Регулировка реле: настройка + подключение реле к насосу

Содержание

инструктаж по правильной настройке оборудования


Чтобы напор воды в автономной системе водоснабжения (отопления) оставался стабильным, в нее устанавливается специальное устройство – гидроаккумулятор. При этом неотъемлемой частью данного блока является совсем небольшой прибор – реле давления.

Если последний настроен неправильно, то гидравлический аккумулятор будет постоянно включаться и выключаться без особой нужды. В результате получим перерасход электроэнергии и быстрый износ насосного оборудования.

Согласитесь, устанавливая гидроаккумулятор у себя дома, мы хотим повысить эффективность водопроводной системы и стабильность ее работы. Однако если регулировка реле давления выполнена с ошибками, то поставленной задачи добиться не получится. Настройку этого маленького прибора крайне важно производить точно и по правилам. Причем регулировать его требуется как при первоначальной установке, так и в дальнейшем, при эксплуатации в постоянном режиме.

Содержание статьи:

Принцип работы реле давления

Автономная система водоподачи в частном доме состоит из водопроводных труб, насоса и элементов управления и очистки. Гидроаккумулятор в ней играет роль устройства контроля напора воды. Сначала последняя запасается в аккумуляторе, а затем, по мере необходимости, при открытии кранов расходуется.

Такая конфигурация водопровода позволяет уменьшить время работы , а также количество ее циклов «включения/выключения».

Реле давления здесь выполняет функцию управления насосом. Оно отслеживает уровень наполненности водой, чтобы при опустошении этого бака включить вовремя подкачку жидкости из водозабора.

Главные элементы реле – две пружины установки параметров давления, реагирующая на напор воды мембрана с металлической вставкой и контактная группа 220 В

Если давление воды в системе находится в пределах установленных на реле параметров, то насос не работает. Если напор снижается ниже минимальной установки Рпуск (Pmin, Рвкл), то на насосную станцию подается электрический ток, чтобы она заработала.

Далее при наполнении гидроаккумулятора до Рстоп (Pmax, Рвыкл), насос обесточивается и выключается.

Пошагово рассматриваемое реле работает следующим образом:

  1. Воды в гидроаккумуляторе нет. Давление ниже Рпуск – устанавливается большой пружиной, мембрана в реле смещается и замыкает электрические контакты.
  2. Вода начинает поступать в систему. При достижении Рстоп – разница между верхним и нижним давлениями устанавливается малой пружиной, мембрана сдвигается и размыкает контакты. Насос в результате перестает работать.
  3. Кто-то в доме открывает кран или включает стиральную машину – в водопроводе происходит снижение напора. Далее в какой-то момент воды в системе становится слишком мало, давление опять доходит до Рпуск. И насос снова включается на подкачку.

Без реле давления все эти манипуляции с включением/выключением насосной станции приходилось бы делать вручную.

В техпаспорте на реле давления для гидроаккумуляторов указываются заводские настройки, на которые регулирующие пружины изначально выставлены, – практически всегда эти установки приходится менять на более подходящие

При выборе рассматриваемого реле давления перво-наперво следует смотреть на:

  • максимальную температуру рабочей среды – для ГВС и отопления свои датчики, для ХВС свои;
  • диапазон регулировки давления – возможные установки Рстоп и Рпуск должны соответствовать вашей конкретной системе;
  • максимальный рабочий ток – мощность насоса не должны быть выше этого параметра.

Настройка давления производится на основании расчетов с учетом емкости гидроаккумулятора, среднего разового расхода воды потребителями в доме и максимально возможного давления в системе.

Чем вместительнее аккумулятор и больше разница между Рстоп и Рпуск, тем реже будет включаться насос.

Первый шаг перед настройкой

Регулировку реле давления производят при первичной установке и потом, при возникновении тех или иных проблем в водопроводной системе.

Во втором случае, прежде чем начинать настраивать релейный блок, надо установить причину неполадок. Возможно дело вовсе не в рассматриваемом приборе, трогать его нет никакой необходимости.

Перед настройкой реле необходимо убедиться, что гидроаккумулятор, трубы и фитинги держат давление. При наличии свищей и протечек в системе сначала надо избавиться от них

Второй крайне важный момент – очистка воды. В гидроаккумуляторе и реле имеется резиновая мембрана. Если в трубы попадет песок, то эта резинка испортится (потрескается) и перестанет держать давление. В в обязательном порядке должны присутствовать очистные фильтры.

Если давление в водопроводе по манометру достигло Рстоп, но насос продолжает работать, то проблема обычно кроется в засоре труб и/или фильтров. Также возможен вариант с отходом на реле контактов подачи напряжения на насосную станцию. В первом случае надо избавиться от песка и накипи в системе, а во втором – проверить контактную группу и проводку 220 В.

Также возможна ситуация, когда вода из труб в доме полностью слита, однако насос включаться не хочет. Здесь первым делом проверяем электропитание.

Если напряжение в сети есть, проводка и контакты исправны, то «9 из 10» вышло из строя реле давления. Его придется менять на новое, как-то отремонтировать этот прибор практически невозможно.

Пошаговая инструкция по регулировке

Обычные прокладки сантехники рассчитаны на 6 бар, максимум и кратковременно способны выдерживать до 10 бар. А рабочее и отопления жилых домов в большинстве случаев колеблется в пределах 2–3,5 бар.

Выставлять на реле Рстоп выше 4 бар не стоит. Большинство бытовых моделей этого устройства на рынке имеет максимальное Рстоп 5 бар. Однако делать установку данного параметра по максимуму на «пятерку» не рекомендуется.

Сильно затягивать либо расслаблять пружины на приборе до упора нельзя, это может привести к некорректной его работе. Необходимо оставлять небольшой запас по натяжению/ослаблению.

Через реле давления гидроаккумулятора проходит контур от сети 220 В на питание насоса, перед началом регулировки прибора его обязательно следует обесточить

Большая пружина – установка давления на пуск насоса. Маленькая пружина – установка разницы давления на выключение насосной станции.

Настройка реле гидроаккумулятора производится следующим образом:

  1. Из водопровода сливается вода. Затем в гидроаккумуляторе устанавливается рабочее давление в груше с воздухом – на 10% меньше планируемого Рстоп.
  2. Включается питание на реле, насос начинает работать. С помощью манометра фиксируется давление, когда он выключается (Рстоп).
  3. Открывается немного кран в раковине небольшой струйкой. Фиксируется давление, когда насос вновь включается (Рпуск).

Чтобы увеличить значение Рпуск, надо затянуть большую пружину по часовой стрелке. Чтобы увеличить разницу между Рпуск и Рстоп, следует затягивать малую пружину.

Уменьшение данных установок осуществляется ослаблением пружин против часовой стрелки.

В паспорте на реле указывается минимальный перепад давления между Рстоп и Рпуск (обычно 0,8 или 1 бар), выставлять малую пружину на меньшие параметры нельзя

После выставления нужных Рпуск и Рстоп реле с насосом подключаются к сети. Если согласно манометру все работает как надо, то настройка завершена. Иначе три вышеуказанных шага повторяются вновь.

Советы опытных специалистов

Реле давления гидроаккумулятора к электрощиту дома рекомендуется подсоединять посредством отдельной линии со своим УЗО.

Также в обязательном порядке необходимо этот датчик заземлить, для этого на нем есть специальные клеммы.

Затягивать настроечные гайки на реле до упора допустимо, но крайне не рекомендовано. Прибор с жестко затянутыми пружинами будет работать с большими погрешностями по выставленным Рпуск и Рстоп, и в скором времени выйдет из строя

Если на корпусе или внутри реле видна вода, то прибор незамедлительно следует обесточить. Появление влаги – это прямой признак порыва резиновой мембраны. Такой блок подлежит немедленной замене, ремонтировать и продолжать эксплуатировать его нельзя.

Очистные фильтры в системе должны быть установлены в обязательном порядке. Без них никак. При этом их регулярно необходимо чистить.

Также раз в квартал или полгода следует промывать само реле давления. Для этого на приборе откручивается крышка с входным патрубком снизу. Далее промывается открывшаяся полость и находящаяся там мембрана.

Основная причина поломок реле гидроаккумулятора – появление в трубах воздуха, песка или иных загрязнений. Происходит разрыв резиновой мембраны, и в итоге прибор подлежит замене

Проверку реле давления на правильность срабатывания и общую исправность следует производить раз в 3–6 месяцев. Одновременно с этим проверяется также давление воздуха в гидроаккумуляторе.

Если при регулировке происходят резкие скачки стрелки на манометре, то это прямой признак поломки реле, насоса либо гидравлического аккумулятора. Необходимо выключить всю систему и начать ее полную проверку.

Выводы и полезное видео по теме

Как правильно настраивать реле давления:

Простыми словами о реле давления для гидроаккумулирующих баков:

Как в насосной станции отрегулировать реле давления:

Без исправно работающего и правильно настроенного реле давления гидроаккумулятор превращается в ненужную железку. Регулировка рассматриваемого прибора, на первый взгляд, выглядит предельно простой – всего две пружины, которые надо подтянуть/ослабить. Однако настройка данного устройства имеет свои нюансы. Если при регулировке допустить ошибки, то вместо пользы гидравлический аккумулятор может принести лишь проблемы.

У вас есть личный опыт настройки реле давления или возникли вопросы, пишите в блоке с комментариями ниже. Наши эксперты обязательно помогут вам разобраться в выборе и настройке этого прибора для максимального повышения эффективности функционирования вашей системы водоснабжения либо отопления.

Настройка и регулировка реле давления

Здравствуйте, уважаемые читатели блога nasos-pump.ru

Реле давления

В рубрике «Принадлежности» рассмотрим такой актуальный вопрос, как регулировка и настройка реле давления. Мы уже говорили о реле давления PM-5 и PM-12,  трехфазные реле давления, но вопрос настройки и регулировки автоматики остается актуальным. На рынке существует огромное количество всевозможных реле давления, они могут иметь незначительные различия в типе корпуса или местах подключения электрических кабелей. Но так как принцип работы всех реле одинаков, мы рассмотрим процесс настройки и регулировки на реле PM-5 производства итальянской фирмы Italtecnica. Реле давления является основным элементом, который в составе автоматической насосной станции управляет работой насоса. Более подробно, из каких элементов состоит насосная станция и как она работает можно посмотреть здесь. Изначально реле имеет заводские настройки, это те настройки, которые задаются на заводе производителе. Верхний, заводской предел отключения реле составляет 2,8 атмосферы (бар). Нижний предел включения составляет 1,4 атмосферы (бар). Контролировать параметры отключения и включения станции можно при помощи манометра, который входит в стандартный комплект автоматической насосной станции. В последних моделях реле давления фирмы Italtecnica с прозрачным пластиковым корпусом есть специальная шкала указатель, по которой на самом реле можно определить максимальное заданное давление отключения. Но заводские регулировки не всегда устраивают потребителя.

Это обычно связано с недостаточным давлением воды в самой верхней точке разбора, или потребителя может не устраивать перепад давления между давлением отключения и включения станции.

Регулировка и настройка

У нас есть автоматическая насосная станция в рабочем состоянии, но нам не подходят заводские настройки, установленные на реле давления. Прежде, чем начать регулировать и настраивать при помощи реле давление в системе, нужно посмотреть на фирменную табличку насоса.

Максимальный напор насоса

На фирменной табличке (Рис. 1) указаны параметры насоса и двигателя, нам необходим такой параметр, как, максимальный напор, который создает наш насос. Этот параметр определяет, какое максимальное давление можно задать на реле, чтобы насосная станция работала корректно, долго и продуктивно. Если мы зададим на реле давление равное максимальному напору (в нашем случае 4,2 атмосферы), то учитывая колебание сетевого напряжения, ошибок при монтаже станции, износ или выработка при эксплуатации оборудования, насос может не достичь заданного давления после отсутствия разбора воды и не отключится.

В таком режиме оборудование не может работать долго, так как наступит режим работы«сухой ход». В таком режиме насос работает без протока жидкости, а жидкость, которая находится в рабочей камере, за счет трения, нагревается и закипает. Происходит перегрев рабочих элементов насоса (трубка Вентури, диффузор, рабочее колесо). Сначала происходит деформация, а затем расплавление и разрушение рабочих элементов насоса. Для того, чтобы станция надежно работала и отключалась, необходимо, задать такое максимальное давление отключения на реле, которое не достигало бы номинального значения, указанного в фирменной табличке на величину 0,4-0,5 атмосферы, для нашего насоса это значение 3,7-3,8 атмосферы. При таком заданном давлении станция будет работать надежно и долго.

Для регулировки и настройки давления необходимо снять защитную крышку с реле давления, открутив крепежный винт.

Настройка реле давления

На (Рис. 2) показано реле давление без верхней крышки. Под крышкой  находятся две пружины большая (Поз. 2) и маленькая (Поз. 4). зажатые гайками (Поз. 1, 3). Большая пружина и гайка предназначена для регулировки давления. Закручивая гайку по часовой стрелке, мы сжимаем пружину и тем самым увеличиваем давление отключения станции Откручивая гайку против часовой стрелки, мы ослабляем пружину и тем самым снижаем давление отключения станции. Контролировать изменение давлений следует по манометру. И так мы уже знаем, на какое максимально допустимое значение давления может быть настроена наша станция. Для удовлетворения наших потребностей в давлении на выходе из насоса нам необходимо 3,5 атмосферы. Это давление меньше чем то, максимальное давление, которое можно задать для насоса (3,7-3,8 атмосферы). Изначально заданное давление составляло 2,8 атмосферы. Регулировку нужно проводить при выключенном сетевом питании, в целях безопасности. Повернув гайку (Поз. 1) на 3-4 оборота по часовой стрелке, необходимо включить шнур в розетку и насос запустится в работу. Если насос не включился, то необходимо открыть кран и начать разбор воды.

После того как насос включился, кран разбора воды, можно закрыть. Станция будет продолжать работать, закачивая воду в гидроаккумулятор. После того как станция отключился по манометр следует проконтролировать давление в системе. Если станция не отключилась, хотя гидроаккумулятор заполнен, то нужно выключить питание станции, отпустить гайку на 1-2 оборота и повторить операцию включения станции. После того, как насос отключился на отметке 3,5 атмосферы, мы достигли требуемого давления.

В случае, когда нас не устраивает разница давлений между включением и выключением станции водоснабжения, мы можем отрегулировать эту разницу. Для этого применяется маленькая пружина (Поз. 4) и гайка (Поз. 3). При закручивании гайки по часовой стрелке, разница между давлением включения и выключения возрастает. Если  откручивать гайку, то минимальная разница между давлением включения и отключения, будет тогда когда маленькая пружина полностью разжата. Эта разница будет составлять одну атмосферу при давлении отключения до 3 атмосфер, и 1,5 атмосферы при давлении отключения до 5 атмосфер.

Здесь следует отметить, что при увеличении давления отключения, автоматически увеличивается и разница давлений между давлением включения и отключения насоса.

При настройке и регулировке реле давления всегда нужно искать «золотую» середину. Если нам необходимо отстроить систему так, чтобы был минимальный перепад между отключением и включением станции, это обычно нужно для подготовки горячей воды при помощи газовой колонки или котла. Для того, чтобы проток и температура горячей воды были равномерны, нужно чтобы разница давлений была как можно меньше. В то же время чем меньше разница между давлением отключения и включения станции, тем чаще насосная станция будет включаться в единицу времени, что отрицательно сказывается на двигателе насоса. Чтобы увеличить длительность простоя насоса, надо увеличить емкость гидроаккумулятора. Увеличение емкости влечет за собой увеличение стоимости станции водоснабжения. Исходя из всех этих факторов, и следует произвести регулировку и настройку станции под конкретные задачи.

Эксплуатация, обслуживание и ремонт реле

В процессе эксплуатации насосной станции перебои в работе с реле давлении случаются очень редко. Реле давления довольно простое и надежное изделие. И все же некоторые проблемы с ним могут возникнуть. Основная проблема связана с контактной группой. При некачественном подсоединении концов кабелей в процессе эксплуатации в довольно жестких условиях (повышенная влажность, образование конденсата) происходит окисление и подгорание контактов. Станция может вообще перестать включатся или включается при легком постукивании по реле. Для ремонта необходимо отключить питания и проверить надежность контактов и соединений. В случае необходимости контакты прозвонить при помощи тестера. Если давление в системе водоснабжения нет, то контакты реле замкнуты. Если контакт отсутствует, следует разобрать и почистить клеммы. Затем все провода подсоединить на прежние места.

Еще одна проблема, которая может нарушить алгоритм работы реле – это вода с большим содержанием солей жесткости или железа.

В процессе эксплуатации станции происходит наслоение солей жесткости в подсоединительном фланце и рабочей камере (Рис. 3), что приводит к полному закупориванию прохода (Поз. 1).

Зарастание фланца

В таком случае, автоматика полностью перестает работать. Для ремонта, надо отключить станцию от сети питания снять реле давления и прочистить проход с помощью подходящего приспособления (отвертки, куска проволоки). Прочищать проход следует аккуратно, чтобы не повредить мембраны, находящейся внутри рабочей камеры. Иногда бывают случаи, когда и проход и сама рабочая камера полностью забиты. В этом случае необходимо снять фланец. Он крепиться четырьмя болтами. Затем промыть мембрану и фланец. Установить мембрану, фланец и закрутить обратно винты. Установить автоматику на место и проверить ее работоспособность. Если есть необходимость, то произвести настройку и регулировку автоматики.

На этой оптимистической ноте позвольте завершить данный пост о настройке и регулировке, а также возможных неисправностях возникающих в реле давления. Если у Вас остались вопросы, пишите об этом ниже в комментариях.

Спасибо за внимание.

P.S. Не упустите возможность сделать доброе дело: нажмите на кнопки социальных сетей расположенных на верху страницы, в которых вы зарегистрированы, чтобы и другие люди тоже получили пользу от этого поста. БОЛЬШОЕ СПАСИБО!

Еще похожие посты по данной теме:

Регулировка реле давления насосной станции — Насосная станция

Пружины реле насосной станции предназначены для выставления параметров включающего и отключающего давления. Большая отвечает за установку нижнего порога срабатывания, а расположенная рядом маленькая – за верхнюю границу прекращения работы. Первая «включает» насос, а вторая «выключает» его.

Без такой автоматики качающее воду оборудование придется постоянно включать и выключать ручками. Это плюсы и минусы свайного фундамента и иных вариантов надо тщательно взвешивать, чтобы подобрать оптимальное основание для коттеджа. С реле, контролирующим водяное давление насосной станции, все гораздо проще. Оно нужно по определению.

В исходном состоянии большая пружина по максимуму давит на пластину, что приводит к смыканию контактов питающего насосное оборудование контура. На электродвигатель насоса начинает поступать питание. При достижении верхнего порога давления пластина поднимается под одновременным нажимом маленькой пружины и мембраны, после чего происходит размыкание цепи.

А дальше расходуется вода. В результате этого давление снижается, а мембрана сжимается. Пластина опять смыкает контакты, подающие электропитание на насос. Процесс работы насосной станции начинается по новому циклу.

Подготовка накопительного бака насосной станции

Прежде чем регулировать само реле давления, необходимо подготовить гидроаккумулятор. Он состоит из герметичной емкости и резиновой груши, разделяющей этот бак внутри на две части. При закачивании в первую насосом воды, во второй поднимается давление воздуха. Затем уже эта воздушная масса своим надавливанием на грушу будет поддерживать напор в трубе водоснабжения.

Гидроаккумулятор (накопительный бак)

Чтобы насосная станция работала в оптимальном режиме, для гидроаккумулятора надо грамотно подобрать давление воздуха. Если сделать его излишне высоким либо низким, то гидронасос будет слишком часто запускаться в работу. Такая настройка – это прямой путь к быстрому износу оборудования.

Нужное воздушное давление в гидроаккумуляторе выставляется после полного его опустошения от воды. После ее спуска производится закачки воздуха из расчета 1,4–1,7 атмосфер для бака на 20–25 литров и 1,7–1,9 атмосфер при большем объеме. Конкретные величины следует смотреть в техпаспорте станции.

Настройка и регулировка давления

Для самостоятельного выполнения настройки рассматриваемого реле особыми познаниями в сантехническом деле обладать не требуется. Это разбираться, как обшить дом сайдингом либо по правилам смонтировать SIP панели. придется достаточно долго. Там нюансов работ гораздо больше. С регулировкой реле давления насосной станции все сильно проще. Надо лишь последовательно произвести пять действий.

Для настройки реле водяного давления необходимо:

Обесточить насос, а потом слить воду из трубопровода ХВС.

Включить гидронасос и записать показания манометра, когда выключится реле (это значение нижнего порога, устанавливаемого большой пружиной).

Открыть самый дальний от насосной станции кран водопровода и отследить цифры на манометре, когда насос вновь включится (это верхний порог, регулируемый маленькой пружиной).

Если напор в открытом кране при пуске гидронасоса был слишком мал, то надо увеличить давление отключения, прикрутив на большой пружине гайку. При излишне сильном напоре ее следует наоборот немного ослабить.

С помощью малой пружины уставляется дельта между верхним и нижним порогами в пределах 1,5–2 атмосфер.

Замеряем показатели манометра и регулируем гайками реле

Для завершения регулировки реле давления вновь полностью спускается вода из системы, а затем станция включается в сеть. Если все настроено правильно, то напор в кранах должен быть удовлетворительным. Все предельно просто. Это выбор стройматериала для дома и планировка участка 15 соток прямоугольной формы займут много времени. Настройка реле давления производится буквально за полчаса.

Возможные ошибки при отладки реле давления

При регулировке реле необходимо помнить, что маленькая пружина более чувствительна, нежели большая. Гайку на первой надо крутить медленней и осторожней. И главное, маленькая пружина устанавливает не само давление воды выключения насоса, а дельту между порогами срабатывания автоматики.

Данную разницу при настройке рекомендуется подбирать в районе 2 атм. Это соответствует нормальной наполняемости гидроаккумулятора водой (наполовину). Если дельту выставить около 1 атм. то бак заполнится лишь на 25–30%. А это слишком мало, насос станет работать вхолостую.

Еще один момент – нижний порог не должен превышать 80% от максимума давления для конкретного реле, идущего с насосным оборудованием. Если напор выходит в кранах недостаточным, то релейный коммутатор придется менять на более «мощный».

Проверку давления насосной станции рекомендуется производить раз в полгода. Надо будет полностью сливать воду. А потом включать ее, проверяя по манометру реальные значения порогов. В целом, регулировка водяного давления у домашней станции автономного водоснабжения не должна вызвать проблем. Необходимо подкрутить ключом или отверткой лишь пару гаек на двух пружинах.

накачивать

приямок для насосной станции

реле давления воды регулировка

неисправности в насосной станции

насосная станция схема

Как отрегулировать реле давления воды с гидроаккумулятором

Одной из причин, по которым насос включается чаще положенного и не обеспечивает плавную подачу воды, является неправильная регулировка реле давления и настройка параметров работы гидроаккумулятора. Это две разные операции на разных устройствах. И хотя сам бак водоаккумуляторного устройства не имеет реле или встроенных автоматических устройств, давление в воздушном кармане бака косвенно влияет на работу всей системы водоснабжения.

Что и как необходимо отрегулировать в системе с насосом и гидроаккумулятором

Для организации нормальной работы насосного оборудования необходимо выставить три основных параметра:

  • Отрегулировать давление воздуха в воздушном пространстве гидроаккумулятора;
  • Зафиксировать уровень, при котором реле управления запускает водяной насос;
  • Предельный уровень давления воды, при котором с помощью команды реле происходит отключение насосного агрегата.

Важно! Все три параметра потребуется отрегулировать несколько раз, подгоняя более комфортный уровень давления в водопроводе и расход воды на гидроаккумуляторе под характеристики для своего дома.

Регулируем давление в гидроаккумуляторе

Водоаккумуляторное устройство очень простое по конструкции. Внутри стального бака находится резиновая мембрана, занимающая примерно 2/3 от объема гидроаккумулятора. Остальное пространство занимает воздушная камера. С помощью избыточного давления воздуха в камере и упругих сил растягивающейся резиновой мембраны вода выдавливается по мере необходимости в систему водопровода. Особо настраивать и регулировать нечего, кроме давления в воздушном отсеке гидроаккумулятора.

С завода устройство приходит с предустановленным давлением воздуха в 1.5 атм. Перед тем как купить прибор,следует убедиться в наличии заводского давления. Обычно это свидетельствует об исправности ниппеля и целостности резиновой оболочки внутри баллона, переходим к регулировке гидроаккумулятора для систем водоснабжения.

Сначала устанавливают гидроаккумулятор в систему и запускают насос, чтобы определить параметры рабочего давления в системе. Давление воздуха в воздушном кармане гидроаккумулятора стараются регулировать на 10-13% ниже давления включения насосной станции. Проще говоря, надо отрегулировать на 0.6 — 0.9 атм. ниже давления воды, при котором запускается мотор. Отрегулированный уровень проверяем манометром в течение часа, чтобы убедиться в отсутствии протечек воздуха.

Давление воздуха в полости гидроаккумулятора необходимо регулировать при отключенном давлении воды, достаточно просто перекрыть кран. Величину необходимо проверять и регулировать хотя бы раз в квартал.

Как выполняется регулировка реле давления для гидроаккумулятора

Реле или автомат управления давлением подачи воды в систему водоснабжения выглядит, как небольшая черная пластиковая коробка с двумя штуцерами, выполненными из материала корпуса, и одним металлическим выводом-штуцером с наружной или внутренней трубной резьбой размером ¼ дюйма, как на фото. С помощью штуцера реле подключают к пятивыводному штуцеру, закрепленному на приемном патрубке гидроаккумулятора.

В других случаях реле может быть установлено вместе с манометром непосредственно на корпусе поверхностного насоса или насосной станции.

Через пластиковые приливы внутрь корпуса заводятся провода от обмотки насоса. Если отвернуть обычной отверткой винт в верхней части, крышку можно снять, после чего становятся доступными две части прибора – пара вертикальных пружин на металлической основе-пластинке, с помощью которых и можно отрегулировать рабочие параметры давления воды, и контактная группа, к которой подключается заведенная проводка от насоса. К металлическим нижним контактам подключается желто-зеленый провод «земли», к верхним колодкам попарно голубой и коричневый провода обмотки двигателя насоса.

Пружины разные по размеру. Большая пружина посажена на ось и закреплена гайкой, вращая которую, можно отрегулировать степень сжатия упругого пружинного элемента. Здесь же на пластине нанесены стрелки, помогающие правильно сориентироваться и вращать гайку, чтобы отрегулировать порог срабатывания реле.

Важно! Несмотря на большое количество витков на центральной шпильке, которая удерживает пружину на пластине, реле и мембрана достаточно чувствительны даже на небольшой поворот гайки, регулирующий уровень срабатывания. В некоторых случаях, чтобы отрегулировать и изменить порог срабатывания примерно на 1 атм. давления воды, достаточно повернуть гайку всего на ¾ оборота.

Поэтому работать с гайками необходимо аккуратно, и не стоит спешить регулировать и сбивать заводские настройки.

Рядом с большой пружиной есть маленькая, примерно в 4 раза меньше. По конструкции она полностью идентична большой пружине, но, в отличие от первой, маленькая пружинка нужна, чтобы отрегулировать разницу между давлением запуска насоса и максимальным давлением воды, при котором насос выключается.

Под металлической пластиной находится мембрана, в которой находится вода под давлением из системы труб водопровода или гидроаккумулятора. Благодаря давлению воды в мембране пластина преодолевает сопротивление пружин и замыкает-размыкает группу контактов.

Хороший экскурс по теме устройства реле давления и органов его регулировки можно получить из видео:

Способ отрегулировать реле давления воды

Регулировать реле давления воды типа РП-5 достаточно просто. Чаще всего регулировать реле приходится в двух случаях – на этапе введения в эксплуатацию системы водоснабжения и после ремонта, модификации или внесения изменений в работу водопровода и гидроаккумулятора. В любом случае, перед тем как начинать регулировать, выполните несколько обязательных процедур:

  1. Предупредите жильцов дома о том, что в течение времени, пока вы будете регулировать реле давления, пользоваться кранами, туалетом, душем, в общем, всеми элементами системы водоснабжения нельзя;
  2. Закройте все краны и проверьте целостность соединения и отсутствие подтекания воды, особенно на недавно установленных или отремонтированных приборах, особенное внимание уделите сливному бачку туалета. Если он остался в работе или подтекает, правильно отрегулировать реле в системе будет сложно;
  3. Проверьте рабочее давление воздуха в гидроаккумуляторе, если оно нестабильно или ниже нормы его необходимо отрегулировать до заводской нормы;

Совет! При регулировке вам понадобится ключ для вращения гаек, кран для сброса давления воды в системе и контрольный манометр, по которому можно отследить давление воды в водопроводе.

Чтобы отрегулировать пороги срабатывания реле давления, выполняем следующие процедуры:

  • Включаем станцию или насос, чтобы определить, на каком показании манометра реле отключит двигатель при достижении максимального значения давления. Обычно на новых реле значение редко вырастает более двух атмосфер, что вполне достаточно для водоснабжения обычного дома. При достижении более 2,5 атм в действие вступит малая пружина, что будет хорошо заметно при снятой верхней крышке реле.
  • Если реле отключает насос выше, чем 3,2-3,3 атмосферы, например, – 3,5-5 атм, его легко можно отрегулировать и снизить, вращая против часовой стрелки накидным ключом гайку на малой пружине. Но стоит помнить о высокой чувствительности реле, поэтому регулировать угол поворота следует осторожно,выполняя регулировку ключом на пол-оборота или четверть оборота.
  • Запускаем станцию и определяем показания манометра. Оптимальным будет 3-3,2 атм.
  • Сбрасываем краном напор воды и замечаем показание манометра, при котором происходит включение насосной станции, обычнона начальных регулировках этавеличинасоставляет не менее 2,5 атм.
  • Чтобы понизить нижнее значение,необходимо отрегулировать положение большой пружины. Аналогично маленькой пружине вращаем гайку на пол-оборота против часовой стрелки, после чего запускаем насос и засекаем показания манометра. Оптимальным будет давление 1,8-1,9 атм., при «провале» давления его можно отрегулировать, вращая гаку по часовой стрелке. Полезным будет видео:

Поломки и проблемы в работе реле

К положительным сторонам характеристик реле можно отнести его простоту и надежность работы. Если в системе нет воздуха, и правильно отрегулированы пороги срабатывания, такое устройство обычно служит очень долго.

Как любой контактный прибор, реле необходимо периодически обслуживать – проверить работу механических «качелек»,отрегулировать и почистить контакты. Но иногда реле начинает срабатывать неравномерно, на разных порогах включения — выключения. Бывает, что реле просто не отключается на верхнем или нижнем пороге. Если аккуратно постучать деревяшкой по корпусу, прибор сработает.

Не спешите регулировать пороги срабатывания или выбрасывать прибор на свалку. Скорее всего, причиной стал песок и мусор,скопившиеся в мембранном пространстве. Чтобы исправить ситуацию, потребуется:

  • Отвернуть четыре болта на донной части корпуса реле, металлическую накладку с входным штуцером и снять стальную крышку;
  • Аккуратно промыть резиновую мембрану и полость под ней от песка и накопившейся грязи;
  • Установить все элементы на место и затянуть крепление;
  • Отрегулировать пороги срабатывания и проконтролировать нормальную работу реле на отключение мотора.

Даже малознакомый с устройством реле человек сможет легко снять, почистить и отрегулировать прибор, как на видео:

Кроме контактов и мембраны, можно смазать консистентной смазкой шарнир «качелек», подобную процедуру можно выполнять не чаще, чем раз в год.

Заключение

Регулировать пороги срабатывания на реле относительно несложно, если система водоснабжения исправна и не травит воду на соединениях или на бачке унитаза. Учитывая тот факт, что обслуживать и чистить систему водоснабжения от песка и солей приходится достаточно часто, есть смысл разобраться в вопросе,как отрегулировать реле, и далее самостоятельно тестировать прибор по мере необходимости.

Регулировка реле давления насосной станции — блог об инжиниринге в загородных домах и коммерческих объектах

Если не удается наладить рабочее давление насосной станции, есть девять наиболее распространенных проблем:

  • Переключатель не включается

Если переключатель не включается, это может быть признаком того, что давление в баллоне выше давления включения переключателя. Надо попробовать налить немного воды в другом месте здания, чтобы снизить давление ниже уровня включения.

Также можно попробовать осторожно постучать по манометру, переключателю и резервуару.

  • Не выключается реле давления насосной станции

Несколько проблем могут помешать выключению реле контроля давления. Когда это происходит, важно отключить питание, чтобы переключатель не перегорел.

Если не срабатывает реле давления насосной станции, проверяется подача воды на предмет утечек, которые могут повлиять на отключение давления.

  • Переключатель не включается или не выключается

Если насос не создает необходимое давление, он не будет сигнализировать о выключении и включении реле давления. Помимо проверки насоса, проверяется манометр давления. Важно убедиться, что он работает, прежде чем диагностировать проблему с реле давления.

  • Многократное включение и выключение

Если кажется, что помпа работает циклически (многократно включается и выключается), существует несколько распространенных причин. Один из самых частых виновников — взорванный пузырь в резервуаре для воды. Нужно заменить этот компонент, а также проверить контакты переключателя, чтобы увидеть, не пострадали ли они.

Если залипает реле давления насосной станции, пробрела может крыться в утечках. Они приводят к быстрому срабатыванию переключателя давления, его повреждению.

  • Засорение датчика давления

Если станция находится в районе с высоким содержанием минералов или отложений в воде, датчик давления может засориться. Важно попробовать очистить трубку, соединяющую переключатель с водопроводом. Также может потребоваться очистить нижнюю часть переключателя. Однако, если достаточно мусора, чтобы вызвать засорение, зачастую более экономично заменить переключатель.

  • Поврежденная диафрагма

Давление в гидробаке насосной станции не является стабильным и всему причиной является диафрагма. Вода из источника создает давление на диафрагму переключателя, чтобы получить показания давления. Если диафрагма старая, износ может помешать ей определять правильное давление воды. Если это произойдет, пора купить новый переключатель.

  • Неудачное соединение

Неисправность в переключателе может указывать на проблему в другом месте системы. Например, если трубопровод неправильного размера, это может вызвать негерметичное соединение. Это помешает реле давления эффективно выполнять свою работу.

В таком случае надо осмотреть реле включения насосной станции и трубопроводы. Важно убедиться, что используется правильный диаметр труб для работы. Находятся утечки или признаки того, что труба не плотно прилегает к переключателю.

  • Плохие контакты

Электрические контакты в реле давления со временем могут ухудшиться. Две частые причины — частое отключение питания переключателя и наличие коррозионных веществ.

Специалисты думают, как повысить давление в насосной станции, поэтому временно ремонтируют контакты, опиливая пораженный участок, но обязательно отключается вся мощность насоса. Для более постоянного исправления необходимо заменить переключатель.

  • Вода течет из внутреннего механизма

Если замечена протечка воды под корпусом переключателя или из самого переключателя, надо попробовать затянуть водопроводное соединение переключателя, повернув латунный фитинг по часовой стрелке с помощью плоскогубцев для его затяжки. Если утечка все еще наблюдается, вероятно, она исходит из внутреннего механизма, а это означает, что реле насосной станции необходимо заменить.

Замена реле давления на насосной станции

Когда конструкция залипает в положении «ВКЛ» или «ВЫКЛ<», встает вопрос как поменять реле давления на насосной станции. Ремонт или замена реле давления осуществляется с проводкой. В инструкции описано, как разобрать реле давления насосной станции, который не работает должным образом или, возможно, вообще не работает. Важно понять, как найти переключатель, а затем идентифицировать проблема. По плану можно снимать и заменять переключатель контроля давления. В инструкции описано, как заменить реле давления на насосной станции наземных насосов, систем погружных насосов.

  • поиск и установка переключателя контроля давления водяного насоса рядом с напорным баком воды или на нем.

Для специальных установок, таких как постоянные системы насоса под давлением, которые не используют обычный резервуар бака под давлением воды или воду для хранения, переключатель регулирования давления должен быть расположен как можно ближе к напорной емкости.

Несоблюдение этого требования может привести к тому, что регулирование давления не будет работать должным образом в ответ на использование воды. Если не поднимается давление в насосной станции, это может вызвать скачок или повреждение переключателя.

На примере модели серии РР, серый переключатель контроля давления установлен на ниппеле из оцинкованной трубы. Уличный патрубок ввинчивается в корпус насоса через отверстие, предусмотренное производителем.

Реле давления для насосной станции поддерживается на кронштейне, а пластиковая трубка соединяет измерительный порт реле давления с корпусом насоса с помощью отвода, предоставленного производителем насоса. Чтобы понять, как регулировать реле давления на насосной станции, важно взглянуть на прототип.

На струйном насосе, поддерживаемом отдельным кронштейном или коротким трубным ниппелем, ввинченным в корпус насоса, где ниппель может определять давление воды на выходе из насоса — подходит для расположенных в 1 и 2 линий струйных насосов находятся рядом с резервуаром для воды под давлением.

Есть резервуары для воды без баллона, показывающие расположение переключателя контроля давления. На тройнике резервуара для воды в нижней части выхода давления воды / резервуара для хранения есть отметины. Реле давления установлен на ниппель трубы в тройник бакы, который, в свою очередь, фиксируется в резервуаре под давлением воды.

Тройник резервуара может обеспечивать соединения для реле контроля давления, манометра для воды, предохранительного клапана, а также для соединений с поступающей водой от насоса, входом воды в резервуар давления воды и выходом воды в здание.

Отметки могут быть на самом резервуаре для воды, через отверстие, предусмотренное для этой цели производителем.

Встречаются реле контроля давления на водяном трубопроводе рядом с напорным баком — система погружных насосов. В таком случае, чистка реле давления насосной станции не вызовет сложностей.

Распространенные вопросы

Распространенный вопрос: Как установить давление в насосной станции и можно ли поместить его в верхней части резервуара.

Специалисты часто устанавливают новый безлопастной бак AW42T для насоса. Реле давления помещается прямо на бак рядом с пластиной, а не на линию подачи воды в бак. И воздух, и вода в резервуаре всегда будут под одинаковым давлением.

Воздух сильнее сжимается, чем вода (намного), но в закрытом контейнере под давлением (например, резервуар для воды под давлением) давление воздуха и давление воды всегда будут одинаковыми.

Если указать номер модели резервуара, можно узнать производителя резервуара для воды под давлением. В руководстве предлагается установить переключатель на впускной линии бака. Если посмотреть, как работает реле давления насосной станции, процесс выкачки воды происходит циклически.

Подключение и регулировка реле давления для насоса: инструктаж по настройке

Реле давления – маленький, но незаменимый узел большой и малой насосной станции. И если все остальные ее элементы нужно просто правильно подключить, то его придется еще и дополнительно настраивать. Именно это устройство отвечает за автоматизацию процесса откачки. Оно включает и отключает оборудование по показаниям давления в гидробаке.

Грамотно выполненная регулировка реле давления для насоса – залог комфорта и длительной службы оборудования. О том, как она выполняется, какие действия нужно произвести и какие данные знать для точной настройки, мы подробно излагаем в статье. Вы узнаете, для чего и в каких ситуация ее производят.

Кроме пошагового описания процедуры регулировки мы приводим ценные рекомендации, сообщенные гидротехниками. Для оптимизации восприятия текст дополнен фото-подборками, схемами, видео-руководствами.

Содержание статьи:

  • Особенности устройства и принцип работы
  • А нужна ли вообще настройка?
  • Общая терминология показателей
  • Давление в гидроаккумуляторе
  • Как правильно настраивать реле?
  • Несколько советов и рекомендаций
  • Выводы и полезное видео по теме

Особенности устройства и принцип работы

Многочисленные разновидности реле давления, которое комплектуется практически со всеми насосными станциями, устроены примерно одинаково.

Внутри пластикового корпуса находится металлическое основание, на котором закреплены остальные элементы:

  • мембрана;
  • поршень;
  • металлическая платформа;
  • узел электрических контактов.

Сверху под пластиковой крышкой расположены две пружины – большая и малая. Когда мембрана испытывает давление, она толкает поршень.

Он, в свою очередь, поднимает платформу, которая воздействует на большую пружину, сжимая ее. Большая пружина сопротивляется этому давлению, ограничивая движение поршня.

Небольшого расстояния, которое разделяет большую и малую регулировочную пружины, достаточно для того, чтобы регулировать работу целого комплекса приборов. Платформа под давлением от мембраны постепенно поднимается до тех пор, пока ее край не дойдет до малой пружины. Давление на платформу в этот момент увеличивается, в результате ее положение изменяется.

Галерея изображенийФото из Функциональное назначение реле давления заключается в автоматизации процессов включения/выключения электронасоса Представляет собой двухконтактный прибор коммутации электрических цепей, реагирующий на падение и повышение давления в контуре водоснабжения При использовании реле давления, дополненного манометром и пятиходовым штуцером, устройство приобретает значения автоматического комплекта Реле давления включают в схему водоснабжения только с гидроаккумулятором, конструкция которого позволяет точно фиксировать моменты изменения давления в системе В заводском исполнении реле давления рассчитано на среднестатистические значения давления в водоснабжающих системах. При необходимости внести изменения в настройки его разбирают Для выполнения бесплатного ремонта, гарантированного обязательствами изготовителя, необходимо соблюдать перечисленные в инструкции потребительские правила и корректно эксплуатировать прибор Регулировка прибора заключается в изменении уровня верхнего или нижнего предела давления, установленного при выполнении заводской настройки Для увеличения предела давления установленные на пружины гайки аккуратно подкручиваются по часовой стрелке, для уменьшения — наоборот Стандартное место установки реле давленияПринцип устройства и специфика работы реле давленияРеле давления в формате комплекта автоматикиИспользование реле давления в системе водоснабженияРазборка реле давления для внесения корректировокУсловия для обязательств по ремонтуРегулировка реле давления для водоснабженияПриспособления для регулировки реле давления

Это вызывает переключение контактов, что изменяет режим работы насоса, и он выключается. Для переключения контактов имеется специальный шарнир с пружинкой.

Когда платформа преодолевает уровень, на котором находится этот шарнир, электрические контакты изменяют положение, размыкая цепь электропитания. В этот момент происходит отключение насоса. После чего вода перестает поступать и давление, оказываемое на мембрану, снижается по мере расходования воды из гидроаккумулятора.

Соответственно, платформа плавно опускается. Когда ее положение оказывается ниже, чем пружинный шарнир электрических контактов, они поднимаются, снова включая электропитание.

Реле давления – это небольшое устройство, которое позволяет включать и выключать насос в зависимости от наличия или отсутствия воды в гидроаакумуляторе

Насос закачивает воду в гидробак, мембрана реле давит на платформу, она поднимается, достигает большой пружины и т.д. Цикл возобновляется и производится в автоматическом режиме.

С помощью большой пружины задается показатель давления, при котором насосный агрегат необходимо включить, а малая определяет не “потолок” допустимого давления в системе, как можно подумать, а разницу между этими двумя показателями. Это важный момент, который пригодится при изучении порядка действий при настройке реле давления собственного насоса.

А нужна ли вообще настройка?

Безусловно, самостоятельно или с помощью специалиста, но настраивать реле давления понадобится всем, кто собрал свою насосную станцию из отдельных элементов.

Бытует мнение, что готовые насосные станции, купленные в собранном виде, оснащены уже настроенным и подготовленным к работе реле давления. На практике это далеко не всегда именно так.

Перед подключением и настройкой реле давления следует внимательно изучить техническую документацию, предоставленную производителем, чтобы выяснить предельно допустимые значения давления

Каждая водопроводная система имеет индивидуальные характеристики. Да и потребности жильцов дома могут быть разными.

Постоянный напор в системе для дома, в котором имеется лишь душевая кабина, кухонная раковина и ванна, существенно отличаются от потребностей просторного коттеджа с джакузи и гидромассажем. Заводские установки соответствуют реальному положению дел далеко не всегда.

Насосные станции обычно уже укомплектованы реле давления, но все же после подключения его придется настраивать для потребностей конкретной водопроводной системы

Помимо настройки реле давления при установке насосной станции следует также периодически проверять и корректировать его работу.

Эту же операцию придется повторить, если какая-то часть насосной станции вышла из строя, была отремонтирована или заменена. Порядок регулировки оборудования практически не отличается от процедуры его настройки.

Общая терминология показателей

При выполнении настройки реле давления используются некоторые специфические названия. Специалисту они хорошо понятны, а вот новичка могут привести в замешательство. Лучше сразу же уяснить их суть, чтобы не запутаться во время выполнения работ.

Вот эти термины:

  • давление включения;
  • давление выключения;
  • перепад давления;
  • максимальное давление отключения.

Давление выключения обычно обозначают как Рвыкл. Иногда этот показатель называют также верхним давлением. Этот показатель, как понятно из названия, указывает на давление, при котором насос начинает или возобновляет работу, и в гидробак начинает закачиваться вода. Обычно производитель по умолчанию выставляет нижнее давление в 1,5 бар.

Давление включения по аналогии также называют нижним давлением и обозначают как Рвкл. Это второй гранитный показатель, на реле, поступившем с завода, обычно выставлено около 3 бар или немного меньше.

Перепад давления или дельта (ΔР) рассчитывается, как разница между нижнем и верхним давлением. В стандартной модели реле давления до настройки этот показатель обычно составляет около 1,5 бар.

Максимальное, а точнее максимально допустимое значение давление выключения позволяет составить представление о максимальном давлении в системе. Превышение этого показателя может нанести существенный вред водопроводу и оборудованию. Обычно этот показатель составляет примерно 5 бар или немного меньше.

Давление в гидроаккумуляторе

Понимание того, как устроен гидроаккумулятор, поможет лучше справиться с самостоятельной настройкой управляющего оборудования.

Различают два типа гидробаков: с резиновой вставкой, напоминающей грущу, или с резиновой же мембраной. Этот элемент делит емкость на две не сообщающиеся части, в одной из которых находится вода, а в другой – воздух.

Внутри гидробака находится резиновая грушевидная вставка или резиновая мембрана. Давление в гидробаке можно регулировать, подкачивая или стравливая воздух

В любом случае, работают они примерно одинаково. В бак поступает вода, а резиновая вставка давит на нее, чтобы обеспечить перемещение воды по водопроводной системе.

Поэтому в гидробаке всегда присутствует определенное давление, которое заметно изменяется в зависимости от количества воды и воздуха в баке.

Чтобы перед настройкой реле измерить давление воздуха в гидробаке, следует подключить манометр к ниппельному соединению, предусмотренному на корпусе устройства

На корпусе бака обычно имеется автомобильный ниппель. Через него можно закачать в гидробак воздух или стравить его, чтобы отрегулировать рабочее давление внутри емкости.

При выполнении подключения реле давления к насосу рекомендуется измерить текущее давление в гидробаке. Производитель по умолчанию выставляет показатель в 1,5 бар. Но на практике часть воздуха обычно уходит, и давление в емкости будет ниже.

Чтобы измерить давление в гидроаккумуляторе, используют обычный автомобильный манометр. Рекомендуется выбрать модель со шкалой, на которой проставлен самый малый шаг градации. Такой прибор позволит провести более точные измерения. Не имеет смысла замерять давление, если нет возможности учесть одну десятую часть бара.

В этом отношении имеет смысл проверить и тот манометр, которым укомплектована насосная станция промышленного производства.

Нередко изготовители экономят и устанавливают недорогие модели. Точность измерений с помощью такого прибора может вызывать сомнения. Его лучше заменить на более надежное и точное устройство.

Выбирая манометр для насосной станции или насоса с гидробаком, стоит обратить внимание на механические модели с точной шкалой градации

Механические автомобильные манометры выглядят не слишком презентабельно, однако, судя по отзывам, они значительно лучше новомодных электронных устройств. Если все же выбор сделан в пользу электронного манометра, не следует экономить. Лучше взять устройство, выпущенное надежным производителем, чем дешевую пластиковую поделку, которая точных данных не дает и может в любой момент сломаться.

Еще один важный момент – электронный манометр требует электропитания, за этим придется следить. Проверяют давление в гидробаке очень просто.

Манометр присоединяют к ниппелю и замеряют показания. Нормальным считается давление в пределах от одной до полутора атмосфер. Если давление в гидробаке слишком высокое, запас воды в нем будет меньше, но напор при этом будет просто отличным.

На этой схеме наглядно показан порядок подключения реле давления и манометра к погружному насосу и гидробаку, чтобы автоматизировать работу насосного оборудования

Следует помнить, что слишком высокое давление в системе может быть опасным. В этом случае все компоненты водопровода постоянно работают под повышенной нагрузкой, а это приводит к быстрому износу оборудования. Кроме того, чтобы поддерживать повышенное давление в системе приходится чаще подкачивать в бак воду, а значит и чаще включать насос.

Это также не слишком полезно, поскольку вероятность поломок увеличивается. При настройке системы нужна определенная уравновешенность. Например, если давление в гидроаккумуляторе слишком высокое или чрезмерно низкое, это может привести к повреждению резиновой прокладки.

Галерея изображенийФото из Дополнение реле давления пятиходовым штуцером и манометром переводит устройство в разряд блоков автоматики Накидная гайка значительно облегчает подключение прибора в труднодоступных местах В конструкции использован пятиходовый штуцер, который подключается к реле и имеет еще 3 выхода с резьбой Блок автоматики оснащается чаще всего манометром на 6 бар, возможно использование манометрического устройства на 12 бар Блок автоматики с реле давления для водоснабженияТочка соединения штуцера с реле давленияВыходы для подключения к пятиходовому штуцеруМанометр в формате блока автоматики с реле давленияКак правильно настраивать реле?

На корпусе реле давления имеется крышка, а под ней – две пружины, снабженные гайками: большой и малой. Вращая эти пружины, устанавливают нижнее давление в гидроаккумуляторе, а также разницу между значениями давления включения и отключения. Нижнее давление регулируется посредством большой пружины, а малая отвечает за разницу верхнего и нижнего давления.

Под крышкой реле давления находятся две регулировочные пружины. Большая пружина регулирует включение насоса, а малая – разницу между давлением включения и отключения

Перед началом настройки необходимо изучить техническую документацию реле давления, а также насосной станции: гидробака и других ее элементов.

В документации указаны рабочие и предельные показатели, на которое рассчитано это оборудование. В ходе регулировки следует учитывать эти показатели, чтобы не превышать их, иначе эти устройства могут вскоре сломаться.

Иногда бывает так, что во время настройки реле давления давление в системе все же достигает предельных значений. Если это произошло, необходимо просто выключить насос вручную и продолжать настройку. К счастью, такие ситуации крайне редки, поскольку мощности бытовых поверхностных насосов просто не хватает, чтобы довести гидробак или систему до предельных показателей.

На металлической площадке, где расположены регулировочные пружины, сделаны обозначения “+” и “-“, которые позволяют понять, как вращать пружину, чтобы увеличить или уменьшить показатель

Бесполезно настраивать реле, если гидроаккумулятор заполнен водой. В этом случае будет учтено не только давление воды, но и параметры давление воздуха в емкости.

Чтобы выполнить регулировку реле давления, нужно выполнить следующие действия:

  • Установить рабочее давление воздуха в пустом гидроаккумуляторе.
  • Включить насос.
  • Заполнять бак водой до тех пор, пока не будет достигнуто нижнее давление.
  • Отключить насос.
  • Вращать малую гайку до момента запуска насоса.
  • Дождаться заполнения бака и отключения насоса.
  • Открыть воду.
  • Вращать большую пружину, чтобы установить давление включения.
  • Включить насос.
  • Заполнить гидробак водой.
  • Откорректировать положение малой регулировочной пружины.
  • Определить направление вращения регулировочных пружин можно по знакам “+” и “-”, которые обычно находятся рядом. Чтобы увеличить давление включения, большую пружину следует вращать по часовой стрелке, а чтобы уменьшить этот показатель, ее вращают против часовой стрелки.

    Регулировочные пружины реле давления очень чувствительные, поэтому их нужно подкручивать очень аккуратно, постоянно проверяя состояние системы и показания манометра

    Вращение регулировочных пружин при проведении настройки реле давления для насоса нужно выполнять очень плавно, примерно по четверти или половине оборота, это очень чувствительные элементы. Манометр при повторном включении должен показать нижнее давление.

    В отношении показателей при регулировке реле полезно будет помнить следующие моменты:

    • Если гидробак наполняется, а показатели манометра остаются неизменными, значит, предельное давление в емкости достигнуто, насос следует сразу же отключить.
    • Если разница между значениями давления выключения и включения составляет около 1-2 атм., это считается нормальным.
    • Если разница больше или меньше, следует повторить регулировку с учетом возможных ошибок.
    • Оптимальная разница между установленным нижним давлением и определенным в самом начале давлением в пустом гидроаккумуляторе составляет 0,1-0,3 атм.
    • В гидроаккумуляторе давление воздуха не должно быть менее 0,8 атм.

    Система может исправно включаться и выключаться в автоматическом режиме и при других показателях. Но эти границы позволяют свести к минимуму износ оборудования, например, резиновой вкладки гидробака, и продлить время работы всех устройств.

    Несколько советов и рекомендаций

    Для нормального функционирования насосной станции рекомендуется замерять показатели давления воздуха в гидроаакумуляторе каждые три месяца. Эта мера поможет поддерживать стабильные настройки в работе оборудования. Резкое изменение показателей может свидетельствовать о каких-то поломках, которые необходимо устранить.

    Чтобы оперативно контролировать состояние системы, имеет смысл просто время от времени фиксировать показания водяного манометра при включении и отключении насоса. Если они соответствуют цифрам, установленным при настройке оборудования, можно считать работу системы нормальной.

    Заметная разница свидетельствует о том, что нужно проконтролировать давление воздуха в гидробаке и, возможно, перенастроить реле давления. Иногда просто нужно подкачать немного воздуха в гидроаккумулятор, и показатели придут в норму.

    Точность показателей манометра имеет определенную погрешность. Отчасти это может быть вызвано трением его подвижных частей во время измерений. Чтобы улучшить процесс показаний, рекомендуется перед началом измерений дополнительно смазать манометр.

    Реле давления, как и прочие механизмы, имеет свойство со временем изнашиваться. Изначально следует выбрать прочное изделие. Важный фактор длительной работы реле давления – правильные настройки. не следует использовать этот прибор на максимально допустимых значениях верхнего давления.

    Если в работе реле давления появились проблемы и неточности, возможно, его необходимо разобрать и очистить от загрязнений

    Следует оставить небольшой запас, тогда элементы устройства будут изнашиваться не так быстро. Если же необходимо выставить верхнее давление в системе на достаточно высоком уровне, например, в пять атмосфер, лучше приобрести реле с предельно допустимым значением работы в шесть атмосфер. Найти такую модель сложнее, но это вполне возможно.

    К серьезным поломкам реле давления может привести наличие загрязнений в водопроводных трубах. Это характерная ситуация для старых водопроводов, выполненных из металлических конструкций.

    Перед установкой насосной станции водопровод рекомендуется тщательно прочистить. Не помешает и полная замена металлических труб на пластиковые конструкции, если имеется такая возможность.

    При настройке реле к регулировочным пружинам следует относиться исключительно бережно. Если они будут сжаты слишком сильно, т.е. перекручены в процессе настройки, при работе устройства очень скоро станут наблюдаться погрешности. Поломка реле в ближайшем будущем почти гарантирована.

    Если во время проверки работы насосной станции наблюдается постепенный рост давления выключения, это может свидетельствовать о том, что устройство засорилось. Не нужно сразу же его менять.

    Нужно открутить четыре крепежных болта на корпусе реле давления, снять мембранный узел и тщательно промыть внутреннюю часть реле, где это возможно, а также все небольшие отверстия.

    Иногда достаточно просто снять реле и почистить его отверстия снаружи без разборки. Не помешает также провести очистку всей насосной станции. Если же вода вдруг начинает течь прямо из корпуса реле, значит, частички загрязнений пробили мембрану. В этом случае придется устройство полностью заменить.

    Выводы и полезное видео по теме

    Обзор устройства реле давления представлен здесь:

    Этот видеоматериал подробно повествует о процессе настройки реле давления:

    Настроить реле давления не всегда просто. Нужно действовать осторожно и внимательно. Но понимание принципов работы устройства и особенностей его настройки позволяет справиться с этой задачей вполне удовлетворительно.

    Ждем ваших рассказов об опыте установки и настройки реле давления, эксплуатации насосной системы, оснащенной прибором. Возможно, у вас возникли вопросы в процессе ознакомления с материалом? Задавайте их и комментируйте статью в расположенном ниже блоке.

    Источник sovet-ingenera.com

    Регулировка реле давления для насоса системы водоснабжения — настройка уровней включения и выключения | ВодаСовет — водоснабжение дома

    Для непрерывного контроля работы водяного насоса (помпы) и насосной станции применяют специальное устройство – реле (автомат, датчик) давления. Прибор реагирует на отклонения от установленных верхнего и нижнего предельных значений давления в трубопроводе: при превышении размыкает электрическую цепь, при падении включает насос. Другие названия датчика – прессостат, прессконтроль.

    Назначение реле давления.

    Назначение и устройство

    Реле давления воды для насоса включает его при ослаблении подачи жидкости и отключает в часы, когда потребление снижается и повышается напор. Это избавляет от необходимости следить за работой насоса, продлевает срок службы. Устройство пригодно не только для систем центрального водоснабжения, но и для скважины. Прессостат не обязателен только при использовании бензонасоса.

    Устройство реле давления

    Простая модель прессостата состоит из следующих деталей:

    • корпус, закрепленный винтом;
    • каркас;
    • патрубок для подключения к трубопроводу;
    • гермоввод для электрокабеля;
    • контактная группа;
    • пружины с регулировочными гайками для механического изменения настроек.

    Требуемый класс защиты корпуса прибора автоматики от проникновения инородных тел и жидкостей – минимум IP 44. Лучшие модели датчиков относятся к классу IP 54 – IP 65.

    Принцип работы реле заключается в том, что контактная группа размыкается и замыкается при достижении установленных предельных значений давления. Более сложные модели называют контроллерами. Они отличаются наличием встроенного манометра, индикаторов, кнопки перезапуска, кнопочного регулятора и т. п.

    Виды и разновидности

    Два основных вида датчиков давления для насосов – для бытовых и промышленных систем водоснабжения. Они отличаются друг от друга требованиями к параметрам электросети (220 или 380 В), диапазоном регулировки.

    Реле давления имеют резьбовое соединение с трубопроводом. В продаже есть приборы двух разновидностей: с наружной и внутренней резьбой. Размеры присоединения у разных моделей тоже отличаются.

    Большинство моделей прессостатов пригодны для работы с помпами любого типа, но есть и приборы специального назначения, например для скважинного насоса (для соединения с погружным применяют универсальные датчики).

    Дополнительные функции, имеющиеся у некоторых прессостатов:

    • Защита от сухого хода – работы насоса без жидкости. В таком режиме происходит перегрев и деформация деталей насоса. В стандартную схему подключения помпы входит установка специального приспособления – реле сухого хода. Покупка датчика давления с этой функцией позволяет сэкономить время и средства на монтаж отдельного защитного устройства.
    • Автоматический перезапуск после срабатывания защиты от сухого хода. Модели без этой функции приходится переподключать вручную.
    При выборе реле необходимо обращать внимание на максимальную температуру перекачиваемой воды – у разных моделей она составляет от +40 до +120°С. По этому показателю различают устройства для систем холодного или горячего водоснабжения.

    Подключение реле давления воды

    Установку реле давления для водяного насоса и его обслуживание рекомендуется поручить специалисту, но допускается выполнять самостоятельно. Перед началом монтажа нужно внимательно изучить инструкцию производителя и схему подключения. Ремонт прибора должен осуществлять только профессионал. В состав насосной станции автомат давления воды уже входит.

    Электрическая часть

    На датчике имеются 3 пары клемм для подсоединения проводов:

    • от электросети;
    • от насоса;
    • заземления.

    Кабель нужен с медными жилами сечением от 3х1,5 мм². Если в комплекте нет штепсельной вилки для подключения к сети, то нужно установить ее самостоятельно. Наличие на вилке заземляющего контакта обязательно. Кабель управления насосом оснащают влагозащищенной розеткой с заземлением. В нее вставляют сетевой шнур от помпы.

    Схема подключения реле давления для насоса.

    Все работы нужно производить при отключенном электропитании. Установку розетки, предохранителей, заземления может выполнять только электрик. Обязательно подключение автомата-выключателя и УЗО (30 мА) или дифференциального автомата.

    Подключение к трубопроводу

    Большинство моделей реле давления подключают только к системам с гидроаккумулятором (расширительным баком), работать без него могут только некоторые приборы.

    Порядок установки прессостата:

    • Слить воду из трубопровода в выбранном для реле месте.
    • Открутить винт, фиксирующий корпус датчика. Снять крышку.
    • Соединить патрубок на прессостате с фитингом на водопроводной трубе. Защитить стык от протечек сантехнической фторопластовой лентой или льном с герметиком.

    После подключения к водопроводу подсоединить провода от сети, заземления и помпы к клеммам на реле. Затем выполнить настройку (если нужно), надеть крышку и зафиксировать винтом. Иногда прессостат может не срабатывать из-за неправильно выбранного места установки обратного клапана.

    Регулировка реле давления воды

    На новом датчике уже установлены оптимальные значения пределов давления:

    • нижнее – от 1,3 бар;
    • верхнее – до 2,8 бар.

    Их можно изменять. Нижний порог допустимо устанавливать у бытовых моделей – от 1 бар, верхний поднять до 5,5 бар (у промышленных от 0,2 до 8 бар). Менять настройки без необходимости не следует, так как при неправильно выполненной регулировке насос либо перестанет отключаться, либо не будет включаться.

    Как определить пороги срабатывания реле

    Верхний и нижний пределы давления, при которых происходит включение и отключение насоса, зависят от характеристик помпы и расширительного бака:

    • Минимальное значение должно быть на 0,1-0,2 бар больше, чем давление в гидроаккумуляторе. Например, в баке 1 бар, значит, на реле нужно ставить нижний порог 1,2 бар. При регулировке нужно учесть, что заявленные в паспорте гидроаккумулятора параметры могут отличаться от фактических. Рекомендуется предварительно измерить давление в расширительном баке манометром.
    • Максимальное значение ставят не более 90% от предельно допустимого давления, нагнетаемого насосом. Чем больше разница, тем лучше.

    Если после регулировки в работе реле и помпы остаются проблемы, то подходящие значения верхнего и нижнего порогов подбирают экспериментально.

    Настройка реле давления воды для насоса или насосной станции

    Порядок изменения настроек простой модели прессостата:

    • Открутить винт на корпусе, снять крышку.
    • Для регулировки значения нижнего порога вращением гайки изменяют силу натяжения пружины (см. устройство прибора в инструкции). Для увеличения гайку поворачивают по часовой стрелке, для уменьшения – против.
    • Регулировки верхнего порога у реле нет. На приборе установлен диапазон между максимальным и минимальными значениями давления, например 1,5 бар. То есть если нижний порог стоит 1,2 бар, то верхний автоматически выставляется 2,7. Изменить диапазон можно, для этого вращают вторую гайку: для увеличения разницы по часовой стрелке, для уменьшения – против.
    • После завершения регулировки надеть и зафиксировать винтом крышку.

    На более сложных моделях есть специальные кнопки для настройки прибора.

    Источник: https://vodasovet.ru/nasos/regulirovka-rele-davleniya

    Как узнать, правильно ли установлен ток на реле тепловой перегрузки двигателя

    Пуск с током полной нагрузки…

    Ток полной нагрузки при заданном напряжении, указанном на паспортной табличке, является нормативным для настройки реле перегрузки. Из-за переменного напряжения во всем мире двигатели для насосов предназначены для использования как с частотой 50 Гц, так и с частотой 60 Гц в широком диапазоне напряжений.

    Как узнать, какой ток установить на реле перегрузки двигателя (фото: Эдвард CSANYI, EEP)

    Следовательно, диапазон тока указан на паспортной табличке двигателя.Точную допустимую нагрузку по току можно рассчитать, зная напряжение.

    Рисунок 1 — Тепловое реле перегрузки двигателя

    Пример расчета

    Когда мы знаем точное напряжение для установки, ток полной нагрузки можно рассчитать как 254 Δ / 440 Y В, 60 Гц . Данные указаны на паспортной табличке, как показано на рисунке ниже:

    • f = 60 Гц
    • U = 220-277 ∆ / 380 — 480 Y V
    • I n = 5.70 — 5,00 / 3,30 — 2,90 A
    Рисунок 1 — Ток полной нагрузки при заданном напряжении, указанном на паспортной табличке, является нормативным для настройки реле перегрузки

    Расчет данных 60 Гц:

    • U a = фактическое напряжение 254 ∆ / 440 YV (фактическое напряжение)
    • U min = 220 ∆ / 380 YV (минимальные значения в диапазоне напряжений)
    • U max = 277 ∆ / 480 YV (Максимальные значения в диапазоне напряжений)
    Соотношение напряжений определяется следующими уравнениями:

    U = (U A — U min ) / (U max — U мин )
    , что в данном случае: U Δ = (254 — 220) / (227 — 220) = 0.6

    U Y = (U A — U min ) / (U max — U min )
    , который в данном случае: U Y = (440-380 ) / (480-380) = 0,6

    Итак, U Δ = U Y


    Расчет фактического тока полной нагрузки (I)

    I мин = 570 / 3,30 A
    (текущие значения для треугольника и звезды при минимальном напряжении)

    I max = 500/2.90 A
    (текущие значения для треугольника и звезды при максимальных напряжениях)

    Теперь можно рассчитать ток полной нагрузки по первой формуле:

    • I для значений треугольника: 5,70 + (5,00 — 5,70) × 0,6 = 5,28 = 5,30 A
    • I для значений Star: 3,30 + (2,90 — 3,30) × 0,6 = 3,06 = 3,10 A

    Значения для тока полной нагрузки соответствуют допустимый ток полной нагрузки двигателя при 254 ∆ / 440 YV, 60 Гц.

    Практическое правило: Внешнее реле перегрузки двигателя всегда настраивается на номинальный ток, указанный на паспортной табличке.

    Однако, если двигатели спроектированы с учетом эксплуатационного фактора, который затем указан на паспортной табличке , например. 1.15, установленный ток для реле перегрузки может быть увеличен на 15% по сравнению с током полной нагрузки или рабочим коэффициентом А (SFA) , который обычно указан на паспортной табличке.

    Если двигатель подключен звездой = 440 В 60 Гц , реле перегрузки должно быть установлено на 3.1 А .

    Ссылка // Моторная книга Grundfos

    Соответствующее содержание EEP с рекламными ссылками

    Что нужно знать о защитных реле

    Защитные реле, пожалуй, наименее изученный компонент защиты цепей среднего напряжения (СН). Фактически, некоторые считают, что автоматические выключатели среднего напряжения работают сами по себе, без прямого включения защитными реле. Другие думают, что работа и согласование защитных реле слишком сложны для понимания.Давайте углубимся в детали и устраним эти заблуждения.

    Справочная информация

    Стандартный словарь IEEE определяет автоматический выключатель следующим образом.

    «Устройство, предназначенное для размыкания и замыкания цепи неавтоматическими средствами, а также для автоматического размыкания цепи при заданной перегрузке по току без вреда для себя при правильном применении в пределах своего номинала».

    Согласно этому определению, выключатели среднего напряжения не являются настоящими выключателями, поскольку они не отключаются автоматически при перегрузке по току.Они представляют собой устройства переключения мощности с электрическим приводом, которые не работают до тех пор, пока какое-либо внешнее устройство не направит их на открытие или закрытие. Это верно независимо от того, является ли устройство воздушным, масляным, вакуумным или [SF.sub.6] автоматическим выключателем. Датчики и реле используются для обнаружения перегрузки по току или других ненормальных или неприемлемых условий и для подачи сигнала механизму переключения о срабатывании. Автоматические выключатели среднего напряжения — это переключатели грубой силы, а датчики и реле — это мозги, которые управляют их работой.

    Датчики могут быть трансформаторами тока (CT), трансформаторами напряжения (PT), приборами температуры или давления, поплавковыми выключателями, тахометрами или любым устройством или комбинацией устройств, которые будут реагировать на отслеживаемое состояние или событие.В распределительных устройствах наиболее распространенными датчиками являются трансформаторы тока для измерения тока и трансформаторы тока для измерения напряжения. Реле измеряют выходной сигнал датчика и вызывают срабатывание выключателя для защиты системы при превышении установленных пределов, отсюда и название «защитные реле». Наличие разнообразных датчиков, реле и автоматических выключателей позволяет проектировать полные системы защиты, настолько простые или сложные, насколько это необходимо, желательно и экономически целесообразно.

    Реле электромеханические

    В течение многих лет защитные реле были электромеханическими устройствами, построенными как прекрасные часы, с большой точностью и часто с подшипниками с драгоценными камнями.Они заработали заслуженную репутацию благодаря точности, надежности и надежности. Есть два основных типа рабочих механизмов: реле электромагнитного притяжения и реле электромагнитной индукции.

    Реле магнитного притяжения . Реле магнитного притяжения, как показано на Рис. 1 (не включены здесь), имеют либо соленоид, который втягивает плунжер, либо один или несколько электромагнитов, притягивающих шарнирный якорь. Когда магнитная сила достаточна для преодоления сдерживающей пружины, подвижный элемент начинает движение и продолжается до тех пор, пока контакт (-ы) не сработает или магнитная сила не будет снята.Точка срабатывания — это ток или напряжение, при которых плунжер или якорь начинают двигаться, а в реле коммутационного устройства значение срабатывания может быть установлено очень точно.

    Эти реле обычно срабатывают мгновенно, без преднамеренной задержки по времени, замыкаясь сразу после срабатывания, если позволяет механическое движение. К этому типу реле можно добавить временную задержку с помощью сильфона, рычага управления или часового механизма спуска. Однако точность синхронизации значительно менее точна, чем у реле индукционного типа, и эти реле редко используются с выдержкой времени в распределительных устройствах.

    Реле притяжения могут работать как с переменным, так и с постоянным током на катушках; следовательно, на реле, использующие этот принцип, влияет составляющая постоянного тока асимметричного повреждения, и они должны быть настроены таким образом, чтобы учесть это.

    Реле индукционные . Индукционные реле, как показано на Рис. 2 (не включены здесь), доступны во многих вариантах для обеспечения точных срабатываний и время-токовых откликов для широкого диапазона простых или сложных системных условий. Индукционные реле — это в основном асинхронные двигатели.Подвижный элемент или ротор обычно представляет собой металлический диск, хотя иногда это может быть металлический цилиндр или чашка. Статор представляет собой один или несколько электромагнитов с катушками тока или потенциала, которые индуцируют токи в диске, заставляя его вращаться. Движение диска сдерживается пружиной до тех пор, пока вращательные силы не станут достаточными для поворота диска и приведения его подвижного контакта к неподвижному контакту, таким образом замыкая цепь, которой управляет реле. Чем сильнее обнаруживается повреждение, тем больше ток в катушках и тем быстрее вращается диск.

    Калиброванная регулировка, называемая шкалой времени, устанавливает расстояние между подвижными и неподвижными контактами, чтобы изменять время срабатывания реле от быстрого (контакты лишь слегка разомкнуты) до медленного (контакты почти на полный оборот диска). Действие сброса начинается, когда вращательная сила снимается, либо путем замыкания контакта реле, который размыкает выключатель, либо путем устранения неисправности, обнаруженной реле, иным образом. Сдерживающая пружина возвращает диск в исходное положение.Время, необходимое для сброса, зависит от типа реле и настройки шкалы времени (расстояния между контактами).

    С несколькими магнитными катушками можно одновременно определять несколько состояний напряжения и тока. Их сигналы могут быть аддитивными или вычитающими при приведении в действие диска. Например, токово-дифференциальное реле имеет две токовые катушки с противоположным действием. Если два тока равны, независимо от величины, диск не двигается. Если разница между двумя токами превышает настройку датчика, диск вращается медленно для небольшой разницы и быстрее для большей разницы.Контакты реле замыкаются, когда разница сохраняется в течение времени, определяемого характеристиками и настройками реле. Используя несколько катушек, направленные реле могут определять направление тока или мощности, а также величину. Поскольку движение диска создается индуцированными магнитными полями от магнитов переменного тока, индукционные реле почти полностью не реагируют на составляющую постоянного тока асимметричного повреждения.

    Большинство реле распределительного устройства заключены в выдвижной корпус для полузащитного монтажа.Реле обычно устанавливают на двери шкафа КРУ. Проводка датчика и управления выведена на разъемы на корпусе. Реле вставляется в корпус и подключается с помощью небольших переключателей или переходной вилки, в зависимости от производителя. Его можно отсоединить и вынуть из корпуса, не нарушая проводку. Когда реле отключено, соединения трансформатора тока в корпусе автоматически замыкаются на короткое замыкание вторичной обмотки трансформатора тока и защищают трансформатор тока от перенапряжений и повреждений.

    Многие реле оснащены разъемом для тестового кабеля. Это позволяет использовать испытательный комплект для проверки калибровки реле. Передняя крышка реле прозрачна, ее можно снять для доступа к механизму, и на ней есть средства для пломбирования проводов и выводов для предотвращения несанкционированного доступа посторонних лиц.

    Реле твердотельное

    В последнее время все большую популярность приобрели твердотельные электронные реле. Эти реле могут выполнять все функции, которые могут выполняться электромеханическими реле, и, благодаря универсальности электронной схемы и микропроцессоров, могут выполнять многие функции, ранее недоступные.Как правило, твердотельные реле меньше и более компактны, чем их механические эквиваленты. Например, трехфазное твердотельное реле максимального тока можно использовать вместо трех однофазных механических реле максимального тока, но оно меньше одного из них.

    Точность электронных реле выше, чем у механических реле, что обеспечивает более тесную координацию системы. Кроме того, поскольку отсутствует механическое движение и электронная схема очень стабильна, точность калибровки сохраняется в течение длительного времени.При желании время сброса может быть очень коротким, поскольку отсутствует механическое движение.

    Электронным реле для работы требуется меньше энергии, чем их механическим эквивалентам, что создает меньшую нагрузку на трансформаторы тока и трансформаторы тока, которые их питают. Поскольку твердотельные реле имеют минимум движущихся частей, их можно сделать очень устойчивыми к сейсмическим воздействиям и поэтому они особенно хорошо подходят для зон, подверженных сейсмической активности.

    В своих ранних версиях некоторые твердотельные реле были чувствительны к тяжелым электрическим условиям промышленного применения.Они были склонны к выходу из строя, особенно из-за высоких переходных напряжений, вызванных молнией, электросетью и переключением на месте. Однако современные реле были разработаны, чтобы выдерживать эти переходные процессы и другие жесткие условия эксплуатации, и этот тип отказа по существу устранен. Твердотельные реле завоевали прочные и быстрорастущие позиции на рынке, поскольку опыт доказывает их точность, надежность, универсальность и надежность.

    Приведенная ниже информация относится к электромеханическим и твердотельным реле, хотя одно из них работает механически, а другое — электронно.Будут отмечены существенные различия.

    Типы реле

    Существуют буквально сотни различных типов реле. В каталоге одного производителя электромеханических реле перечислены 264 реле для функций защиты и управления распределительных устройств и систем. Для сложных систем со многими уровнями напряжения и межсоединениями на больших расстояниях, таких как передача и распределение электроэнергии, ретрансляция — это искусство, которому некоторые инженеры посвящают всю свою карьеру.Для более простого промышленного и коммерческого распределения релейная защита может быть менее сложной, хотя правильный выбор и применение по-прежнему очень важны.

    Наиболее часто используемые реле и устройства перечислены здесь в таблице (здесь не включена) с указанием их функциональных номеров и описаний Американского национального института стандартов (ANSI). Эти стандартные номера используются в однолинейных схемах и схемах подключения для обозначения реле или других устройств, что позволяет сэкономить место и текст.

    Если реле сочетает в себе две функции, отображаются номера функций для обеих. Наиболее часто используемым реле является реле максимального тока, сочетающее в себе функции мгновенного отключения и отключения с обратнозависимой выдержкой времени. Это обозначено как устройство 50/51. В качестве другого примера устройство 27/59 может представлять собой комбинированное реле минимального и максимального напряжения. Полный стандарт ANSI перечисляет 99 номеров устройств, некоторые из которых зарезервированы для использования в будущем.

    Реле можно классифицировать по характеристикам срабатывания.Реле мгновенного действия — это реле без преднамеренной задержки по времени. Некоторые могут работать за половину цикла или меньше; другие могут занять до шести циклов. Реле, которые работают за три цикла или меньше, называются высокоскоростными реле.

    Реле с выдержкой времени могут быть с независимой или обратнозависимой выдержкой времени. Реле с независимой выдержкой времени имеют предустановленную временную задержку, которая не зависит от величины управляющего сигнала (ток, напряжение или что-то еще) после превышения значения срабатывания. Фактическая заданная временная задержка обычно регулируется.

    Реле с обратнозависимой выдержкой времени, такие как реле максимального тока или дифференциальные реле, имеют время срабатывания, которое зависит от значения управляющего сигнала. Временная задержка велика для небольших сигналов и становится все короче по мере увеличения значения сигнала. Время работы обратно пропорционально величине отслеживаемого события.

    Реле максимального тока

    В распределительном устройстве реле максимального тока обычно используется на каждой фазе каждого автоматического выключателя, и часто используется одно дополнительное реле максимального тока для защиты от замыкания на землю.Обычная практика заключается в использовании одного элемента мгновенного короткого замыкания и одного элемента максимального тока с обратнозависимой выдержкой времени (ANSI 50/51) для каждой фазы.

    В стандартном электромеханическом реле оба элемента для одной фазы объединены в одном корпусе реле. Элемент мгновенного действия представляет собой заслонку или соленоид, а элемент с обратнозависимой выдержкой времени представляет собой индукционный диск.

    В некоторых твердотельных реле три мгновенных и три обратнозависимых элемента могут быть объединены в один корпус реле меньшего размера, чем у одного индукционного дискового реле.

    Реле максимального тока реагируют только на величину тока, а не на направление тока или напряжение. Большинство реле спроектировано для работы от выхода трансформатора тока со стандартным коэффициентом передачи с вторичным током 5 А при номинальном первичном токе. Твердотельное реле не нуждается в дополнительном источнике питания, питаясь своей электронной схемой от выхода трансформатора тока, питающего реле.

    На элементе мгновенного действия может быть установлена ​​только точка срабатывания, которая представляет собой значение тока, при котором элемент мгновенного действия будет действовать без преднамеренной временной задержки, чтобы замкнуть цепь отключения автоматического выключателя.Фактическое требуемое время будет немного уменьшаться по мере увеличения величины тока, от примерно 0,02 с максимум до примерно 0,006 с минимум, как видно из мгновенной кривой на рис. 3 (см. Стр. 47) [ИЛЛЮСТРАЦИЯ опущена]. Это время будет зависеть от реле разных номиналов или производителей, а также будет зависеть от электромеханических и твердотельных реле.

    Обратите внимание, что эта кривая основана на кратных настройках срабатывания для мгновенного элемента, которые обычно значительно выше, чем настройка срабатывания для элемента с обратнозависимой выдержкой времени.

    Временные задержки можно выбирать в широком диапазоне практически для любых мыслимых требований. Выбор выдержки времени начинается с выбора реле. Существует три классификации времени: стандартное, среднее и длительное время задержки. Внутри каждой классификации существует три класса наклонов кривой с обратной зависимостью времени: обратный (наименее крутой), очень обратный (более крутой) и чрезвычайно обратный (самый крутой). Временная классификация и крутизна кривой характерны для выбранного реле, хотя для некоторых твердотельных реле они могут в некоторой степени регулироваться.Для каждого набора кривых, определяемых выбором реле, фактический отклик регулируется с помощью шкалы времени.

    В элементе обратнозависимого времени есть две настройки. Сначала устанавливается точка сбора. Это значение тока, при котором начинается процесс отсчета времени, когда диск начинает вращаться на электромеханическом реле или электронная схема начинает отключаться по времени на твердотельном реле.

    Затем выбирается установка шкалы времени. Это регулирует кривую выдержки времени между минимальной и максимальной кривыми для конкретного реле.Типичные обратные, очень обратные и чрезвычайно обратные кривые показаны на рис. 3 (здесь не включены). У данного реле будет только один набор кривых, инверсных, очень инверсных или крайне инверсных, регулируемых во всем диапазоне шкалы времени. Обратите внимание, что ток указан в кратных настройках срабатывания датчика.

    Каждый элемент, мгновенный или с временной задержкой, имеет флаг, который указывает, когда этот элемент сработал. Этот флаг необходимо сбросить вручную после срабатывания реле.

    Установка пункта самовывоза

    Стандартное реле максимального тока разработано для работы от трансформатора тока с коэффициентом сжатия со стандартным вторичным выходом 5 А. Выходной сигнал стандартного трансформатора тока составляет 5 А при номинальном первичном токе, указанном на паспортной табличке, а выходная мощность пропорциональна первичному току в широком диапазоне. Например, трансформатор тока с коэффициентом 100/5 будет иметь выход 5 А, когда первичный ток (измеряемый и измеряемый ток) равен 100 А. Отношение первичной обмотки к вторичной обмотке 20 к 1 является постоянным, так что при токе первичной обмотки 10 А вторичный ток будет равен 0.5А; для первичной обмотки 20 А, вторичной обмотки 1,0 А; для первичной обмотки 50 А, вторичной 2,5 А; и т. д. Для первичной обмотки на 1000 А вторичный ток составляет 50 А, и аналогично для всех значений тока вплоть до максимума, с которым ТТ будет работать, прежде чем он перейдет в насыщение и станет нелинейным.

    Первым шагом в настройке реле является выбор ТТ, чтобы датчик можно было настроить на желаемое значение первичного тока. Номинальный ток первичной обмотки должен быть таким, чтобы первичный ток от 110 до 125% от ожидаемой максимальной нагрузки производил номинальный вторичный ток 5 А.Максимальный доступный первичный ток короткого замыкания не должен производить вторичный ток более 100 А во избежание насыщения и чрезмерного нагрева. Возможно, невозможно точно выполнить эти требования, но они представляют собой полезные рекомендации. В результате может потребоваться некоторый компромисс.

    На реле максимального тока 50/51 настройка выдержки максимального тока (устройство 51) выполняется с помощью заглушки или винта, вставленного в соответствующее отверстие в розетке с рядом отверстий, отмеченных во вторичных амперах ТТ, с помощью регулируемого калиброванный рычаг или каким-либо аналогичным способом.При этом выбирается один отвод вторичного тока (общее количество отводов зависит от реле) на катушке захвата. Диапазон уставок первичного тока определяется соотношением выбранного трансформатора тока.

    Например, предположим, что коэффициент передачи трансформатора тока составляет 50/5 А. Типичные ответвления — 4, 5, 6, 7, 8, 10, 12 и 16 А. Настройки датчика будут варьироваться от первичного тока 40А (ответвление 4А) до 160А (ответвление 16А). Если требуется датчик на 60 А, выбирается ответвитель на 6 А. Если требуется ток срабатывания более 160 А или менее 40 А, необходимо выбрать трансформатор тока с другим коэффициентом или, в некоторых случаях, другое реле с более высокими или более низкими настройками отводов.

    Доступны различные типы реле с катушками срабатывания от 1,5 А до 40 А. Диапазон общих катушек составляет от 0,5 до 2 А, для слаботочных датчиков, таких как измерение замыкания на землю; От 1,5 до 6А средний диапазон; или от 4 до 16 А, диапазон, обычно выбираемый для максимальной токовой защиты. Доступны трансформаторы тока с широким диапазоном номиналов первичной обмотки, со стандартными вторичными обмотками 5А или с другими вторичными номиналами, вторичными обмотками с отводами или несколькими вторичными обмотками.

    Подходящую комбинацию коэффициента трансформации трансформатора тока и пусковой катушки можно найти практически для любого желаемого первичного тока срабатывания и настройки реле.

    Настройка мгновенного отключения (устройство 50) также регулируется. Параметр задается в амперах срабатывания, полностью независимо от настройки срабатывания элемента с обратнозависимой выдержкой времени или, на некоторых твердотельных реле, кратно точке срабатывания с обратнозависимой выдержкой времени. Например, одно электромеханическое реле регулируется от 2 до 48 А срабатывания; твердотельное реле регулируется от 2 до 12 раз по сравнению с уставкой обратнозависимого времени срабатывания отвода. На большинстве электромеханических реле средством настройки является отводной штекер, аналогичный тому, который используется для элемента с обратнозависимой выдержкой времени.С помощью штекера можно выбрать диапазон полного тока. Не откалиброванная регулировка винта обеспечивает окончательную настройку датчика. Это требует использования испытательного комплекта для подачи калибровочного тока в катушку, если настройка должна быть точной. На твердотельных реле регулировкой может быть калиброванный переключатель, который можно установить с помощью отвертки.

    Установка шкалы времени

    Для любой данной настройки отвода или срабатывания реле имеет целое семейство кривых время-ток. Нужная кривая выбирается вращением шкалы или перемещением рычага.Шкала времени или рычаг калибруются произвольными числами, между минимальным и максимальным значениями, как показано на кривых, опубликованных производителем реле. Типичный набор кривых шкалы времени для реле с обратнозависимой выдержкой времени показан на Рис. 4 (здесь не включен). При установке шкалы времени на ноль контакты реле замкнуты. По мере увеличения настройки шкалы времени размыкание контактов увеличивается, увеличивая время срабатывания реле. При желании могут быть выполнены настройки между точками калибровки, а применимая кривая может быть интерполирована между напечатанными кривыми.

    Точки срабатывания и настройки шкалы времени выбираются таким образом, чтобы реле могло выполнять желаемую защитную функцию. Для реле максимального тока цель состоит в том, чтобы при возникновении неисправности в системе сработало реле, ближайшее к неисправности. Установки времени на вышестоящих реле должны задерживать их срабатывание до тех пор, пока соответствующее устройство максимального тока не устранит неисправность. Требуется исследование селективности, отображающее время-токовые характеристики каждого устройства в исследуемой части системы.Благодаря широкому выбору доступных реле и гибкости настроек каждого реле выборочная координация возможна для большинства систем.

    Выбор и настройка других реле, кроме реле максимального тока, выполняются аналогичным образом. Детали будут отличаться в зависимости от типа реле, его функции в системе и производителя реле.

    Реле срабатывания

    Электромеханическое реле сработает и начнет замыкать свои контакты, когда ток достигнет значения срабатывания.При токе срабатывания с обратнозависимой выдержкой времени рабочие усилия очень малы, а точность синхронизации оставляет желать лучшего. Время реле является точным примерно в 1,5 раза или больше, и именно здесь начинаются кривые время-ток (, рис. 4, ) [не включены здесь]. Этот факт необходимо учитывать при выборе и настройке реле.

    Когда контакты реле замыкаются, они могут отскочить, слегка размыкаясь и создавая дугу, которая сжигает и разъедает контактные поверхности. Чтобы предотвратить это, реле максимального тока имеют встроенное вспомогательное реле с герметичным контактом, параллельным контактам реле времени, которое немедленно замыкается при соприкосновении контактов реле.Это предотвращает искрение, если контакты реле дергаются. Это вспомогательное реле также активирует механический флаг, указывающий, что реле сработало.

    Когда автоматический выключатель, управляемый реле, размыкается, катушка реле обесточивается вспомогательным контактом на выключателе. Это защищает контакты реле, которые рассчитаны на токи до 30 А, но не должны нарушать индуктивный ток цепи отключения выключателя, чтобы предотвратить искрящий износ. Затем диск возвращается в исходное положение пружиной.Реле сброшено. Время возврата — это время, необходимое для полного возврата контактов в исходное положение. Контакты разъединяются примерно через 0,1 сек (шесть циклов) после обесточивания катушки. Общее время сброса зависит от типа реле и настройки шкалы времени. Для максимальной настройки шкалы времени (контакты полностью разомкнуты) типичное время сброса может составлять 6 секунд для реле с обратнозависимой выдержкой времени и до 60 с для реле с очень обратной или крайне обратной зависимостью. При более низких настройках шкалы времени расстояние размыкания контактов меньше, следовательно, меньше время сброса.

    Работа твердотельного реле не зависит от механических сил или движущихся контактов, а выполняет свои функции электронно. Следовательно, синхронизация может быть очень точной даже для токов, равных величине срабатывания срабатывания. Отсутствует механический дребезг контактов или искрение, а время сброса может быть очень коротким.

    Выбор CT и PT

    При выборе измерительных трансформаторов для реле и измерения необходимо учитывать ряд факторов; коэффициент трансформации, нагрузка, класс точности и способность выдерживать доступные токи короткого замыкания.

    Коэффициент ТТ . Указанные выше рекомендации по трансформатору тока должны иметь номинальный вторичный выход на уровне от 110 до 125% от ожидаемой нагрузки и не более 100 А вторичного тока при максимальном первичном токе повреждения. Если может потребоваться более одного коэффициента трансформации ТТ, доступны ТТ с ответвлениями вторичных обмоток или многообмоточных вторичных обмоток.

    Нагрузка CT . Нагрузка трансформатора тока — это максимально допустимая вторичная нагрузка, выраженная в вольтамперах (ВА) или сопротивлении в омах для обеспечения точности.В стандартах ANSI указаны нагрузки от 2,5 до 45 ВА при коэффициенте мощности 90% для измерения ТТ и от 25 до 200 ВА при 50% коэффициента мощности для реле ТТ.

    Класс точности ТТ . Стандарты класса точности ANSI: [+ или -] 0,3, 0,6 или 1,2%. Ошибки соотношения возникают из-за тепловых потерь, возведенных в квадрат R. Фазовые ошибки возникают из-за потерь в сердечнике на намагничивание.

    ТТ помечены точкой или другим обозначением полярности на первичной и вторичной обмотках, так что в момент, когда ток поступает на отмеченный первичный вывод, он выходит из помеченного вторичного вывода.Полярность не требуется для определения максимального тока, но важна для дифференциальной реле и многих других функций реле.

    Коэффициент PT . Выбор коэффициента PT относительно прост. Коэффициент передачи трансформатора тока должен быть таким, чтобы при номинальном первичном напряжении вторичный выход составлял 120 В. При напряжениях, превышающих номинальное первичное напряжение более чем на 10%, трансформатор напряжения будет подвержен насыщению сердечника, что приведет к ошибкам напряжения и чрезмерному нагреву.

    Обременение ПТ .Доступны трансформаторы тока для нагрузок от 12,5 ВА при коэффициенте мощности 10% до 400 ВА при коэффициенте мощности 85%.

    Точность ПТ . Классы точности — стандарт ANSI [+ или -] 0,3, 0,6 или 1,2%. Первичные цепи PT, а также, где это возможно, вторичные цепи PT, должны быть защищены предохранителями.

    CT и PT должны обладать достаточной мощностью для обслуживания нагрузки и достаточной точностью для функций, которые они должны выполнять. Однако увеличение нагрузки или точности, чем необходимо, просто увеличит стоимость измерительных трансформаторов.Твердотельные реле обычно требуют меньших затрат, чем электромеханические реле.

    Комплекты для настройки реле и переключателей

    Комплекты для настройки реле и переключателей

    РЕЛЕ КОМПЛЕКТЫ ДЛЯ РЕГУЛИРОВКИ ПЕРЕКЛЮЧАТЕЛЯ

    Реле и переключатель Комплекты для регулировки

    Пока есть были реле, возникла необходимость в специально разработанных инструментах для помощи в вносить периодические корректировки.
    Для очистки, проверки, регулировки и устранять неисправности всех типов реле наиболее эффективно и эффективно, необходим исчерпывающий набор инструментов, предназначенных для этой цели.

    Наши самые Популярный комплект для обслуживания реле

    ТК-18 Набор инструментов для обслуживания реле

    В комплект входит все необходимое для очистки, регулировки и Храните реле в удобном складном виниловом кейсе с карманами.20-страничный буклет с инструкциями «Как регулировать и обслуживать реле» включен в каждый комплект инструментов ТК-18.

    TK-18 Набор инструментов — виниловый чемодан, инструкция по эксплуатации и по одному для каждого из следующих инструментов:

    SA-6 SA-9 п-50 п-206 N-376A CB-5
    SA-7 SA-18 п-84 п-207 N-474A N-82-13
    SA-8 SA-32 п-96 SA-246 Н-3216 Н-1253

    Предназначен для Те, кто не пойдут на компромисс

    Реле ТК-29 и Набор инструментов для регулировки переключателя

    Профессиональный комплект для обслуживания реле, контактов, переключатели и органы управления.Включает в себя широкий спектр тестовых соединительных инструментов, известная отвертка с направляющим стержнем и инструмент для разворачивания проволоки Инструменты сделаны из сталь высочайшего качества, гарантирующая долгий срок службы и максимальную эффективность. Приходит в мягкий виниловый чехол с отделениями и нейлоновой самовосстанавливающейся молнией. Инструментарий состоит из одного из следующих инструментов, за исключением случаев, когда указано.

    SA-7 п-24 п-206 N-376A Н-150
    SA-8 Н-72 п-207 Н-415Б N-1253
    SA-9 Н-82-25 3-316 (5) Н-416Б N-2348
    SA-18 п-96 Н-360А (6) N-419A N-3216
    SA-32 П-13 Н-360Б (6) N-474A N-3328
    N-9B (2) Н-504-34 N-360C (6) CB-5 Н-6320 (2)
    Н-9Р (2)

    Регулировка открывателей конвертов на DI900, DI950 и реле 5000-8000

    Отрегулируйте боковую направляющую, клин и зазор разделителя на устройстве подачи конвертов большой емкости (HCEF) на устройстве вставки, чтобы обеспечить правильную подачу конвертов.

    Подача тестового конверта

    1. Загрузите внешние конверты в устройства подачи конвертов.
    2. Выберите Инструкции по загрузке на главном экране.
    3. Выберите предварительных настроек.
    4. Выберите Настройки открывалки для конвертов .
      • Система автоматически выбирает устройство подачи, когда используется только один внешний конверт.
      • Если используется несколько внешних конвертов, необходимо выбрать устройство подачи конвертов.
    5. Нажмите ПРОБНАЯ ЧАСТЬ , чтобы подать один конверт в область вставки.
    6. Откройте крышку области вставки и осмотрите конверт. Если вам нужно отрегулировать, следуйте инструкциям по установке ширины и / или длины.

    Регулировка ширины (открыватели внешних конвертов)

    1. Ослабьте винты с накатанной головкой в ​​верхней части открывателей внешних конвертов.
    2. Сдвиньте открыватели, чтобы совместить указатели с внешними краями конверта.
    3. Надавите на винты с накатанной головкой, чтобы убедиться, что внешние устройства открывания конвертов совпадают с конвертом.
    • При использовании небольших конвертов (шириной менее 194 мм) отодвиньте открыватели внешних конвертов от внешних краев конверта.
    • При использовании конвертов с окошками убедитесь, что открыватели внешних конвертов не касаются краев окошка.
    1. Затяните винт с накатанной головкой в ​​верхней части внешних открывателей конвертов.

    Регулировка длины (открыватели внутренних конвертов)

    Есть три открывателя внутренних конвертов, для которых обычно требуется только регулировка длины.Но при необходимости их (кроме среднего открывателя) можно сдвинуть в сторону.
    1. При использовании конвертов с окнами ослабьте винты с накатанной головкой, которыми крепится каждый внутренний механизм открывания конвертов.
    2. Расположите открыватели внутренних конвертов так, чтобы они не касались края окна. В необычных обстоятельствах, таких как вертикальные окна, вам может потребоваться разместить открыватель на окне, чтобы он не зацепился за край окна.
    3. Затяните винты с накатанной головкой отрегулированных сошников.
    4. Нажмите, а затем потяните за одну из ручек в верхней части рамки, чтобы определить, насколько далеко край вставки одного открывателя внутренних конвертов входит в конверт.
    5. При необходимости ослабьте ручку на краю вставки внутреннего устройства для открывания конвертов и отрегулируйте так, чтобы он вошел как минимум на 5 мм в верхнюю панель конверта.
    6. Затяните ручку отрегулированной вставной кромки.
    7. Повторите шаги 2–4 для двух других кромок вставки.
    Воспользуйтесь опциями Свяжитесь с нами ниже, если вам потребуется дополнительная помощь. Пожалуйста, приготовьте вашу модель и серийный номер.

    ОБНОВЛЕНО: 21 сентября 2020 г.

    ток пуска | Текущая настройка | Множитель установки штекера и множитель установки времени реле

    При изучении реле электрической защиты часто используются некоторые специальные термины.Для правильного понимания функций различных защитных реле необходимо правильно понимать определение таких терминов. Такие условия:

    1. Пусковой ток.
    2. Текущая настройка.
    3. Множитель настройки штекера (PSM).
    4. Множитель установки времени (TSM).

    Ток срабатывания реле

    Во всех электрических реле подвижные контакты не могут двигаться. Все контакты остаются в своем нормальном положении под действием некоторой силы, постоянно прикладываемой к ним.Эта сила называется управляющей силой реле. Эта управляющая сила может быть гравитационной силой, может быть силой пружины или может быть магнитной силой.
    Сила, приложенная к движущимся частям реле для изменения нормального положения контактов, называется отклоняющей силой. Эта отклоняющая сила всегда противостоит управляющей силе и всегда присутствует в реле. Хотя отклоняющая сила всегда присутствует в реле, непосредственно подключенном к линии под напряжением, поскольку величина этой силы меньше, чем управляющая сила в нормальных условиях, реле не работает.Если ток срабатывания в катушке реле постепенно увеличивается, отклоняющая сила в электромеханическом реле также увеличивается. Как только отклоняющая сила пересекает управляющую силу, движущиеся части реле начинают движение, чтобы изменить положение контактов в реле. Ток, при котором реле начинает свою работу, называется током срабатывания реле .

    Текущая настройка реле

    Минимальное значение отклоняющей силы электрического реле является постоянным.Опять же, отклоняющая сила катушки пропорциональна количеству ее витков и току, протекающему через катушку.
    Теперь, если мы можем изменить количество активных витков любой катушки, необходимый ток для достижения минимального значения отклоняющей силы в катушке также изменится. Это означает, что если количество активных витков катушки реле уменьшается, то для создания желаемой силы срабатывания реле требуется пропорционально больший ток. Точно так же, если количество активных витков катушки реле увеличивается, тогда требуется пропорционально уменьшенный ток для создания такой же желаемой отклоняющей силы.

    Практически одинаковые модели реле могут использоваться в разных системах. В соответствии с этими системными требованиями регулируется ток срабатывания реле. Это известно как текущая настройка реле. Это достигается за счет обеспечения необходимого количества ответвлений в змеевике. Эти отводы выведены на вилочный мост. Количество активных витков в катушке можно изменить, вставив вилку в разные точки моста.
    Уставка тока реле выражается в процентном отношении тока срабатывания реле к номинальному вторичному току ТТ.

    Это означает, что

    Например, предположим, вы хотите, чтобы реле максимального тока срабатывало, когда ток системы просто пересекает 125% номинального тока. Если реле рассчитано на 1 А, нормальный ток срабатывания реле составляет 1 А, и он должен быть равен вторичному номинальному току трансформатора тока, подключенного к реле.
    Затем реле сработает, когда ток вторичной обмотки ТТ станет больше или равным 1,25 А.
    Согласно определению,

    Текущее значение иногда называют настройкой токовой вилки.
    Уставка тока реле максимального тока обычно находится в диапазоне от 50% до 200% с шагом 25%. Для реле замыкания на землю оно составляет от 10% до 70% с шагом 10%.

    Множитель настройки штекера реле

    Множитель настройки штекера реле называется отношением тока повреждения в реле к его току срабатывания.

    Предположим, мы подключили защитный трансформатор тока с коэффициентом 200/1 A и уставкой тока 150%.
    Следовательно, ток срабатывания реле равен 1 × 150% = 1.5 A
    Теперь предположим, что ток повреждения в первичной обмотке ТТ составляет 1000 А. Следовательно, ток повреждения во вторичной обмотке ТТ, то есть в катушке реле, составляет 1000 × 1/200 = 5 А
    Следовательно, PSM реле составляет, 5 / 1,5 = 3,33

    Множитель установки времени реле

    Время срабатывания электрического реле в основном зависит от двух факторов:

    1. Какое расстояние должны пройти движущиеся части реле для замыкания контактов реле и
    2. Как быстро подвижные части реле преодолевают это расстояние.

    Пока что, регулируя время срабатывания реле, оба фактора должны быть скорректированы. Регулировка расстояния перемещения электромеханического реле широко известна как установка времени. Эта регулировка обычно известна как множитель установки времени реле . Диск установки времени откалиброван от 0 до 1 с шагом 0,05 секунды.
    Но, регулируя только множитель установки времени, мы не можем установить фактическое время срабатывания электрического реле. Как мы уже говорили, время работы также зависит от скорости работы.Скорость движущихся частей реле зависит от силы тока в катушке реле. Следовательно, ясно, что скорость срабатывания электрического реле зависит от уровня тока повреждения. Другими словами, время срабатывания реле зависит от множителя настройки штекера. Зависимость между временем работы и множителем настройки заглушки нанесена на миллиметровую бумагу и известна как график время / PSM. Из этого графика можно определить общее время, затрачиваемое движущимися частями электромеханического реле, чтобы пройти его общее расстояние для различных PSM.В множителе установки времени это общее пройденное расстояние делится и калибруется от 0 до 1 с шагом 0,05.
    Таким образом, при настройке времени 0,1 движущиеся части реле должны пройти всего 0,1 раза от общего пути, чтобы замкнуть контакт реле. Итак, если мы получим общее время работы реле для конкретного PSM из графика время / PSM и если мы умножим это время на множитель установки времени, мы получим фактическое время работы реле для указанных PSM и TSM. .
    Чтобы составить ясное представление, давайте рассмотрим практический пример. Допустим, реле имеет настройку времени 0,1, и вам нужно рассчитать фактическое время работы для PSM 10.
    Из графика время / PSM реле, как показано ниже, мы можем увидеть, что общее время работы реле составляет 3 секунды. Это означает, что движущимся частям реле требуется всего 3 секунды, чтобы пройти 100% пройденного пути. Поскольку множитель установки времени здесь равен 0,1, на самом деле движущиеся части реле должны пройти только 0,1 × 100% или 10% от общего пути, чтобы замкнуть контакты реле.
    Следовательно, фактическое время срабатывания реле составляет 3 × 0,1 = 0,3 сек. т.е. 10% от 3 сек.

    Кривая зависимости времени от PSM реле

    Это кривая зависимости между временем срабатывания и множителем уставки штекера электрического реле. Ось X или горизонтальная ось графика Time / PSM представляет PSM, а ось Y или вертикальная ось представляет время работы реле. Время работы, представленное на этом графике, — это время, необходимое для работы реле, когда множитель установки времени установлен на 1.
    Из кривой Время / PSM типичного реле, показанного ниже, видно, что если PSM равен 10, время срабатывания реле составляет 3 секунды. Это означает, что реле займет 3 секунды, чтобы завершить свое срабатывание, при установке времени 1.
    Из кривой также видно, что для меньшего значения множителя уставки штекера, т.е. срабатывания реле обратно пропорционально току повреждения.
    Но когда PSM становится больше 20, время срабатывания реле становится почти постоянным.Эта функция необходима для обеспечения распознавания очень сильного тока короткого замыкания, протекающего через фидеры звука.

    Расчет времени срабатывания реле

    Для расчета фактического времени срабатывания реле нам необходимо знать следующие операции.

    1. Текущая настройка.
    2. Уровень тока повреждения.
    3. Коэффициент трансформации трансформатора тока.
    4. Кривая времени / PSM.
    5. Установка времени.

    Step-1
    Из соотношения ТТ мы сначала видим номинальный вторичный ток ТТ.Скажем, коэффициент трансформатора тока равен 100/1 A, т.е. вторичный ток трансформатора тока равен 1 A.

    Step-2
    Исходя из текущих настроек, мы вычисляем ток трюка реле. Допустим, текущая настройка реле составляет 150%, следовательно, ток срабатывания реле составляет 1 × 150% = 1,5 А.

    Step-3
    Теперь мы должны рассчитать PSM для указанного уровня неисправного тока. Для этого мы должны сначала разделить первичный ток неисправности на коэффициент ТТ, чтобы получить ток неисправности реле. Скажем, уровень неисправного тока составляет 1500 А в первичной обмотке ТТ, следовательно, вторичный эквивалент неисправного тока составляет 1500 / (100/1) = 15 А

    Step-4
    Теперь, после расчета PSM, мы должны выяснить общее время срабатывания реле по кривой Время / PSM.Из кривой, скажем, мы обнаружили, что время срабатывания реле составляет 3 секунды для PSM = 10.

    Step-5
    Наконец, время работы реле будет умножено на множитель установки времени, чтобы получить фактическое время работа реле. Следовательно, скажем, установка времени реле 0,1.
    Следовательно, фактическое время срабатывания реле для PSM 10 составляет 3 × 0,1 = 0,3 с или 300 мс.

    Электрометры

    20 сен 2018
    • Yokogawa Electric Corporation (TOKYO: 6841) объявляет о разработке нового поколения прецизионных анализаторов мощности, обеспечивающих исключительную точность измерения ± 0.03%. WT5000 сочетает в себе точность со стабильностью, помехоустойчивостью и гибкостью, чтобы удовлетворить потребности в измерениях тех, кто разрабатывает энергоэффективные системы.
    • В быстро развивающихся отраслях промышленности, таких как электромобили, возобновляемые источники энергии и энергоэффективные технологии, потребность в надежности испытаний для повышения безопасности, эффективности и производительности как никогда высока. В прецизионном анализаторе мощности WT5000 инженеры имеют универсальную платформу, которая обеспечивает как надежные измерения для сегодняшних потребностей, так и гибкость для удовлетворения потребностей завтрашнего дня.Yokogawa разработала прецизионный анализатор мощности WT5000, чтобы помочь удовлетворить растущие требования приложений и постоянно меняющиеся международные стандарты, которые требуют индивидуальных измерений и постоянной точности.
    • Исключительная точность измерения: WT5000 обеспечивает самую высокую в мире точность измерения: ± 0,03% при 50/60 Гц, что позволяет точно оценивать энергопотребление, потери и эффективность электрических и электронных устройств. Широкий динамический диапазон токов WT5000 незаменим для тестирования энергосберегающих конструкций.Одним из важных элементов для определения характеристик измерителя мощности является аналого-цифровой преобразователь, выполняющий аналого-цифровое преобразование. Для достижения наивысшей в мире точности измерений в WT5000 используется 18-битный преобразователь с частотой дискретизации 10 MS / s. Это позволяет точно захватывать формы сигналов от новейших высокоскоростных инверторных устройств, обеспечивая при этом стабильные измерения.
    • До 7 входных каналов Модульная гибкость: Хотя WT5000 имеет те же размеры, что и существующие модели серии WT от Yokogawa, он включает в себя до семи входных каналов, поддерживая приложения, которые ранее требовали синхронизации двух нескольких инструментов.В результате он обеспечивает значительную экономию места для установки, накладных расходов на связь и рентабельность. Дополнительные преимущества возникают за счет использования подключаемых модульных элементов ввода, которые могут быть заменены непосредственно пользователем. Элементы 30 A и 5 A можно переключать для приложений, включающих электромобили или автомобили на топливных элементах, где от разработчиков все чаще требуется оценивать ряд различных двигателей. Используя WT5000, оборудованный опциями / MTR1 и / MTR2, можно оценивать до четырех двигателей одновременно с одним устройством.Эти опции поддерживают сигналы положения A, B, Z от энкодеров, а также аналоговые или импульсные сигналы от измерителей момента. Измерения гармоник для многофазных систем значительно улучшены благодаря конструкции входа из 7 элементов. Одновременный анализ двойных гармоник может выполняться до 500-го порядка и до частоты основной волны до 300 кГц. Это позволяет измерять основную частоту на основе скорости вращения двигателя, а также проверять влияние частоты коммутации от инверторного привода.
    • Функция входа внешнего датчика входит в стандартную комплектацию: Функция входа внешнего датчика тока входит в стандартную комплектацию входного элемента входных элементов 30 A и 5 A WT5000, чтобы удовлетворить потребности растущего числа приложений, требующих оценки более сильноточных устройств, таких как как электромобили и крупномасштабные солнечные установки. Для более высоких токов (до 2000 А среднеквадратичное значение) доступны специальные датчики высокого тока.Датчики Yokogawa серии AC / DC CT имеют токовый выход, чтобы минимизировать влияние шума, входной элемент 5A хорошо подходит для использования с этими датчиками тока.
    • Приложений: Производственные испытания и инспекции, а также исследования и разработки продуктов, требующих высокоточных испытаний мощности. Приложения, связанные с электромобилями или автомобилями на топливных элементах, где от разработчиков все чаще требуется оценивать ряд различных двигателей.
    • Прецизионный анализатор мощности WT5000 точно проверяет и оценивает выходную мощность и потери с постоянством и точностью. Этот анализатор мощности поддерживает различные варианты подключаемых модулей для повышения эффективности 3 и снижает или устраняет необходимость использования нескольких устройств на этапе тестирования мощности. Пользователи могут гибко использовать особенности WT5000, характерные для их приложений, повышая эффективность и обеспечивая экономию средств при получении чрезвычайно точных результатов.
    12 июня 2018
    • Компания RIGOL представила наши решения для анализа в реальном времени с помощью RSA5000 в начале этого года.Он сочетает в себе мощность высокопроизводительного анализатора спектра с разверткой и превосходную производительность в реальном времени, не имеющую себе равных в этой категории продуктов. Теперь, с выпуском RSA3000, RIGOL расширяет свои решения для анализа в реальном времени до приложений, которым не требуются высокопроизводительные или стандартные варианты производительности серии RSA5000. Инженеры, чувствительные к цене, которые хотят использовать анализ в реальном времени на своем испытательном стенде, теперь могут получить обновляемое мощное решение по исключительной начальной цене.
    • Доступный в моделях с частотой 3,0 ГГц и 4,5 ГГц с доступными генераторами слежения, RSA3000 стандартно имеет полосу пропускания анализа в реальном времени 10 МГц, но может быть увеличен до 40 МГц в любое время. При использовании опции 40 МГц RSA3000 обеспечивает такой же непрерывный захват, минимальную вероятность перехвата (POI) 7,45 мкс, 7 богатых режимов визуализации и мощные возможности запуска, что и RSA5000, обеспечивая полный пакет анализа в реальном времени для инженеров по более низкой начальной цене. .
    • Доступен в 3.В моделях с диапазоном частот 0 ГГц и 4,5 ГГц с доступными генераторами слежения RSA3000 стандартно поставляется с полосой анализа в реальном времени 10 МГц, но его можно в любой момент увеличить до 40 МГц. При использовании опции 40 МГц RSA3000 обеспечивает такой же непрерывный захват, минимальную вероятность перехвата (POI) 7,45 мкс, 7 богатых режимов визуализации и мощные возможности запуска, что и RSA5000, обеспечивая полный пакет анализа в реальном времени для инженеров по более низкой начальной цене. .
    • RSA3000 может также функционировать как традиционный анализатор спектра с разверткой и надежными характеристиками, достаточными для большинства приложений.Полоса разрешения (RBW) является стандартной при 10 Гц с возможностью выбора 1 Гц, минимального уровня шума -161 дБм, фазового шума -102 дБн / Гц и полной развертки всего 1 мс.
    • «Инженеры все чаще обращаются к спектральному анализу в реальном времени для решения своих проблем интеграции радиочастот и отладки. RSA3000 приносит этим инженерам такую ​​же исключительную ценность для анализа в реальном времени, которую RIGOL DSA815-TG имеет в традиционных приложениях с разверткой », — говорит Майкл Риццо, генеральный директор RIGOL в Северной Америке.«При начальной цене всего 6075 канадских долларов, полной возможности обновления в реальном времени и достаточных характеристиках развертки спектра для большинства приложений общего назначения, RSA3000 является отличным вариантом для клиентов, которым требуются возможности анализа в реальном времени с ограниченными бюджетами».
    • RIGOL RSA3000 выполняет 146 484 операций быстрого преобразования Фурье в секунду, обеспечивая минимальный 100% POI 7,45 мкс. Эта лучшая в своем классе производительность позволяет пользователям уверенно регистрировать импульсные, скачкообразные и быстрые переходные сигналы длительностью всего 7,45 мкс и отображать точную мощность в 100% случаев.Сигналы длительностью от 1 мкс могут быть захвачены благодаря нашему бесшовному захвату БПФ. RSA3000 предоставляет 7 расширенных представлений данных, позволяющих инженерам визуализировать самые сложные радиочастотные среды. Дисплеи плотности помогают увидеть изменяющиеся во времени сигналы и разрешить скрытые и наложенные сигналы в одной и той же полосе частот. Дисплеи спектрограмм позволяют пользователям оценивать изменения в поведении сигнала с течением времени, что особенно полезно при идентификации паттернов скачкообразного изменения и характеризации систем ФАПЧ. Дисплеи мощности в зависимости от времени показывают мощность РЧ в реальном времени в течение заданного пользователем промежутка времени, помогая измерять длительность и синхронизацию импульсных сигналов и характеризуя сигналы с амплитудной модуляцией, такой как ASK.
    • Анализаторы спектра реального времени
    • RIGOL стандартно поставляются с выходом ПЧ, который преобразует весь диапазон реального времени в несущую частоту 430 МГц. Используя эту возможность вместе с осциллографом 500 МГц, пользователь может выполнять подробные многодоменные измерения при интеграции беспроводных технологий. Новый осциллограф RIGOL DS7000 обеспечивает улучшенную возможность цветного БПФ с высоким разрешением, идеально подходящую для этого типа многодоменных измерений.
    • Анализаторы спектра реального времени
    • RIGOL стандартно поставляются с выходом ПЧ, который преобразует весь диапазон реального времени в несущую частоту 430 МГц.Используя эту возможность вместе с осциллографом 500 МГц, пользователь может выполнять подробные многодоменные измерения при интеграции беспроводных технологий. Новый осциллограф RIGOL DS7000 обеспечивает улучшенную возможность цветного БПФ с высоким разрешением, идеально подходящую для этого типа многодоменных измерений.
    • RSA3000 уже доступен и отправляется в продажу. Пожалуйста, свяжитесь с RIGOL или любым авторизованным партнером для получения информации.
    12 июня 2018
    • Осциллографы серии 7000 обеспечивают непревзойденное соотношение цены и качества среди осциллографов среднего уровня.Благодаря частоте дискретизации 10 Гвыб / сек и длине записи до 500 МБ, серия 7000 может обеспечить 20-кратную передискретизацию сигнала 500 МГц, обеспечивая непревзойденное разрешение сигнала, сохраняя при этом полные 50 мс; значительно дольше, чем доступно в конкурирующих продуктах.
    • Ядром осциллографа серии 7000 является новая архитектура RIGOL UltraVision II и набор микросхем Phoenix. Две пользовательские ASIC обеспечивают производительность аналогового интерфейса и обработки сигналов. Эти чипы окружены высокопроизводительным оборудованием, включая Xilinx Zync-7000 SoC, двухъядерные процессоры Arm-9, операционную систему Linux + Qt, высокоскоростную системную память DDR и дисплейную память QDRII.Эта архитектура обеспечивает высокую скорость захвата формы волны 600 000 осциллограмм в секунду, отображение интенсивности с градацией цвета, а также выдающуюся точность временной развертки и характеристики джиттера.
    • «В 2018 году RIGOL отметит свое 20-летие. Мы отгрузили наш первый осциллограф в 1999 году, а серия 7000 представляет собой осциллограф 10-го поколения. Мы очень рады нашему новому запатентованному набору микросхем и возможностям трансформации, которые он позволяет нам вывести на рынок », — говорит Майкл Риццо, генеральный директор RIGOL в Северной Америке.«Постоянные инновации позволили RIGOL снизить затраты на тестирование для наших клиентов, при этом оставив при этом продукты с бескомпромиссными характеристиками. Новый набор микросхем Phoenix — это инвестиции в технологии, которые станут строительным блоком на долгие годы ».
    • Серия 7000 поставляется с пользовательским интерфейсом нового поколения, дающим заказчику пять уникальных способов взаимодействия с прибором. Яркий дисплей с диагональю 10,1 дюйма (1024 × 600) поддерживает отзывчивую и интуитивно понятную сенсорную навигацию. Клиенты, которым нужен дисплей большего размера, могут воспользоваться встроенной поддержкой HDMI для управления большими дисплеями и управления прибором с помощью мыши.DS7000 также поддерживает возможности браузера с сенсорным экраном, поэтому вы можете управлять прибором по сети с планшета или смартфона. Традиционные ручки, кнопки и программные клавиши по-прежнему доступны для тех, кто предпочитает работать с традиционным пользовательским интерфейсом. Наконец, программное обеспечение для дистанционного управления и отображения UltraScope позволит пользователям взаимодействовать с устройством непосредственно со своего ПК.
    • Для решения проблем клиентов требуются возможности анализа, и серия 7000 предоставляет полный набор расширенных инструментов анализа.Возможность «шесть в одном» позволяет использовать несколько типов инструментов. Осциллограф, логический анализатор, анализатор протокола, генератор сигналов, цифровой вольтметр и счетчик / сумматор — все они интегрированы в серию 7000. Помимо этих инструментов, таких как запуск по зонам, 41 прецизионное измерение, несколько цветных БПФ с высоким разрешением, а также стандартная гистограмма и анализ «годен / не годен», серия 7000 является мощным решением для отладки среднего уровня.
    • «Мы считаем, что серия 7000 — это просто самый мощный и доступный осциллограф среднего диапазона на рынке», — продолжает Майкл Риццо.«Благодаря лучшей в своей категории производительности, надежным инструментам анализа и пользовательскому интерфейсу нового поколения, предоставляемым по стартовой цене всего в 3347 канадских долларов, мы рекомендуем клиентам выбрать MDO3000 от Tektronix или DSOX3000T от Keysight, чтобы сравнить производительность, функции и общую ценность Осциллограф серии RIGOL 7000 ».
    • Серия 7000 уже доступна и отправляется. Существует 8 моделей (100 МГц, 200 МГц, 350 МГц и 500 МГц) с логическим анализатором (MSO) или без него. Цена начинается всего с 3347 канадских долларов.Узнайте больше о цифровых осциллографах RIGOL серии 7000 на сайте WWW.RIGOLcanada.com.

    Knipex 32-31-135 5,3-дюймовые реле, регулирующие изгиб под углом 40 градусов (плоские губки)

    Для захвата деталей и проводов наименьшего диаметра, а также для изгиба контактных и промежуточных пружин
    Полированные поверхности захвата
    Края тщательно очищены от заусенцев
    Хромованадиевая электротехническая сталь, кованая, закаленная в масле
    Черная атраментированная
    Полированная головка
    Длина рукоятки с пластиковым покрытием: 34.0 мм

    Knipex-Werk производит и продает инструменты высочайшего качества для промышленного и коммерческого использования. KNIPEX Tools поставляется с пожизненной ограниченной гарантией . В том маловероятном случае, если точный тип инструмента больше не будет доступен, Knipex может выбрать замену инструмента сопоставимым инструментом равной или большей стоимости, или, по выбору Knipex Tools LP, Knipex Tools LP может принять решение о возмещении покупной цены. за неисправный инструмент.Вышеупомянутые средства правовой защиты являются единственными и исключительными средствами правовой защиты, доступными в рамках данной гарантии, и ни при каких обстоятельствах Knipex-Werk или Knipex Tools LP не несут ответственности за случайные, особые или косвенные убытки, упущенную выгоду или другие экономические убытки. Эта гарантия распространяется только на первоначального конечного пользователя, который приобрел инструмент, и никоим образом не распространяется на отказы, вызванные неправильным использованием, неправильным обращением, изменением, несчастным случаем или износом инструментов в процессе использования.

    По вопросам гарантийного обслуживания обращайтесь в Knipex Tools LP или к ближайшему авторизованному дилеру Knipex.

    Гарантийные претензии требуют возврата дефектного инструмента, подтверждения покупки и подтверждения от вас, что вы являетесь первоначальным конечным покупателем инструмента. Гарантия не распространяется на все расходы по доставке и транспортировке.

    НАСТОЯЩАЯ ГАРАНТИЯ ЯВЛЯЕТСЯ ЕДИНСТВЕННОЙ ГАРАНТИЕЙ KNIPEX-WERK И KNIPEX TOOLS LP НА ЕГО ИНСТРУМЕНТЫ И ЗАМЕНЯЕТ ВСЕ ДРУГИЕ ГАРАНТИИ И УСЛОВИЯ, ЯВНЫЕ ИЛИ ПОДРАЗУМЕВАЕМЫЕ. KNIPEX-WERK и KNIPEX TOOLS LP ОТКАЗЫВАЮТСЯ ОТ ВСЕХ ДРУГИХ ЯВНЫХ ИЛИ ПОДРАЗУМЕВАЕМЫХ ГАРАНТИЙ И УСЛОВИЙ, ВКЛЮЧАЯ ПОДРАЗУМЕВАЕМЫЕ ГАРАНТИИ ИЛИ УСЛОВИЯ КОММЕРЧЕСКОГО КАЧЕСТВА, КОММЕРЧЕСКОЙ ЦЕННОСТИ И ПРИГОДНОСТИ ДЛЯ КОНКРЕТНОЙ ЦЕЛИ.

    Knipex-Werk и Knipex Tools LP не принимают и не уполномочивают какое-либо лицо принимать на себя любые другие гарантии, условия или обязательства, выраженные или подразумеваемые.

    ОАЛ:
    125-149 мм (5,0-5,9 дюйма)
    Материал ручки:
    с пластиковым покрытием (винил)
    Инди:
    Индивидуальные инструменты
    Страна происхождения:
    Сделано в Германии
    UPC / EAN:
    843221004507

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *