ DFR0557 Gravity I2C LCD1602 Модуль ЖК-дисплея Arduino
  • DFR0529 2.2-дюймовый ЖК-дисплей TFT V1.0 (интерфейс SPI)
  • DFR0605 Gravity: Цифровой светодиодный модуль RGB
  • FIT0352 Цифровая светодиодная водонепроницаемая лента с RGB-подсветкой 60LED м * 3 м
  • DFR0645-G DFR0645-R 4-цифровой светодиодный сегментный модуль дисплея
  • Артикул DFR0646-G DFR0646-R 8-цифровой светодиодный сегментный модуль дисплея
  • DFR0597 Гибкая светодиодная матрица RGB 7×71
  • DFR0231 Модуль NFC для Arduino
  • Модуль радиоданных TEL0005 APC220
  • TEL0023 BLUETOOH BEE
  • TEL0026 DF-BluetoothV3 Bluetooth-модуль
  • Модуль беспроводного программирования TEL0037 для Arduino
  • TEL0044 DFRduino GPS Shield-LEA-5H
  • TEL0047 WiFi Shield V2.1 для Arduino
  • TEL0051 GPS GPRS GSM модуль V2.0
  • TEL0067 Wi-Fi Bee V1.0
  • TEL0073 BLE-Link
  • TEL0075 RF Shield 315 МГц
  • TEL0078 WIFI Shield V3 PCB Антенна
  • TEL0079 WIFI Shield V3 RPSMA
  • TEL0084 BLEmicro
  • TEL0086 DF-маяк EVB
  • TEL0087 USBBLE-LINK Bluno Адаптер для беспроводного программирования
  • TEL0080 UHF RFID МОДУЛЬ-USB
  • TEL0081 УВЧ RFID МОДУЛЬ-RS485
  • TEL0082 UHF RFID МОДУЛЬ-UART
  • TEL0083-A GPS-приемник для Arduino Model A
  • TEL0092 WiFi Bee-ESP8266 Wirelss модуль
  • Модуль GPS TEL0094 с корпусом
  • TEL0097 SIM808 GPS GPRS GSM Shield
  • DFR0342 W5500 Ethernet с материнской платой POE
  • DFR0015 Xbee Shield для Arduino без Xbee
  • TEL0107 WiFiBee-MT7681 Беспроводное программирование Arduino WiFi
  • TEL0089 SIM800C GSM GPRS Shield V2.0
  • Модуль приемника RF TEL0112 Gravity 315MHZ
  • TEL0113 Gravity UART A6 GSM и GPRS модуль
  • TEL0118 Gravity UART OBLOQ IoT-модуль
  • Модуль TEL0120 DFRobot BLE4.1
  • Bluetooth-адаптер TEL0002
  • TEL0108 Модуль аудиоприемника Bluetooth
  • TEL0124 SIM7600CE-T 4G (LTE) Shield V1.0
  • DFR0505 SIM7000C Arduino NB-IoT LTE GPRS Expansion Shield
  • DFR0013 IIC для GPIO Shield V2.0
  • Плата привода двигателя датчика DFR0057 — Версия 2.2
  • DFR0062 Адаптер WiiChuck
  • DFR0233 Узел датчика RS485 V1.0
  • DFR0259 Arduino RS485 щит
  • DFR0370 Экран CAN-BUS V2
  • DFR0627 IIC для двойного модуля UART
  • TEL0070 Multi USB RS232 RS485 TTL преобразователь
  • DFR0064 386AMP модуль аудиоусилителя
  • DFR0273 Экран синтеза речи
  • DFR0299 DFPlayer Mini
  • TOY0008 DFRduino Плеер MP3
  • SEN0197 Диктофон-ISD1820
  • DFR0420 Аудиозащитный экран для DFRduino M0
  • DFR0534 Голосовой модуль
  • SD2403 Модуль часов реального времени SKU TOY0020
  • TOY0021 SD2405 Модуль часов реального времени
  • DFR0151 Модуль Gravity I2C DS1307 RTC
  • DFR0469 Модуль Gravity I2C SD2405 RTC
  • DFR0316 MCP3424 18-битный канал АЦП-4 с усилителем с программируемым усилением
  • DFR0552 Gravity 12-битный модуль I2C DAC
  • DFR0553 Gravity I2C ADS1115 16-битный модуль АЦП, совместимый с Arduino и Raspberry Pi
  • DFR0117 Модуль хранения данных Gravity I2C EEPROM
  • Модуль SD DFR0071
  • Плата привода двигателя датчика DFR0057 — Версия 2.2
  • DFR0360 XSP — Программист Arduino
  • DFR0411 Двигатель постоянного тока Gravity 130
  • DFR0438 Яркий светодиодный модуль
  • DFR0439 Светодиодные гирлянды красочные
  • DFR0440 Модуль микровибрации
  • DFR0448 Светодиодные гирлянды, теплый белый цвет
  • Встроенный термопринтер DFR0503 — последовательный TTL
  • DFR0504 Гравитационный изолятор аналогового сигнала
  • DFR0520 Двойной цифровой потенциометр 100K
  • DFR0565 Гравитационный цифровой изолятор сигналов
  • DFR0563 Гравитация 3.Датчик уровня топлива литиевой батареи 7V
  • DFR0576 Гравитационный цифровой мультиплексор I2C с 1 по 8
  • DFR0117 Модуль хранения данных Gravity I2C EEPROM
  • DRI0001 Моторный щит Arduino L293
  • DRI0002 MD1.3 2A Двухмоторный контроллер
  • DRI0009 Моторный щит Arduino L298N
  • DRI0021 Драйвер двигателя постоянного тока Veyron 2x25A Brush
  • DRI0017 2A Моторный щит для Arduino Twin
  • Драйвер двигателя постоянного тока DRI0018 2x15A Lite
  • Микродвигатель постоянного тока FIT0450 с энкодером-SJ01
  • FIT0458 Микродвигатель постоянного тока с энкодером-SJ02
  • DFR0399 Микро-металлический мотор-редуктор постоянного тока 75 1 Вт Драйвер
  • DRI0039 Quad Motor Driver Shield для Arduino
  • DRI0040 Двойной 1.Драйвер двигателя 5A — HR8833
  • DRI0044 2×1.2A Драйвер двигателя постоянного тока TB6612FNG
  • Драйвер двигателя постоянного тока DFR0513 PPM 2x3A
  • DFR0523 Гравитационный цифровой перистальтический насос
  • DRI0027 Digital Servo Shield для Arduino
  • DRI0029 Сервопривод Veyron, 24 канала
  • SER0044 DSS-M15S 270 ° 15KG Металлический сервопривод DF с аналоговой обратной связью
  • DRI0023 Экран шагового двигателя для Arduino DRV8825
  • DRI0035 TMC260 Щиток драйвера шагового двигателя
  • DFR0105 Силовой щит
  • DFR0205 Силовой модуль
  • DFR0457 Контроллер мощности Gravity MOSFET
  • DFR0564 Зарядное устройство USB для 7.Литий-полимерная батарея 4 В
  • DFR0535 Менеджер солнечной энергии
  • DFR0559 Солнечная система управления мощностью 5 В для подсолнечника
  • DFR0559 Менеджер солнечной энергии 5 В
  • DFR0580 Solar Power Manager для свинцово-кислотных аккумуляторов 12 В
  • DFR0222 Реле X-Board
  • Релейный модуль DFR0017, совместимый с Arduino
  • DFR0289 Релейный контроллер RLY-8-POE
  • DFR0290 RLY-8-RS485 8-релейный контроллер
  • DFR0144 Релейный экран для Arduino V2.1
  • DFR0473 Gravity Digital Relay Module Совместимость с Arduino и Raspberry Pi
  • KIT0003 EcoDuino — Комплект для автомобильных заводов
  • KIT0071 MiniQ Discovery Kit
  • KIT0098 Пакет компонентов подключаемого модуля Breadboard
  • Артикул DFR0748 Цветок Китти
  • SEN0305 Гравитация: HUSKYLENS — простой в использовании датчик машинного зрения AI
  • Подключение датчика к Raspberry Pi
  • DFR0677 ШЛЯПА ONPOWER UPS для Raspberry Pi
    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *