Расчет квадратных метров воздуховодов: Расчет площади воздуховодов и фасонных изделий

Содержание

Расчет вентиляции

При выборе оборудования для системы вентиляции необходимо рассчитать следующие параметры:
Производительность по воздуху 
Мощность калорифера
Рабочее давление, создаваемое вентилятором 
Скорость потока воздуха и площадь сечения воздуховодов 
Допустимый уровень шума

Ниже приводится упрощенная методика подбора основных элементов системы приточной вентиляции, используемой в бытовых условиях.

Производительность по воздуху

Проектирование системы вентиляции начинается с расчета требуемой производительности по воздуху или «прокачки», измеряемой в кубометрах в час. Для этого необходим поэтажный план помещений с экспликацией, в которой указаны наименования (назначения) каждого помещения и его площадь. Расчет начинается с определения требуемой кратности воздухообмена, которая показывает сколько раз в течение одного часа происходит полная смена воздуха в помещении. Например, для помещения площадью 50 квадратных метров с высотой потолков 3 метра (объем 150 кубометров) двукратный воздухообмен соответствует 300 кубометров в час. Требуемая кратность воздухообмена зависит от назначения помещения, количества находящихся в нем людей, мощности тепловыделяющего оборудования и определяется СНиП (Строительными Нормами и Правилами). Так, для большинства жилых помещений достаточно однократного воздухообмена, для офисных помещений требуется 2-3 кратный воздухообмен.

Для определения требуемой производительности необходимо рассчитать два значения воздухообмена: по кратности и по количеству людей, после чего выбрать большее из этих двух значений.

Расчет воздухообмена по кратности:
L = n * S * H, где
       L — требуемая производительность приточной вентиляции, м3/ч;
       n — нормируемая кратность воздухообмена: для жилых помещений n = 1, для офисов n = 2,5;
       S — площадь помещения, м2;
       H — высота помещения, м;

Расчет воздухообмена по количеству людей:
L = N * Lнорм, где
       L — требуемая производительность приточной вентиляции, м3/ч;
       N — количество людей;
       Lнорм — норма расхода воздуха на одного человека:

в состоянии покоя — 20 м3/ч;
работа в офисе — 40 м3/ч;
при физической нагрузке — 60 м3/ч.

Рассчитав необходимый воздухообмен, выбираем вентилятор или приточную установку соответствующей производительности. При этом необходимо учитывать, что из-за сопротивления воздухопроводной сети происходит падение производительности вентилятора. Зависимость производительности от полного давления можно найти по вентиляционным характеристикам, которые приводятся в технических характеристиках оборудования. Для справки: участок воздуховода длиной 15 метров с одной вентиляционной решеткой создает падение давления около 100 Па.

Типичные значения производительности систем вентиляции:

Для квартир — от 100 до 500 м3/ч;
Для коттеджей — от 1000 до 2000 м3/ч;
Для офисов — от 1000 до 10000 м3/ч.

 

Мощность калорифера

Калорифер используется в приточной системе вентиляции для подогрева наружного воздуха в холодное время года. Мощность калорифера рассчитывается исходя из производительности системы вентиляции, требуемой температуры воздуха на выходе системы и минимальной температуры наружного воздуха. Два последних параметра определяются СНиП. Температура воздуха, поступающего в жилое помещение, должна быть не ниже +18°С. Минимальная температура наружного воздуха зависит от климатической зоны и для Москвы принимается равной -26°С (рассчитывается как средняя температура самой холодной пятидневки самого холодного месяца в 13 часов). Таким образом, при включении калорифера на полную мощность он должен нагревать поток воздуха на 44°С. Поскольку сильные морозы в Москве непродолжительны, в приточных системах можно устанавливать калориферы, имеющие мощность меньше расчетной. При этом приточная система должна иметь регулятор производительности для уменьшения скорости вентилятора в холодное время года.

При расчете мощности калорифера необходимо учитывать следующие ограничения:
Возможность использования однофазного (220 В) или трехфазного (380 В) напряжения питания. При мощности калорифера свыше 5 кВт необходимо 3-х фазное подключение, но в любом случае 3-х фазное питание предпочтительней, так как рабочий ток в этом случае меньше.

Максимально допустимый ток потребления. Ток, потребляемый калорифером, можно найти по формуле:
I = P / U, где
       I — максимальный потребляемый ток, А;
       Р — мощность калорифера, Вт;
       U — напряжение питание:
220 В — для однофазного питания;
660 В (3 × 220В) — для трехфазного питания.

Температуру, на которую калорифер заданной мощности сможет нагреть приточный воздух, можно рассчитать по формуле:
ΔT = 2,98 * P / L, где
       ΔT — разность температур воздуха на входе и выходе системы приточной вентиляции,°С;

       Р — мощность калорифера, Вт;
       L — производительность вентиляции, м3/ч.

Типичные значения расчетной мощности калорифера — от 1 до 5 кВт для квартир, от 5 до 50 кВт для офисов. Если использовать электрический калорифер с расчетной мощностью не представляется возможным, следует установить водяной калорифер, который использует в качестве источника тепла воду из системы центрального или автономного отопления.

Рабочее давление, скорость потока воздуха в воздуховодах и допустимый уровень шума

После расчета производительности по воздуху и мощности калорифера приступают к проектированию воздухораспределительной сети, которая состоит из воздуховодов, фасонных изделий (переходников, разветвителей, поворотов) и распределителей воздуха (решеток или диффузоров). Расчет воздухораспределительной сети начинают с составления схемы воздуховодов. Далее по этой схеме рассчитывают три взаимосвязанных параметра — рабочее давление, создаваемое вентилятором, скорость потока воздуха и уровень шума.

Требуемое рабочее давление определяется техническими характеристиками вентилятора и рассчитывается исходя из диаметра и типа воздуховодов, числа поворотов и переходов с одного диаметра на другой, типа распределителей воздуха. Чем длиннее трасса и чем больше на ней поворотов и переходов, тем больше должно быть давление, создаваемое вентилятором. От диаметра воздуховодов зависит скорость потока воздуха. Обычно эту скорость ограничивают значением от 2,5 до 4 м/с. При больших скоростях возрастают потери давления и увеличивается уровень шума. В тоже время, использовать «тихие» воздуховоды большого диаметра не всегда возможно, поскольку их трудно разместить в межпотолочном пространстве. Поэтому при проектировании вентиляции часто приходится искать компромисс между уровнем шума, требуемой производительностью вентилятора и диаметром воздуховодов. Для бытовых систем приточной вентиляции обычно используются гибкие воздуховоды сечением 160—250 мм и распределительные решетки размером 200×200 мм — 200×300 мм.

Для точного расчета схемы вентиляции и воздухораспределительной сети, а также для разработки проекта вентиляции обращайтесь к нашим менеджерам.

Расчет вентиляции помещений: принципы и примеры расчёта


Мечтаете, чтобы в доме был здоровый микроклимат и ни в одной комнате не пахло затхлостью и сыростью? Чтобы дом был по-настоящему комфортным, еще на стадии проектирования необходимо провести грамотный расчет вентиляции.

Если во время строительства дома упустить этот важный момент, в дальнейшем придется решать целый ряд проблем: от удаления плесени в ванной комнате до нового ремонта и установки системы воздуховодов. Согласитесь, не слишком приятно видеть на кухне на подоконнике или в углах детской комнаты рассадники черной плесени, да и заново погружаться в ремонтные работы.

В представленной нами статье собраны полезные материалы по расчету систем вентилирования, справочные таблицы. Приведены формулы, наглядные иллюстрации и реальный пример для помещений различного назначения и определенной площади, продемонстрированный в видеосюжете.

Содержание статьи:

Причины проблем с вентиляцией

При правильных расчетах и грамотном монтаже вентилирование дома осуществляется в подходящем режиме. Это означает, что воздух в жилых помещениях будет свежий, с нормальной влажностью и без неприятных запахов.

Если же наблюдается обратная картина, например, постоянная духота, в ванной комнате или другие негативные явления, то нужно проверить состояние вентиляционной системы.

Галерея изображений

Фото из

Вентиляция частного дома в стиле лофт

Вентканал в перекрытии каркасного дома

Компоненты приточной и вытяжной системы

Вентиляция в паре с кондиционированием

Вентиляционная решетка и вывод вытяжки

Вытяжной вентилятор в ванной комнате

Вентиляция подкровельного пространства

Приточная труба для подвала

Немало проблем доставляет отсутствие характерных для окон и дверей тончайших зазоров, спровоцированное установкой герметичных пластиковых конструкций. В таком случае в дом поступает слишком мало свежего воздуха, нужно позаботиться о его притоке.

Засоры и разгерметизация воздуховодов могут стать причиной серьезных проблем с удалением отработанного воздуха, который насыщен неприятными запахами, а также избыточными водяными парами.

В результате в служебных помещениях могут появиться колонии грибка, что плохо отражается на здоровье людей и может спровоцировать ряд серьезных заболеваний.

Запотевшие окна, плесень и грибок в ванной комнате, духота – все это явные признаки того, что жилые помещения вентилируются неправильно

Но бывает и так, что элементы работают прекрасно, однако описанные выше проблемы остаются нерешенными. Возможно, расчеты вентиляционной системы для конкретного дома или квартиры были проведены неправильно.

Негативно может отразиться на вентилировании помещений их переделка, перепланировка, появление пристроек, установка уже упомянутых ранее пластиковых окон и т.п. При таких существенных изменениях не помещает повторно произвести расчеты и модернизировать имеющуюся вентиляционную систему в соответствии с новыми данными.

Один из простых способов обнаружить проблемы с вентилированием – . К решетке вытяжного отверстия нужно поднести зажженную спичку или лист тонкой бумаги. Не стоит использовать для такой проверки открытый огонь, если в помещении используется газовое нагревательное оборудование.

Слишком герметичные внутренние двери могут препятствовать нормальной циркуляции воздуха по дому, рещить проблему помогут специальные решетки или отверстия

Если пламя или бумага уверенно отклоняется в сторону вытяжки, тяга имеется, если же этого не происходит или отклонение слабое, нерегулярное, проблема с отведением отработанного воздуха становится очевидной. Причиной могут быть засоры или повреждение воздуховода в результате неумелого ремонта.

Не всегда есть возможность устранить поломку, решением проблемы часто становится монтаж дополнительных средств вытяжного вентилирования. Перед их установкой также не помешает провести необходимые расчеты.

Определить наличие или отсутствие нормальной тяги в вытяжной вентиляционной системе дома можно с помощью пламени или листа тонкой бумаги

Как рассчитать воздухообмен?

Все расчеты по системам вентилирования сводятся к тому, чтобы определить объемы воздуха в помещении. В качестве такого помещения может рассматриваться как отдельная комната, так и совокупность комнат в конкретном доме или квартире.

На основании этих данных, а также сведений из нормативных документов рассчитывают основные параметры вентиляционной системы, такие как количество и сечение воздуховодов, мощность вентиляторов и т.п.

Существуют специализированные расчетные методики, позволяющие просчитать не только обновление воздушных масс в помещении, но и удаление тепловой энергии, изменение влажности, выведение загрязнений и т.п. Подобные расчеты выполняются обычно для зданий промышленного, социального или какого-либо специализированного назначения.

Если есть необходимость или желание выполнить настолько подробные расчеты, лучше всего обратиться к инженеру, изучившему подобные методики.

Для самостоятельных расчетов по жилым помещениям используют следующие варианты:

  • по кратностям;
  • по санитарно-гигиеническим нормам;
  • по площади.

Все эти методики относительно просты, уяснив их суть, даже неспециалист может просчитать основные параметры своей вентиляционной системы. Проще всего воспользоваться расчетами по площади. За основу принимается следующая норма: каждый час в дом должно поступать по три кубических метра свежего воздуха на каждый квадратный метр площади.

Количество людей, которые постоянно проживают в доме, при этом не учитывается.

Вентиляционная система в жилых зданиях устраивается таким образом, чтобы воздух поступал через спальню и гостиную, а удалялся из кухни и санузла

Расчет по санитарно-гигиеническим нормативам тоже относительно несложен. В этом случае для вычислений используют не площадь, а данные о количестве постоянных и временных жильцов.

Для каждого постоянно проживающего необходимо обеспечить приток свежего воздуха в количестве 60 кубических метров в час. Если в помещении регулярно присутствуют временные посетители, то на каждого такого человека нужно прибавить еще по 20 кубических метров в час.

Несколько сложнее производится расчет по кратности воздухообмена. При его выполнении учитывается назначение каждой отдельной комнаты и нормативы по кратности воздухообмена для каждой из них.

Кратностью воздухообмена называют коэффициент, отражающий количество полной замены отработанного воздуха в помещении в течение одного часа. Соответствующие сведения содержатся в специальной нормативной таблице (СНиП 2.08.01-89* Жилые здания, прил. 4).

С помощью этой таблицы выполняют расчет вентиляции дома по кратностям. Соответствующие коэффициенты отражают кратность воздухообмена за единицу времени в зависимости от назначения помещения

Рассчитать количество воздуха, которое должно быть обновлено в течение часа, можно по формуле:

L=N*V,

Где:

  • N – кратность воздухообмена за час, взятая из таблицы;
  • V – объём помещения, куб.м.

Объем каждого помещения вычислить очень просто, для этого нужно умножить площадь комнаты на ее высоту. Затем для каждого помещения рассчитывают объем воздухообмена в час по приведенной выше формуле.

Показатель L для каждой комнаты суммируется, итоговое значение позволяет составить представление о том, сколько именно свежего воздуха должно поступать в помещение за единицу времени.

Разумеется, через должно удаляться точно такое же количество отработанного воздуха. В одной и той же комнате не устанавливают и приточную, и вытяжную вентиляцию. Обычно приток воздуха осуществляется через “чистые” помещения: спальню, детскую, гостиную, кабинет и т.п.

Вытяжную вентиляцию в ванной комнате или санузле устанавливают в верхней части стены, встроенный вентилятор работает в автоматическом режиме

Удаляют же воздух из комнат служебного назначения: санузла, ванной, кухни и т.п. Это разумно, поскольку неприятные запахи, характерные для этих помещений, не распространяются по жилищу, а сразу же выводятся наружу, что делает проживание в доме более комфортным.

Поэтому при расчетах берут норматив только для приточной или только для вытяжной вентиляции, как это отражено в нормативной таблице.

Если воздух не нужно подавать в конкретное помещение или удалять из него, в соответствующей графе стоит прочерк. Для некоторых помещений указано минимальное значение кратности воздухообмена. Если расчетная величина оказалась ниже минимальной, следует использовать для расчетов табличную величину.

Если проблемы с вентиляцией обнаружились уже после того, как ремонт в доме был проведен, можно установить приточные и вытяжные клапаны в стене

Разумеется, в доме могут найтись помещения, назначение которых в таблице не отображено. В таких случаях используют нормативы, принятые для жилых помещений, т.е. 3 куб.м на каждый квадратный метр комнаты. Нужно просто умножить площадь комнаты на 3, полученное значение принять за нормативную кратность воздухообмена.

Все значения кратности воздухообмена L следует округлить в сторону увеличения, чтобы они были кратными пяти. Теперь нужно посчитать сумму кратности воздухообмена L для помещений, через которые осуществляется приток воздуха. Отдельно суммируют кратность воздухообмена L тех комнат, из которых производится отведение отработанного воздуха.

Если результат вычислений не отвечает санитарным требованиям, производится установка ,бризера или , модернизируется существующая система или выполняется ее чистка.

Холодный наружный воздух может отрицательно сказаться на качестве отопления в доме, для таких ситуаций используют вентиляционные устройства с рекуператором

Затем следует сравнить эти два показателя. Если L по притоку оказался выше, чем L по вытяжке, то нужно увеличить показатели для тех комнат, по которым при расчетах использовались минимальные значения.

Примеры расчетов объема воздухообмена

Чтобы провести расчет для по кратностям, для начала нужно составить список всех помещений в доме, записать их площадь и высоту потолков.

Например, в гипотетическом доме имеются следующие помещения:

  • Спальня – 27 кв.м.;
  • Гостиная – 38 кв.м.;
  • Кабинет – 18 кв.м.;
  • Детская – 12 кв.м.;
  • Кухня – 20 кв.м.;
  • Санузел – 3 кв.м.;
  • Ванная – 4 кв.м.;
  • Коридор – 8 кв.м.

Учитывая, что высота потолка во всех помещениях составляет три метра, вычисляем соответствующие объемы воздуха:

  • Спальня – 81 куб.м.;
  • Гостиная – 114 куб.м.;
  • Кабинет – 54 куб.м.;
  • Детская – 36 куб.м.;
  • Кухня – 60 куб.м.;
  • Санузел – 9 куб.м.;
  • Ванная – 12 куб.м.;
  • Коридор – 24 куб.м.

Теперь, используя приведенную выше таблицу, нужно произвести расчёты вентиляции помещения с учетом кратности воздухообмена, увеличив каждый показатель до значения, кратного пяти:

  • Спальня – 81 куб.м.*1 = 85 куб.м.;
  • Гостиная – 38 кв.м.*3 = 115 куб.м.;
  • Кабинет – 54 куб.м.*1 = 55 куб.м.;
  • Детская – 36 куб.м.*1 = 40 куб.м.;
  • Кухня – 60 куб.м. – не менее 90 куб.м.;
  • Санузел – 9 куб.м. не менее 50 куб.м;
  • Ванная – 12 куб.м. не менее 25 куб.м.

Сведения о нормативах для коридора в таблице отсутствуют, поэтому в расчете данные по этому небольшому помещению не учтены. Для гостиной выполнен расчет по площади с учетом норматива три куб. метра на каждый метр площади.

Правильно организованная система вентиляции обеспечит достаточный воздухообмен в гостиной. При проектировании обязательно следует учитывать требования и нормы СНиПов

Теперь нужно отдельно суммировать сведения по помещениям, в которых осуществляется приток воздуха, и отдельно — комнаты, где установлены вытяжные вентиляционные устройства.

Объем воздухообмена по притоку:

  • Спальня – 81 куб.м.*1 = 85 куб.м/ч.;
  • Гостиная – 38 кв.м.*3 = 115 куб.м/ч;
  • Кабинет – 54 куб.м.*1 = 55 куб.м/ч;
  • Детская – 36 куб.м.*1 = 40 куб.м/ч;

Всего: 295 куб.м\ч.

Объем воздухообмена по вытяжке:

  • Кухня – 60 куб.м. — не менее 90 куб.м/ч;
  • Санузел – 9 куб.м. — не менее 50 куб.м/ч;
  • Ванная – 12 куб.м. — не менее 25 куб.м/ч.

Всего: 165 куб.м/ч.

Теперь следует сравнить полученные суммы. Очевидно, что необходимый приток превышает вытяжку на 130 куб.м/ч (295 куб.м/ч-165 куб.м/ч).

Чтобы устранить эту разницу, нужно увеличить объемы воздухообмена по вытяжке, например, увеличив показатели по кухне. На практике это проводится, например, заменой воздуховодов на каналы бóльшего сечения.

Правила расчета площади воздушных каналов для замены или модернизации системы вентилирования . Советуем ознакомиться с полезным материалом.

После правок результаты расчета будут выглядеть следующим образом:

Объем воздухообмена по притоку:

  • Спальня – 81 куб.м.*1 = 85 куб.м/ч.;
  • Гостиная – 38 кв.м.*3 = 115 куб.м/ч;
  • Кабинет – 54 куб.м.*1 = 55 куб.м/ч;
  • Детская – 36 куб.м.*1 = 40 куб.м/ч;

Всего: 295 куб.м\ч.

Объем воздухообмена по вытяжке:

  • Кухня – 60 куб.м. — 220 куб.м/ч;
  • Санузел – 9 куб.м. — не менее 50 куб.м/ч;
  • Ванная – 12 куб.м. — не менее 25 куб.м/ч.

Всего: 295 куб.м/ч.

Объемы по притоку и вытяжке равны, что соответствует требованиям при расчетах воздухообмена по кратностям.

Расчет вентиляционной системы для кухни также чрезвычайно важен. Особенно, если там используется газовое оборудование для приготовления пищи

Расчет воздухообмена в соответствии с санитарными нормами выполнить значительно проще. Допустим, что в доме, рассмотренном выше, постоянно проживают два человека и еще двое пребывают в помещении нерегулярно.

Расчет выполняется отдельно для каждого помещения в соответствии с нормой 60 куб.м\чел для постоянных жильцов и 20 куб.м\час для временных посетителей:

  • Спальня – 2 чел*60 = 120 куб.м\час;
  • Кабинет – 1 чел.*60 = 60 куб.м\час;
  • Гостиная 2 чел*60 + 2 чел*20 = 160 куб.м\час;
  • Детская 1 чел.*60 = 60 куб.м\час.

Всего по притоку — 400 куб.м\час.

Для количества постоянных и временных обитателей дома не существует каких-то строгих правил, эти цифры определяются исходя из реальной ситуации и здравого смысла.

Достаточный объем воздуха, своевременно поступающий в ванную комнату, и также своевременная эвакуация отработанного позволяет предотвратить образование затхлого воздуха и появление плесневелых грибов

Вытяжку рассчитывают по нормам, изложенным в таблице, приведенной выше, и увеличивают до суммарного показателя по притоку:

  • Кухня – 60 куб.м. — 300 куб.м/ч;
  • Санузел – 9 куб.м. — не менее 50 куб.м/ч;
  • Ванная – 12 куб.м. — не менее 50 куб.м/ч.

Всего по вытяжке: 400 куб.м/ч.

Увеличен воздухообмен для кухни и ванной комнаты. Недостаточный объем по вытяжке можно разделить между всеми помещениями, в которых установлена . Или увеличить этот показатель только для одного помещения, как это было сделано при расчете по кратностям.

В соответствии с санитарными нормами воздухообмен рассчитывают подобным образом. Допустим, площадь дома составляет 130 кв.м. Тогда воздухообмен по притоку должен составлять 130 кв.м*3 куб.м\час = 390 куб.м\час.

Остается распределить этот объем на помещения по вытяжке, например, таким образом:

  • Кухня – 60 куб.м. — 290 куб.м/ч;
  • Санузел – 9 куб.м. — не менее 50 куб.м/ч;
  • Ванная – 12 куб.м. — не менее 50 куб.м/ч.

Всего по вытяжке: 390 куб.м/ч.

Баланс воздухообмена — один из основных показателей при проектировании вентиляционных систем. Дальнейшие расчеты выполняются на основе этих сведений.

Как подобрать сечение воздуховода?

Система вентилирования, как известно, может быть канальной или бесканальной. В первом случае нужно правильно подобрать сечение каналов. Если принято решение устанавливать конструкции с прямоугольным сечением, то соотношение его длины и ширины должно приближаться к 3:1.

Длина и ширина сечения канальных воздуховодов с прямоугольной конфигурацией должны соотноситься как три к одному, чтобы уменьшить количество шума

Стандартная по основному вентканалу должна составлять около пяти метров в секунду, а на ответвлениях — до трех метров в секунду. Это обеспечит работу системы с минимальным количеством шума. Скорость движения воздуха во многом зависит от площади сечения воздуховода.

Чтобы подобрать размеры конструкции, можно использовать специальные расчетные таблицы. В такой таблице нужно выбрать слева объем воздухообмена, например, 400 куб.м\ч, а сверху выбрать значение скорости — пять метров в секунду.

Затем нужно найти пересечение горизонтальной линии по воздухообмену с вертикальной линией по скорости.

С помощью этой диаграммы вычисляют сечение воздуховодов для канальной вентиляционной системы. Скорость движения в магистральном канале не должна превышать 5 м/сек

От этого места пересечения проводят линию вниз до кривой, по которой можно определить подходящее сечение. Для прямоугольного воздуховода это будет значение площади, а для круглого – диаметр в миллиметрах. Сначала делают расчеты для магистрального воздуховода, а затем – для ответвлений.

Таким образом расчеты делают, если в доме планируется только один вытяжной канал. Если же предполагается установить несколько вытяжных каналов, то общий объем воздуховода по вытяжке нужно разделить на количество каналов, а затем провести расчеты по изложенному принципу.

Эта таблица позволяет подобрать сечение воздуховода для канальной вентиляции с учетом объемов и скорости перемещения воздушных масс

Кроме того, существуют специализированные калькуляционные программы, с помощью которых можно выполнить подобные расчеты. Для квартир и жилых домов такие программы могут быть даже удобнее, поскольку дают более точный результат.

На нормальный воздухообмен оказывает влияние такое явление как обратная тяга, со спецификой которой и способами борьбы с ней ознакомит .

Выводы и полезное видео по теме

Ролик #1. Полезные сведения по принципам работы системы вентилирования:

Ролик #2. Вместе с отработанным воздухом жилище покидает и тепло. Здесь наглядно продемонстрированы расчеты тепловых потерь, связанных с работой системы вентиляции:

Правильный расчет вентиляции — основа ее благополучного функционирования и залог благоприятного микроклимата в доме или квартире. Знание основных параметров, на которых базируются такие вычисления, позволит не только правильно спроектировать систему вентилирования во время строительства, но и откорректировать ее состояние, если обстоятельства изменятся.

Хотите поделиться собственным опытом в расчете и сооружении вентиляции? Возникли вопросы в ходе ознакомления с информацией? Нашли недоработки в тексте? Пишите, пожалуйста, комментарии в блоке, находящимся под текстом статьи.

Системы вентиляции: сделай расчет сам

Проектирование и расчет систем вентиляции является задачей проектировщиков систем вентиляции. Такие работы выполняет компетентный специалист, непрофессионал не может и не должен выполнять такие работы.

У многих заказчиков создается неверное впечатление о «простоте» проекта вентиляции. Попробуем предложить вам самим рассчитать свою систему.

Итак, Вы – Заказчик. И хотите знать, как происходит выбор оборудования для системы вентиляции.

При выборе оборудования необходимо рассчитать следующие параметры:

  • Производительность по воздуху;
  • Мощность калорифера;
  • Рабочее давление, создаваемое вентилятором;
  • Скорость потока воздуха и площадь сечения воздуховодов;
  • Допустимый уровень шума.

Ниже мы приводим упрощенную методику подбора основных элементов системы приточной вентиляции, используемой в бытовых условиях.


Расход воздуха или производительность по воздуху

Проектирование системы начинается с расчета требуемой производительности по воздуху, измеряемой в кубометрах в час. Для этого необходим поэтажный план помещений с экспликацией, в которой указаны наименования (назначения) каждого помещения и его площадь.

Расчет вентиляции начинается с определения требуемой кратности воздухообмена, которая показывает сколько раз в течение одного часа происходит полная смена воздуха в помещении. Например, для помещения площадью 50 квадратных метров с высотой потолков 3 метра (объем 150 кубометров) двукратный воздухообмен соответствует 300 кубометров в час.

Требуемая кратность воздухообмена зависит от назначения помещения, количества находящихся в нем людей, мощности тепловыделяющего оборудования и определяется СНиП (Строительными Нормами и Правилами).

Так, для большинства жилых помещений достаточно однократного воздухообмена, для офисных помещений требуется 2-3 кратный воздухообмен.

Но, подчеркиваем, это не Правило!!! Если это офисное помещение 100 кв.м. и в нем работает 50 человек (допустим операционный зал), то для обеспечения вентиляции необходима подача около 3000 м3/ч.

Для определения требуемой производительности необходимо рассчитать два значения воздухообмена: по кратности и по количеству людей, после чего выбрать большее из этих двух значений.

  1. Расчет воздухообмена по кратности:

    L = n * S * H, где

L — требуемая производительность приточной вентиляции, м3/ч;

n — нормируемая кратность воздухообмена: для жилых помещений n = 1, для офисов n = 2,5;

S — площадь помещения, м2;

H — высота помещения, м;

  1. Расчет воздухообмена по количеству людей:

    L = N * Lнорм, где

L — требуемая производительность приточной вентиляции, м3/ч;

N — количество людей;

Lнорм — норма расхода воздуха на одного человека:

    • в состоянии покоя — 20 м3/ч;
    • работа в офисе — 40 м3/ч;
    • при физической нагрузке — 60 м3/ч.
Рассчитав необходимый воздухообмен, выбираем вентилятор или приточную установку соответствующей производительности. При этом необходимо учитывать, что из-за сопротивления воздухопроводной сети происходит падение производительности вентилятора. Зависимость производительности от полного давления можно найти по вентиляционным характеристикам, которые приводятся в технических характеристиках оборудования.

Для справки: участок воздуховода длиной 15 метров с одной вентиляционной решеткой создает падение давления около 100 Па.

Типичные значения производительности систем вентиляции

  • Для квартир — от 100 до 600 м3/ч;
  • Для коттеджей — от 1000 до 3000 м3/ч;
  • Для офисов — от 1000 до 20000 м3/ч.

Мощность калорифера

Калорифер используется в приточной системе для подогрева наружного воздуха в холодное время года. Мощность калорифера рассчитывается исходя из производительности, требуемой температурой воздуха на выходе системы и минимальной температурой наружного воздуха.

Два последних параметра определяются СНиП. Температура воздуха, поступающего в жилое помещение, должна быть не ниже +18°С. Минимальная температура наружного воздуха зависит от климатической зоной и для России может составлять от -22°С и ниже (рассчитывается как средняя температура самой холодной пятидневки самого холодного месяца в 13 часов).

Таким образом, при включении калорифера на полную мощность он должен нагревать поток воздуха на 40°С.

При этом приточная система желательно должна иметь регулятор производительности для уменьшения скорости вентилятора в холодное время года, дабы не платить большие счета за электричество (если стоит электрический калорифер, возможно обустройство водяного калорифера).

При расчете мощности калорифера необходимо учитывать ограничения

  • Возможность использования однофазного (220 В) или трехфазного (380 В) напряжения питания. При мощности калорифера свыше 5 кВт необходимо 3-х фазное подключение, но в любом случае 3-х фазное питание предпочтительней, так как рабочий ток в этом случае меньше.
  • Максимально допустимый ток потребления. Ток, потребляемый калорифером, можно найти по формуле:

    I = P / U, где

I — максимальный потребляемый ток, А;

Р — мощность калорифера, Вт;

U — напряжение питание:

    • 220 В — для однофазного питания;
    • 660 В (3 × 220В) — для трехфазного питания.

В случае если допустимая нагрузка электрической сети меньше чем требуемая, можно установить калорифер меньшей мощности. Температуру, на которую калорифер сможет нагреть приточный воздух, можно рассчитать по формуле:

ΔT = 2,98 * P / L, где

ΔT — разность температур воздуха на входе и выходе системы приточной вентиляции,°С;

Р — мощность калорифера, Вт;

L — производительность по воздуху, м3/ч.

Типичные значения расчетной мощности калорифера — от 1 до 5 кВт для квартир, от 5 до 50 кВт для офисов. Если использовать электрический калорифер с расчетной мощностью не представляется возможным, следует установить калорифер, использующий в качестве источника тепла воду из системы центрального или автономного отопления (водяной калорифер).

Рабочее давление, скорость потока воздуха в воздуховодах и допустимый уровень шума

После расчета производительности по воздуху и мощности калорифера приступают к проектированию воздухораспределительной сети, которая состоит из воздуховодов, фасонных изделий (переходников, разветвителей, поворотов) и распределителей воздуха (решеток или диффузоров).

Расчет воздухораспределительной сети начинают с составления схемы воздуховодов. Далее по этой схеме рассчитывают три взаимосвязанных параметра — рабочее давление, создаваемое вентилятором, скорость потока воздуха и уровень шума.

Требуемое рабочее давление определяется техническими характеристиками вентилятора и рассчитывается исходя из диаметра и типа воздуховодов, числа поворотов и переходов с одного диаметра на другой, типа распределителей воздуха. Чем длиннее трасса и чем больше на ней поворотов и переходов, тем больше должно быть давление, создаваемое вентилятором. Проводим аэродинамический расчет, находим внешнее давление сети воздуховодов.

От диаметра воздуховодов зависит скорость потока воздуха. Обычно эту скорость ограничивают значением от 2,5 до 4 м/с. При больших скоростях возрастают потери давления и увеличивается уровень шума. В тоже время, использовать «тихие» воздуховоды большого диаметра не всегда возможно, поскольку их трудно разместить в межпотолочном пространстве. А межпотолочное пространство любят уменьшать и дизайнеры и вы, заказчик.

Поэтому при проектировании часто приходится искать компромисс между уровнем шума, требуемой производительностью вентилятора и диаметром воздуховодов. Для бытовых систем приточной вентиляции обычно используются гибкие воздуховоды сечением 160—250 мм и распределительные решетки размером 200×200 мм — 200×300 мм.

Помимо всего, осталось выполнить схему автоматики и всё – упрощенно система спроектирована!

Калькулятор для расчета количества огнезащиты для воздуховодов и металлоконструкций. | Статьи

Отечественный производитель ООО «ФОБАЗ» предлагает своим клиентам большой ассортимент продукции для огнезащиты систем вентиляции, воздуховодов, дымоудаления, металлоконструкций. Наша основная специализация – производство огнезащиты на основе базальтового супертонкого волокна.

Для определения количества необходимых материалов, а также для удобства пользования каталогом и подбора продукта с требуемыми параметрами программистами компании был разработан калькулятор для расчета огнезащиты.

Исходя из заданных параметров, калькулятор не только рассчитает необходимое количество материалов, но и подберет максимально эффективную огнезащиту.

Рассчитайте количество материалов для вашего объекта

Как пользоваться калькулятором расчета огнезащиты?

Интерфейс калькулятора доступен и интуитивно понятен. Первоначально необходимо выбрать, что именно будет рассчитываться:

  1. огнезащита воздуховодов;

  2. огнезащита металлоконструкций.

Выберите ту конструкцию, для которой требуется провести расчет огнезащитных материалов и кликните по ней. Далее следуйте инструкции в самом калькуляторе и введите все необходимые данные.

После ввода толщины поверхности металлоконструкций, выбора предела огнестойкости, а также площади обрабатываемой поверхности, калькулятор автоматически рассчитает:

  • необходимое количество огнезащитного базальтового материала (с учетом запаса на нахлест) в квадратных метрах, рулонах, а также покажет остаток;

  • необходимое количество огнестойкого клея, количество вёдер, остаток.

Для сохранности результатов калькулятор предлагает:

Чтобы рассчитать полную стоимость огнезащиты и получить индивидуальное предложение напрямую от производителя, оставьте заявку прямо сейчас!

Системы вентиляции: проектирование и расчет

Проектирование и расчет систем вентиляции является задачей проектировщиков ОВ. Такие работы выполняет компетентный специалист, непрофессионал не может и не должен выполнять такие работы.

  У многих заказчиков создается неверное впечатление о «простоте» проекта вентиляции. Попробуем предложить вам самим рассчитать свою систему.

Итак, Вы – Заказчик. И хотите знать, как происходит выбор оборудования для системы вентиляции. 

При выборе оборудования  необходимо рассчитать следующие параметры:

  • Производительность по воздуху;
  • Мощность калорифера;
  • Рабочее давление, создаваемое вентилятором;
  • Скорость потока воздуха и площадь сечения воздуховодов;
  • Допустимый уровень шума.

 Ниже мы приводим упрощенную методику подбора основных элементов системы приточной вентиляции, используемой в бытовых условиях.

 
Расход воздуха или производительность по воздуху

Проектирование системы начинается с  расчета требуемой производительности по воздуху, измеряемой в кубометрах в час. Для этого необходим поэтажный план помещений с экспликацией, в которой указаны наименования (назначения) каждого помещения и его площадь.

 Расчет вентиляции начинается с определения требуемой кратности воздухообмена, которая показывает сколько раз в течение одного часа происходит полная смена воздуха в помещении. Например, для помещения площадью 50 квадратных метров с высотой потолков 3 метра (объем 150 кубометров) двукратный воздухообмен соответствует 300 кубометров в час.

Требуемая кратность воздухообмена зависит от назначения помещения, количества находящихся в нем людей, мощности тепловыделяющего оборудования и  определяется СНиП (Строительными Нормами и  Правилами).

 

Так, для большинства жилых помещений достаточно однократного воздухообмена, для офисных помещений требуется 2-3 кратный воздухообмен.

Но, подчеркиваем, это не Правило!!!  Если это офисное помещение 100 кв.м. и в нем работает 50 человек (допустим операционный зал), то для обеспечения вентиляции необходима подача около 3000 м3/ч.

 

Для определения требуемой производительности необходимо рассчитать два значения воздухообмена: по кратности и по количеству людей, после чего выбрать большееиз этих двух значений.

  1. Расчет воздухообмена по кратности:

    L = n * S * H, где

L — требуемая производительность приточной вентиляции, м3/ч;

 

n — нормируемая кратность воздухообмена: для жилых помещений n = 1, для офисов n = 2,5;

 

S — площадь помещения, м2;

 

H — высота помещения, м;

 

  1. Расчет воздухообмена по количеству людей:

    L = N * Lнорм, где

L — требуемая производительность приточной вентиляции, м3/ч;

 

N — количество людей;

 

Lнорм — норма расхода воздуха на одного человека:

    • в состоянии покоя — 20 м3/ч;
    • работа в офисе — 40 м3/ч;
    • при физической нагрузке — 60 м3/ч.

Рассчитав необходимый воздухообмен, выбираем вентилятор или приточную установку соответствующей производительности. При этом необходимо учитывать, что из-за сопротивления воздухопроводной сети происходит падение производительности вентилятора. Зависимость производительности от полного давления можно найти по вентиляционным характеристикам, которые приводятся в технических характеристиках оборудования.

 

Для справки: участок воздуховода длиной 15 метров с одной вентиляционной решеткой создает падение давления около 100 Па.

Типичные значения производительности систем вентиляции:

  • Для квартир — от 100 до 600 м3/ч;
  • Для коттеджей — от 1000 до 3000 м3/ч;
  • Для офисов — от 1000 до 20000 м3/ч.

 

Мощность калорифера

 Калорифер используется в приточной системе для подогрева наружного воздуха в холодное время года. Мощность калорифера рассчитывается исходя из производительности, требуемой температурой воздуха на выходе системы и минимальной температурой наружного воздуха.

Два последних параметра определяются СНиП. Температура воздуха, поступающего в жилое помещение, должна быть не ниже +18°С. Минимальная температура наружного воздуха зависит от климатической зоной и для Киева равен -22°С (рассчитывается как средняя температура самой холодной пятидневки самого холодного месяца в 13 часов).

Таким образом, при включении калорифера на полную мощность он должен нагревать поток воздуха на 40°С. Поскольку сильные морозы в Киеве непродолжительны, в приточных системах можно устанавливать калориферы, имеющие мощность меньше расчетной.

При этом приточная система желательно должна иметь регулятор производительности для уменьшения скорости вентилятора в холодное время года, дабы не платить большие счета за электричество (если стоит электрический калорифер, возможно обустройство водяного калорифера).

При расчете мощности калорифера необходимо учитывать следующие ограничения:

  • Возможность использования однофазного (220 В) или трехфазного (380 В) напряжения питания. При мощности калорифера свыше 5 кВт необходимо 3-х фазное подключение, но в любом случае 3-х фазное питание предпочтительней, так как рабочий ток в этом случае меньше.
  • Максимально допустимый ток потребления. Ток, потребляемый калорифером, можно найти по формуле:

    I = P / U, где

I — максимальный потребляемый ток, А;

Р — мощность калорифера, Вт;

U — напряжение питание:

    • 220 В — для однофазного питания;
    • 660 В (3 × 220В) — для трехфазного питания.

В случае если допустимая нагрузка электрической сети меньше чем требуемая, можно установить калорифер меньшей мощности. Температуру, на которую калорифер сможет нагреть приточный воздух, можно рассчитать по формуле:

ΔT = 2,98 * P / L, где

 

ΔT — разность температур воздуха на входе и выходе системы приточной вентиляции,°С;

 

Р — мощность калорифера, Вт;

 

L — производительность по воздуху, м3/ч.

 

Типичные значения расчетной мощности калорифера — от 1 до 5 кВт для квартир, от 5 до 50 кВт для офисов. Если использовать электрический калорифер с расчетной мощностью не представляется возможным, следует установить калорифер, использующий в качестве источника тепла воду из системы центрального или автономного отопления (водяной калорифер).

 

Рабочее давление, скорость потока воздуха в воздуховодах и допустимый уровень шума

 

После расчета производительности по воздуху и мощности калорифера приступают к проектированию воздухораспределительной сети, которая состоит из воздуховодов, фасонных изделий (переходников, разветвителей, поворотов) и распределителей воздуха (решеток или диффузоров).

Расчет воздухораспределительной сети начинают с составления схемы воздуховодов. Далее по этой схеме рассчитывают три взаимосвязанных параметра — рабочее давление, создаваемое вентилятором, скорость потока воздуха и уровень шума.

 

Требуемое рабочее давление определяется техническими характеристиками вентилятора и рассчитывается исходя из диаметра и типа воздуховодов, числа поворотов и переходов с одного диаметра на другой, типа распределителей воздуха. Чем длиннее трасса и чем больше на ней поворотов и переходов, тем больше должно быть давление, создаваемое вентилятором. Проводим аэродинамический расчет, находим внешнее давление сети воздуховодов.

От диаметра воздуховодов зависит скорость потока воздуха. Обычно эту скорость ограничивают значением от 2,5 до 4 м/с. При больших скоростях возрастают потери давления и увеличивается уровень шума. В тоже время, использовать «тихие» воздуховоды большого диаметра не всегда возможно, поскольку их трудно разместить в межпотолочном пространстве. А межпотолочное пространство любят уменьшать и дизайнеры и вы, заказчик.

 Поэтому при проектировании часто приходится искать компромисс между уровнем шума, требуемой производительностью вентилятора и диаметром воздуховодов. Для бытовых систем приточной вентиляции обычно используются гибкие воздуховоды сечением 160—250 мм и распределительные решетки размером 200×200 мм — 200×300 мм.

Помимо всего, осталось выполнить схему автоматики и всё – упрощенно система спроектирована!

По вопросам  расчета мощности/покупки/монтажа звоните в Киеве: (044) 223-73-87

при перепечатке статьи прямая ссылка на www.ventportal.com обязательная

Расчет вентиляции онлайн

condei-chehov

Расчет вентиляции с помощью онлайн калькулятора

CONDEI-CHEHOV.RU

2019-11-10 17:57:09

2019-11-10 17:57:09

Рейтинг ↑ не забываем

При помощи данных калькуляторов, Вы сможете подобрать: вентилятор на вытяжной зонт пристенного типа; островного; потери даления в воздуховоде; кратность воздухообмена для помещений и.т. д. 

По какой формуле происходит расчёт  L (m³/ч) = S (m²) × V (m/c) × 3600

Для определения производительности вентилятора (м³/ч), необходимо ввести значения в  графы сторона А — В и скорость потока на срезе зонта

Формула для круглого вытяжного зонта L (m³/ч) = πR² × V (m/c) × 3600

Для определения производительности вентилятора (м³/ч), необходимо ввести значения в  графы диаметр и скорость потока на срезе зонта

Формула для расчёта Pтр = ((0,15*l/d) * (v*v*1,2)/2)*9,8

Формула для расчёта Pтр = ((0,15*l/(2*a*b/(a+b))) * (v*v*1,2)/2)*9,8

Формула расчёта вентиляции по кратности  L = n*V 

Расчёт кратности воздухообмена в помещений любых типов 

Выберите из выпадающегося меню Ваш вариант и введите объём помещения и получите нужный результат 

Диаметр воздуховода для круглого сечения

Данный калькулятор позволяет расчитать необходимый диаметр воздуховода при известном значении требуемого воздухообмена м3 

Формула по которой происходит расчёт

D = 2000*√(L/(3600*3,14*V))
D — диаметр (мм)
L — воздухообмен помещения (м³/ч)
V — скорость воздуха (м/с)

Диаметр воздуховода для квадратного  сечения 

Формула по которой происходит расчёт

Данный калькулятор позволяет расчитать необходимый диаметр воздуховода при известном значении требуемого воздухообмена м3 

А=В=1000*√(L/3600*V))

A — сторона а (мм) В — сторона b (мм) L — воздухообмен помещения (м³/ч)

V — скорость воздуха (м/с)

 

 

 

 

 

 

 

Круглые воздуховоды прямошовные из оцинкованной стали

Круглые воздуховоды из оцинкованной стали прямошовные

Воздуховоды из оцинкованной стали занимают первое место по популярности. Это объясняется их высокими утилитарными свойствами, а именно:

  • стойкостью и прочностью к внешним воздействиям, которые являются причиной длительной эксплуатации и коррозионной устойчивости;
  • небольшим весом, который способствует легкости монтажа;
  • демократичными ценами.

Именно такие воздуховоды из оцинкованной стали предлагает наш интернет — магазин Vent-Style.ru, с помощью которых можно произвести монтаж вентиляции в зданиях любого типа и любого назначения. Круглые воздуховоды могут быть спиральнонавивными или прямошовными.

По способу изготовления воздуховоды из оцинкованной стали подразделяются на:

  • прямошовные, которые изготавливаются непосредственно из листа и обладают повышенной стойкостью к внешним воздействиям;
  • спирально-навивные. Они изготавливаются из оцинкованной ленты методом скручивания, что является причиной повышенной прочности воздуховода и жесткости.


Круглые прямошовные воздуховоды изготавливаются диаметром от 80 мм до 1250 мм. . Обычно длина прямошовных круглых воздуховодов составляет 0,5, 1,0 -1,25 м. При длинных участках  воздуховода более 1,25 м рекомендуется использовать спиральнонавивной воздуховод.

Материалом для производства служит оцинкованный лист толщиной от 0,5 или 0,7 мм.

Толщина металла зависит от назначения вентиляции и диаметра воздуховода.
Лист загибается под нужный диаметр, и получившийся прямой шов соединяется фальцевым (лежачим) или сварным швом. 
Воздуховоды круглого сечения по умолчанию изготавливается стык в стык, то есть один конец воздуховода имеет наружный диаметр, другой — внутренний.
Этот способ изготовления удобен в монтаже и помогает сэкономить на соединительных муфтах.
По желанию заказчика возможно изготовление на ниппельном соединении.
По заказу мы также можем изготовить воздуховоды на фланцевом соединении.
При изготовлении круглых воздуховодов используется качественная сталь. 
При необходимости мы можем также поставить вам крепежные и расходные материалы для монтажа круглых воздуховодов.

Для повышения плотности места соединения круглых воздуховодов применяется резиновый уплотнитель или герметик в месте соединения воздуховодов и фасонных частей.

Для заказа воздуховодов круглого сечения необходимо указать следующие параметры:

  • длину (мм),
  • диаметр (мм),
  • толщину стали (мм)
  • и количество.

Круглые воздуховоды имеют ряд преимуществ перед воздуховодами прямоугольного сечения. Во-первых, они более экономичны, поскольку при одинаковой площади сечения, на круглые воздуховоды требуется меньше металла. Во-вторых, воздуховоды круглого сечения имеют меньшее аэродинамическое сопротивление. В результате чего, они создают меньше шума при большей скорости перемещения воздуха. Круглые воздуховоды обладают высокой герметичностью, весят меньше прямоугольных и гораздо удобнее и быстрее монтируются. В результате, выбирая круглые воздуховоды, вы экономите на монтаже, стоимости самих воздуховодов и крепежных материалах.

Для повышения плотности места соединения круглых воздуховодов применяется резиновый уплотнитель или герметик в месте соединения воздуховодов и фасонных изделий.

S= 3.14 x D x L

Вес стали оцинкованной листовой

Теоретический расчет количества квадратных метров в 1 тонне листовой оцинкованной стали

Толщина оцинкованной
стали, мм
Кол-во кв.метров в 1 т
оцинкованной стали
Вес 1 кв.м
оцинкованной стали, кг
0,40 299,40 3,34
0,45 267,92 3,73
0,50 242,42 4,13
0,55 221,36 4,52
0,60 203,67 4,91
0,65 188,60 5,31
0,70 175,59 5,70
0,75 164,2 6,09
0,80 154,32 6,48
0,90 137,65 7,27
1,00 124,22 8,05
1,10 114,09 8,83
1,20 103,95 9,62
1,50 83,51 11,97
2,00 62,89 15,90
2,50 50,45 19,82

 

Как изолировать воздуховоды кондиционера | Руководства по дому

Воздуховоды кондиционера являются частью каждой системы отопления, вентиляции и кондиционирования воздуха. Эти воздуховоды переносят холодный воздух в помещения, которые они подают, и чем больше холодного воздуха поступает в комнату, тем эффективнее становится система кондиционирования. Неизолированные воздуховоды охлаждают не только помещения, в которые они поступают, но также охлаждают помещение, через которое проходят воздуховоды. Изоляция ограничит токопроводящий перенос во время охлаждения и сделает вашу систему кондиционирования более эффективной.

Изоляционные квадратные воздуховоды

Наденьте защитные очки и перчатки.

Закройте все рабочие швы воздуховода металлической изолентой. Полностью оберните ленту вокруг шва примерно с 6-дюймовым нахлестом, чтобы полностью закрыть воздуховод. Не используйте обычную клейкую ленту на тканевой основе. Тканевая лента со временем испортится и выпадет из шва.

Измерьте периметр квадратного воздуховода рулеткой. Если рулетка достаточно гибкая, ее можно обернуть вокруг квадратного воздуховода, чтобы получить размер. В противном случае измерьте ширину каждой панели воздуховода и сложите четыре панели по периметру.

Измерьте периметр на куске войлочной изоляции. Отрежьте конец, используя прямой край и универсальный нож. Оставьте один дюйм шва внахлест для скотча.

Оберните войлок вокруг квадратного воздуховода и закрепите его металлической изолентой. Сначала скотчем заклейте перекрывающийся внутренний шов, затем заклейте конец, где он встречается с воздуховодом. Обрежьте следующий войлок того же размера и поместите его на воздуховод рядом с первым войлоком так, чтобы он перекрывал войлок на воздуховоде примерно на один дюйм.Заклейте перекрывающийся внутренний шов на второй детали на ватине и скотчем закрепите оба конца. Продолжайте обматывать изоляционную ватку вокруг воздуховода таким образом, пока воздуховод не будет полностью покрыт.

Изоляционные круглые воздуховоды

Наденьте защитные очки и перчатки.

Закройте все рабочие швы воздуховода металлической изолентой. Полностью оберните ленту вокруг шва примерно с 6-дюймовым нахлестом, чтобы полностью закрыть воздуховод.

Рассчитайте квадратные метры вашего круглого воздуховода.Измерьте диаметр воздуховода, затем разделите его на 2, чтобы получить радиус. Возведите радиус в квадрат, затем умножьте радиус на Пи или 3,14. Это даст вам квадратные дюймы воздуховода. Разделите полученную сумму на 144, чтобы получить площадь воздуховода в квадратных футах. Измерьте длину бегового фута воздуховода, который нужно обернуть, и умножьте это на квадратные метры воздуховода, чтобы рассчитать квадратные метры воздуховода. Например, 6-дюймовый воздуховод будет иметь радиус 3 дюйма. 3 дюйма в квадрате — это 9 дюймов. Умножьте 9 дюймов на 3.14, чтобы получить 28,26 квадратных дюймов. Разделите квадратные дюймы на 144, чтобы получить квадратные футы воздуховода, а затем умножьте это на рабочую длину воздуховода, чтобы получить общую площадь в квадратных футах. В этом случае, если у вас есть гипотетическая общая длина воздуховодов в 80 погонных футов, ваша площадь в квадратных футах составит около 16 квадратных футов.

Установите рулонную изоляцию воздуховода, начиная с конца круглой трубы. Оберните изоляцию вокруг трубы, перекрывая каждый шов на один дюйм. Это будет непрерывная процедура, похожая на выкройку леденца.Продолжайте обертывание до тех пор, пока не закончится изоляция или не закончится воздуховод.

Оберните металлической изолентой шов рулонной изоляции. Проследите шов до конца воздуховода. Это тоже будет сплошная обертка в виде леденцов. Когда будет достигнут конец воздуховода, разрежьте ленту канцелярским ножом. Продолжайте обматывать и запечатывать, пока все воздуховоды не будут изолированы.

Справочная информация

Наконечники

  • Чем больше коэффициент сопротивления изоляции, тем лучше изоляционные свойства.
  • Обертка для круглых воздуховодов равна площади в квадратных футах, которую она должна покрывать, указанной на упаковке. Всегда добавляйте 10% к сумме потерь или недосмотра.

Писатель Биография

Дейл Ялановский профессионально пишет с 1978 года. Его статьи публиковались в «Женском дне», «Новом домашнем журнале» и на многих самодельных сайтах. Он специализируется на проектах «своими руками», обслуживании домов и автомобилей и управлении недвижимостью. Ялановский также ведет колонку раз в два месяца, в которой дает советы по благоустройству дома.

Как определить количество вентиляционных отверстий на чердаке | Руководства по дому

Правильная циркуляция воздуха через чердак помогает снизить счета за охлаждение и продлить срок службы кровельных материалов. Вентиляционные отверстия в потолке позволяют наружному воздуху попадать на чердак, а вентиляционные отверстия на пике крыши или в фронтонах выводят воздух уже внутрь помещения. Этот непрерывный поток воздуха предотвращает гниение под черепицей и помогает предотвратить образование ледяных плотин зимой.

Подсчитайте квадратные метры вашего чердака.Измерьте длину и ширину чердачного помещения с помощью рулетки. Умножьте эти два измерения, чтобы получить количество квадратных метров. Например, чердак размером 40 на 60 футов имеет в общей сложности 2400 квадратных футов. Отслеживание этих расчетов на калькуляторе помогает.

Разделите квадратные метры чердака на 150. Федеральное жилищное управление рекомендует 1 квадратный фут вентиляции чердака на каждые 150 квадратных футов чердачного пространства. Строительные нормы и правила обычно повторяют указания администрации.Разделив 2400 квадратных футов чердачного пространства в этом примере на 150, мы получим 16 квадратных футов вентиляции чердака для этого дома.

Сократите это число вдвое, так как около 50 процентов вентиляции должно располагаться вдоль конька крыши или в фронтонах. Остальное в софитах. В этом примере это 8 квадратных футов вентиляции вдоль потолков и 8 квадратных футов вдоль крыши или фронтонов.

Определите чистую площадь свободной вентиляции вентиляционных отверстий на чердаке, которые вы планируете установить.Это число часто указывается на этикетке вентиляционного отверстия, но вы также можете его вычислить. NFVA вычитает размеры рамы вентиляционного отверстия и показывает только фактическую открытую часть для вентиляции.

Измерьте длину и ширину квадратного или прямоугольного вентиляционного отверстия — софита, конька или фронтона. Умножьте эти два измерения на количество квадратных дюймов в проеме. Затем разделите это вычисление на 144, чтобы преобразовать квадратные дюймы в квадратные футы. Например, потолочное вентиляционное отверстие размером 6 на 12 дюймов имеет 72 квадратных дюйма, что при делении на 144 дает 0.Проем 5 квадратных футов.

Измерьте радиус круглых вентиляционных отверстий или возьмите половину диаметра отверстия. Возведите это измерение в квадрат, умножив его на само себя. Умножьте произведение на 3,14 (пи). Вентиляционное отверстие диаметром 6 дюймов будет иметь радиус 3 дюйма. Возведение радиуса в квадрат равно 9, а умножение его на пи дает 28,26. Разделите это на 144, чтобы получить проем размером 0,196 квадратных футов.

Разделите площадь вентиляционного отверстия на квадратные футы отверстий в каждом вентиляционном отверстии. Чтобы получить количество вентиляционных отверстий в потолке в примере, разделите 8 квадратных футов необходимой вентиляции на 0.5 для количества требуемых прямоугольных вентиляционных отверстий — 16 в примере. Выбор круглых вентиляционных отверстий для этого дома означает, что 8 квадратных футов необходимой вентиляции следует разделить на 0,196 и получить примерно 40 круглых вентиляционных отверстий.

Выполните аналогичные расчеты для вентиляционных отверстий в крыше и коньке, используя размеры проемов в этих изделиях.

Ссылки

Автор биографии

Роберт Корпелла профессионально пишет с 2000 года. Он является сертифицированным мастером-натуралистом, регулярно следит за качеством воды в ручье и является редактором журнала freshare.net, сайт, посвященный изучению Озарка на открытом воздухе. Работы Корпеллы были опубликованы в различных изданиях. Он имеет степень бакалавра Университета Арканзаса.

Измерение расхода воздуха — Как измерить скорость воздуха в воздуховоде?

Расчет расхода через воздуховоды, трубы, вытяжки и дымовые трубы (для наших целей в совокупности называемые воздуховодами) никогда не был трудным. Площадь поперечного сечения воздуховода умножается на среднюю скорость воздуха, чтобы найти объем за время или скорость потока.Простой.

Сбор данных для точного и точного измерения скорости воздуха в воздуховодах был сложной задачей. А плохие процедуры сбора данных приводят к ошибкам при балансировке воздуховодов. В прошлом время измерения расхода воздуха с помощью анемометров было ограничено.

Новейшие микропроцессорные приборы обеспечивают точный сбор данных измерения расхода воздуха в воздуховоде ОВК, даже до того, как терпение специалистов по ОВКВ иссякнет.

Как измерить скорость воздуха в воздуховоде?

Более точный вопрос заключается в том, как получить измерение среднего расхода в различных поперечных сечениях воздуховода.

Физика относительно проста:

  • Воздух замедляется трением при контакте с краем воздуховода
  • Наибольшая скорость воздуха достигается в условиях ламинарного потока в середине поперечного сечения без трения
  • Профиль скорости воздуховода зависит от формы воздуховода (минимизация стенок периметра для достижения площади поперечного сечения) и силы, толкающей воздух
Промышленный датчик скорости / температуры воздуха Предпочтительными формами воздуховодов являются круглые, квадратные и прямоугольные в указанном порядке эффективности.

С учетом этих фактов, из скольких измерений расхода воздуха можно составить хорошую базу данных?

Линии сетки, которые определяют точки измерения расхода в воздуховоде, являются пересеченными. Логлинейный метод обеспечивает высокую точность (± 3%) суммирования расхода за счет измерения расхода воздуха, предпочтительно ближайшего к краям пространства воздуховода. Теперь вопрос в том, как измерить куб. метр в воздуховоде? Это будет зависеть от формы самого воздуховода.

Воздуховоды круглого сечения

Бревно линейно-траверсное для круглых каналов, трехдиаметрный подход.Логлинейная траверса для круглых каналов, подход по два диаметра. Три поперечины диаметром, равномерно разнесенные под углом 60 °, образуют шесть кусков пирога в круглом воздуховоде. Для каждого радиуса производятся три измерения расхода воздуха: по краю; одна треть к центру; две трети к центру. Обратите внимание, что воздух, наиболее подверженный трению, кажется чрезмерно представленным.

В общей сложности восемнадцать отсчетов точно описывают расход воздуха.

В случае, когда можно измерить только два хода, установите их под углом 90 градусов и возьмите пять образцов на каждом радиусе.Первые четыре равномерно распределяются по первой половине радиуса, начиная с края и двигаясь к центру. Пятая точка на две трети ближе к центру.

Эти двадцать точек данных не дадут такого точного среднего значения, как восемнадцать с тремя обходами, но результаты приемлемы.

Расход воздуха в воздуховодах прямоугольного или квадратного сечения

Пример линейной траверсы с 25 точками для прямоугольных воздуховодов. Точность требует от минимум двадцати пяти точек данных до максимум сорока девяти.Сторона воздуховода менее тридцати дюймов требует пяти пересечений. Сторона воздуховода больше тридцати шести требует семи пересечений. Шесть для длины посередине.

Для этих воздуховодов требуется как минимум шестнадцать измерений у края (около 7% общего расстояния), а остальные девять должны быть равномерно распределены по сетке. Обратите внимание, что шестьдесят четыре процента точек данных прямоугольного воздуховода будут расположены близко к стенкам воздуховода, в то время как только тридцать три процента точек данных круглого воздуховода отражают трение со стенками.Это измерение демонстрирует эффективность круглого воздуховода. Что, кстати, не означает, что раунд — всегда лучшее решение.

Соберите данные по этим показаниям и просто вычислите среднее значение. Или позвольте вашему микропроцессору сделать работу. Вы рассчитали скорость воздушного потока в воздуховоде.

Как измерить площадь поперечного сечения

Звучит достаточно просто: длина умножается на ширину или радиус в квадрате, умноженный на пи.

Три слова: запомните решетку.

Если решетка не используется, коэффициент применения равен 1,00. Таким образом, площадь поперечного сечения воздуховода не изменилась.

Если решетка имеет квадратную форму, умножьте общую площадь на 0,88. Решетка радиатора изменена в 0,78 раза; и решетка из стальных полос калибра 0,73.

Решетка служит для замедления скорости воздуха, а также для его рассеивания. Помните об этом факторе.

Приборы для измерения расхода воздуха в системах отопления, вентиляции и кондиционирования воздуха

Вы измерили расход воздуха, чистую площадь поперечного сечения и умножили их на расход.

Q = FAV, где:
F = коэффициент применения (см. Таблицу)
A = обозначенная площадь в квадратных футах

Тип решетки Фактор применения, F Обозначенный участок
Нет 1,00 Площадь воздуховода полностью
Квадрат с перфорацией 0,88 Свободная (дневная) зона
Пруток 0.78 Площадь ядра
Стальная полоса 0,73 Площадь ядра
Экономичный крыльчатый анемометр Современные приборы для измерения воздуха, такие как портативные анемометры, которые предлагают цифровые показания в кубических футах в минуту: автономный калькулятор, позволяющий сэкономить время и нервы для профессионалов в области HVAC.

Мы считаем важным, чтобы технические специалисты понимали теорию измерения расхода воздуха в воздуховодах, чтобы распознать, когда точка данных вряд ли будет правильной, ошибочные показания или расчет не кажутся правильными и должны быть проверены дважды.В сегодняшней среде «результат — сейчас» эти новые технологии ускоряют процесс. Ваш опыт будет дважды проверять процесс, но этот инструментарий быстро собирает и дважды проверяет необработанные данные.

Новые модели усовершенствованы в том, как рассчитывается расход воздуха и выводится в удобном для использования формате. Балансировка воздуховодов стала менее трудоемкой и более эффективной, больше науки, чем искусства.

Я использую практическое правило выбора размеров кондиционеров!

рейтинг провайдера, я делаю что-то нездоровое.Я знаю, что это, вероятно, повышает мое кровяное давление и сокращает годы моей жизни. Но я делаю это потому, что должен. Это часть работы QAD.

Как уполномоченный по обеспечению качества нашего рейтингового агентства HERS, я делаю что-то вредное для здоровья. Я знаю, что это, вероятно, повышает мое кровяное давление и сокращает мою жизнь на годы. Но я делаю это потому, что должен. Это часть работы QAD.

Что это, спросите вы? Я проверяю множество отчетов о нагрузке на охлаждение в ручном режиме J.

В этом году моя голова уже дважды взорвалась, один раз, когда я написал: Почему индустрия HVAC не делает все правильно? Затем пару месяцев назад, возможно, худший отчет Manual J, который я когда-либо проверял, отправил меня через край и Oversized AC, Screwed-up Manual J, ENERGY STAR HVAC Tirade! Выскочил .Да, это была «проблема».

Причина в том, что любой строитель, который хочет получить свой дом, отвечающий требованиям знака ENERGY STAR, должен определять размеры своих систем кондиционирования, используя результаты расчета охлаждающей нагрузки. Правило состоит в том, что кондиционер не должен превышать 115% охлаждающей нагрузки Manual J. Если это число окажется между размерами, может быть больше, но идею вы поняли.

ENERGY STAR Version 2 не требует особой проверки отчетов Manual J, но я делаю все возможное, когда смотрю на них.Первое, что я делаю, — это применяю свое эмпирическое правило. Поймите здесь, что стандартной практикой среди подрядчиков по ОВКВ при выборе размеров кондиционеров для новых домов является использование практического правила. Часто это около 1 тонны кондиционера на каждые 600 квадратных футов кондиционируемой площади пола, обычно сокращенно 600 квадратных футов на тонну.

Итак, когда я получаю Manual J, я нахожу вместимость и кондиционированную площадь пола и вычисляю это число. Я узнаю, сколько квадратных футов на тонну для дома.Если это должен быть дом ENERGY STAR, это не должно быть 600 квадратных футов на тонну. Оно должно быть больше примерно 1000 SF / т или выше. Это мое практическое правило.

Каждый раз, когда я смотрю отчет Manual J, который составляет около 600 квадратных футов / тонну, я знаю, что все, что мне нужно сделать, это глубже изучить детали и найти ошибки, которые привели к их завышению. Вот некоторые общие:

  • Слишком большая площадь окна
  • Неправильные типы окон (U-значение и слишком высокие коэффициенты солнечного тепла)
  • Неправильная ориентация
  • Слишком много людей
  • Воздуховоды слишком негерметичны или расположены не в том месте

Подрядчики HVAC, выполняющие собственные расчеты нагрузки, боятся получить слишком низкую охлаждающую нагрузку.Они боятся обратных звонков от клиентов, которые не могут поддерживать прохладу в своем доме. Они также привыкли увеличивать размеры систем охлаждения, чтобы решить проблемы слабых ограждающих конструкций зданий и плохих систем воздуховодов.

Тем не менее, если они хотят построить новые дома ENERGY STAR и их отчеты Manual J приходят ко мне, они должны знать, что у меня есть собственное эмпирическое правило — 1000 квадратных футов на тонну. Когда ко мне приходит этот дом площадью 2000 квадратных футов с 3-тонным кондиционером, у меня нет другого выбора, кроме как искать дальше, потому что они не прошли мое практическое испытание.

Как я уже сказал, проверка отчетов Manual J вызывает стресс, но я как-то справляюсь. Несколько лет назад я увидел интересный рекламный щит винного магазина в полусельском округе Джорджия (на самом деле, округе, в котором я жил раньше и где построил высококлассный дом). В нем говорилось: «Если ты не пьешь, не начинай. Если вы пьете, купите выпивку на Алкогольной аллее ». Я собирался попытаться применить эту метафору к проверке отчетов Manual J, но это того не стоит. Думаю, я просто пойду выпить.

онлайн-курсов PDH.PDH для профессиональных инженеров. ПДХ Инжиниринг.

«Мне нравится широта ваших курсов по HVAC; не только экология или экономия энергии

курсов. «

Russell Bailey, P.E.

Нью-Йорк

«Он укрепил мои текущие знания и научил меня еще нескольким новым вещам

, чтобы познакомить меня с новыми источниками

информации.»

Стивен Дедак, П.Е.

Нью-Джерси

«Материал был очень информативным и организованным. Я многому научился, и они были

.

очень быстро отвечает на вопросы.

Это было на высшем уровне. Будет использовать

снова. Спасибо. «

Blair Hayward, P.E.

Альберта, Канада

«Простой в использовании сайт.Хорошо организовано. Я действительно буду снова пользоваться вашими услугами.

проеду по вашей роте

имя другим на работе «

Roy Pfleiderer, P.E.

Нью-Йорк

«Справочный материал был превосходным, а курс был очень информативным, особенно потому, что я думал, что уже знаком.

с деталями Канзас

Несчастный случай в Сити Хаятт.»

Майкл Морган, P.E.

Техас

«Мне очень нравится ваша бизнес-модель. Мне нравится просматривать текст перед покупкой. Я нашел класс

.

информативно и полезно

на моей работе «

Вильям Сенкевич, П.Е.

Флорида

«У вас большой выбор курсов, а статьи очень информативны.Вы

— лучшее, что я нашел ».

Russell Smith, P.E.

Пенсильвания

«Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, давая время на изучение

материал «

Jesus Sierra, P.E.

Калифорния

«Спасибо, что разрешили мне просмотреть неправильные ответы.На самом деле

человек узнает больше

от отказов »

John Scondras, P.E.

Пенсильвания

«Курс составлен хорошо, и использование тематических исследований является эффективным.

способ обучения »

Джек Лундберг, P.E.

Висконсин

«Я очень впечатлен тем, как вы представляете курсы; i.э., позволяя

студент, оставивший отзыв на курс

материалов до оплаты и

получает викторину «

Arvin Swanger, P.E.

Вирджиния

«Спасибо за то, что вы предложили все эти замечательные курсы. Я определенно выучил и

получил огромное удовольствие «

Mehdi Rahimi, P.E.

Нью-Йорк

«Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска.

в режиме онлайн

курса.»

Уильям Валериоти, P.E.

Техас

«Этот материал во многом оправдал мои ожидания. По курсу было легко следовать. Фотографии в основном обеспечивали хорошее наглядное представление о

обсуждаемых тем ».

Майкл Райан, P.E.

Пенсильвания

«Именно то, что я искал. Потребовался 1 балл по этике, и я нашел его здесь.»

Джеральд Нотт, П.Е.

Нью-Джерси

«Это был мой первый онлайн-опыт получения необходимых мне кредитов PDH. Это было

информативно, выгодно и экономично.

Я очень рекомендую

всем инженерам »

Джеймс Шурелл, P.E.

Огайо

«Я понимаю, что вопросы относятся к« реальному миру »и имеют отношение к моей практике, и

не на основании какой-то неясной секции

законов, которые не применяются

до «нормальная» практика.»

Марк Каноник, П.Е.

Нью-Йорк

«Отличный опыт! Я многому научился, чтобы перенести его на свой медицинский прибор.

организация «

Иван Харлан, П.Е.

Теннесси

«Материалы курса имели хорошее содержание, не слишком математическое, с хорошим акцентом на практическое применение технологий».

Юджин Бойл, П.E.

Калифорния

«Это был очень приятный опыт. Тема была интересной и хорошо изложенной,

а онлайн-формат был очень

доступный и простой

использовать. Большое спасибо ».

Патрисия Адамс, P.E.

Канзас

«Отличный способ добиться соответствия требованиям PE Continuing Education в рамках ограничений по времени лицензиата.»

Joseph Frissora, P.E.

Нью-Джерси

«Должен признаться, я действительно многому научился. Помогает напечатанная викторина во время

Обзор текстового материала. Я

также оценил просмотр

предоставлено фактических случаев »

Жаклин Брукс, П.Е.

Флорида

«Документ» Общие ошибки ADA при проектировании объектов «очень полезен.Модель

тест действительно потребовал исследований в

документ но ответов были

в наличии. «

Гарольд Катлер, П.Е.

Массачусетс

«Я эффективно использовал свое время. Спасибо за широкий выбор вариантов

в транспортной инженерии, что мне нужно

для выполнения требований

Сертификат ВОМ.»

Джозеф Гилрой, P.E.

Иллинойс

«Очень удобный и доступный способ заработать CEU для моих требований PG в Делавэре».

Ричард Роудс, P.E.

Мэриленд

«Я многому научился с защитным заземлением. Пока все курсы, которые я прошел, были отличными.

Надеюсь увидеть больше 40%

курса со скидкой.»

Кристина Николас, П.Е.

Нью-Йорк

«Только что сдал экзамен по радиологическим стандартам и с нетерпением жду возможности сдать еще

курса. Процесс прост, и

намного эффективнее, чем

вынуждены путешествовать. «

Деннис Мейер, P.E.

Айдахо

«Услуги, предоставляемые CEDengineering, очень полезны для профессионалов

Инженеры получат блоки PDH

в любое время.Очень удобно ».

Пол Абелла, P.E.

Аризона

«Пока все отлично! Поскольку я постоянно работаю матерью двоих детей, у меня мало

время исследовать где на

получить мои кредиты от. «

Кристен Фаррелл, P.E.

Висконсин

«Это было очень познавательно и познавательно.Легко для понимания с иллюстрациями

и графики; определенно делает это

проще поглотить все

теории »

Виктор Окампо, P.Eng.

Альберта, Канада

«Хороший обзор принципов работы с полупроводниками. Мне понравилось пройти курс по

.

мой собственный темп во время моего утро

метро

на работу.»

Клиффорд Гринблатт, П.Е.

Мэриленд

«Просто найти интересные курсы, скачать документы и взять

викторина. Я бы очень рекомендовал

вам на любой PE, требующий

CE единиц. «

Марк Хардкасл, П.Е.

Миссури

«Очень хороший выбор тем из многих областей техники.»

Randall Dreiling, P.E.

Миссури

«Я заново узнал то, что забыл. Я также рад оказать финансовую помощь

по ваш промо-адрес который

сниженная цена

на 40% «

Конрадо Казем, П.E.

Теннесси

«Отличный курс по разумной цене. Воспользуюсь вашими услугами в будущем».

Charles Fleischer, P.E.

Нью-Йорк

«Это был хороший тест и фактически подтвердил, что я прочитал профессиональную этику

кодов и Нью-Мексико

правил. «

Брун Гильберт, П.E.

Калифорния

«Мне очень понравились занятия. Они стоили потраченного времени и усилий».

Дэвид Рейнольдс, P.E.

Канзас

«Очень доволен качеством тестовых документов. Буду использовать CEDengineerng

при необходимости дополнительных

Сертификация

. «

Томас Каппеллин, П.E.

Иллинойс

«У меня истек срок действия курса, но вы все же выполнили свое обязательство и дали

мне то, за что я заплатил — много

оценено! «

Джефф Ханслик, P.E.

Оклахома

«CEDengineering предлагает удобные, экономичные и актуальные курсы.

для инженера »

Майк Зайдл, П.E.

Небраска

«Курс был по разумной цене, а материалы были краткими и

в хорошем состоянии »

Glen Schwartz, P.E.

Нью-Джерси

«Вопросы подходили для уроков, а материал урока —

.

хороший справочный материал

для деревянного дизайна »

Брайан Адамс, П.E.

Миннесота

«Отлично, я смог получить полезные рекомендации по простому телефонному звонку.»

Роберт Велнер, P.E.

Нью-Йорк

«У меня был большой опыт работы в прибрежном строительстве — проектирование

корпус курс и

очень рекомендую

Денис Солано, P.E.

Флорида

«Очень понятный, хорошо организованный веб-сайт. Материалы курса этики Нью-Джерси были очень хорошими

хорошо подготовлены. «

Юджин Брэкбилл, P.E.

Коннектикут

«Очень хороший опыт. Мне нравится возможность загружать учебные материалы на номер

.

обзор везде и

всякий раз, когда.»

Тим Чиддикс, P.E.

Колорадо

«Отлично! Поддерживаю широкий выбор тем на выбор».

Уильям Бараттино, P.E.

Вирджиния

«Процесс прямой, без всякой ерунды. Хороший опыт».

Тайрон Бааш, П.E.

Иллинойс

«Вопросы на экзамене были зондирующими и продемонстрировали понимание

материала. Полная

и всесторонний ».

Майкл Тобин, P.E.

Аризона

«Это мой второй курс, и мне понравилось то, что мне предложили этот курс

поможет по моей линии

работ.»

Рики Хефлин, П.Е.

Оклахома

«Очень быстро и легко ориентироваться. Я определенно буду использовать этот сайт снова».

Анджела Уотсон, P.E.

Монтана

«Легко выполнить. Никакой путаницы при прохождении теста или записи сертификата».

Кеннет Пейдж, П.E.

Мэриленд

«Это был отличный источник информации о солнечном нагреве воды. Информативный

и отличный освежитель ».

Luan Mane, P.E.

Conneticut

«Мне нравится, как зарегистрироваться и читать материалы в автономном режиме, а затем

вернись, чтобы пройти викторину «

Алекс Млсна, П.E.

Индиана

«Я оценил объем информации, предоставленной для класса. Я знаю

это вся информация, которую я могу

использование в реальных жизненных ситуациях »

Натали Дерингер, P.E.

Южная Дакота

«Обзорные материалы и образец теста были достаточно подробными, чтобы позволить мне

успешно завершено

курс.»

Ира Бродская, П.Е.

Нью-Джерси

«Веб-сайтом легко пользоваться, вы можете скачать материалы для изучения, а потом вернуться

и пройдите викторину. Очень

удобно а на моем

собственный график. «

Майкл Гладд, P.E.

Грузия

«Спасибо за хорошие курсы на протяжении многих лет.»

Dennis Fundzak, P.E.

Огайо

«Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать PDH

Сертификат

. Спасибо за изготовление

процесс простой. »

Fred Schaejbe, P.E.

Висконсин

«Опыт положительный.Быстро нашел курс, который соответствовал моим потребностям, и прошел

часовой PDH в

один час «

Стив Торкильдсон, P.E.

Южная Каролина

«Мне понравилось загружать документы для проверки содержания

и пригодность, до

имея для оплаты

материал

Ричард Вимеленберг, P.E.

Мэриленд

«Это хорошее напоминание об ЭЭ для инженеров, не занимающихся электричеством».

Дуглас Стаффорд, П.Е.

Техас

«Всегда есть возможности для улучшения, но я ничего не могу придумать в вашем

процесс, требующий

улучшение.»

Thomas Stalcup, P.E.

Арканзас

«Мне очень нравится удобство участия в викторине онлайн и получение сразу

свидетельство. «

Марлен Делани, П.Е.

Иллинойс

«Учебные модули CEDengineering — это очень удобный способ доступа к информации по номеру

.

многие различные технические зоны за пределами

по своей специализации без

надо путешествовать.»

Гектор Герреро, П.Е.

Грузия

Как определить необходимый размер системы отопления, вентиляции и кондиционирования воздуха

При установке новой системы отопления, вентиляции и кондиционирования воздуха в доме важно убедиться, что она имеет правильный размер. Если он будет слишком маленьким, он не сможет регулировать температуру во всем вашем доме. С другой стороны, установка увеличенного размера не будет работать так же эффективно, может быстрее изнашиваться и, возможно, иметь проблемы с осушением.Процесс определения кондиционера и печи подходящего размера для вашего дома — очень сложный процесс, но вы можете сделать общую оценку самостоятельно.

Приблизительный расчет

Чтобы определить приблизительный размер вашей системы HVAC, используйте следующие расчеты:

  • Сначала определите площадь в квадратных футах: Определите площадь пола в вашем доме. Возможно, вам удастся найти где-нибудь записанное число, или вам, возможно, придется измерить его самостоятельно.Чтобы самостоятельно измерить комнату, используйте рулетку, чтобы определить длину и ширину. Умножьте их вместе, чтобы получить квадратные метры для этой комнаты. Повторите процесс для каждой комнаты и коридора, затем сложите их все вместе.
  • Во-вторых, определите базовую единицу BTU: Единицей измерения энергии, используемой для нагрева и охлаждения, является британская тепловая единица или BTU. Приблизительное количество энергии, используемой для охлаждения квадратного фута вашего дома, составляет примерно 25 БТЕ, поэтому умножьте количество квадратных футов в вашем доме на 25, чтобы получить базовое измерение в БТЕ.
  • В-третьих, учитывайте высокие потолки: Если потолок вашего дома превышает 8 футов, умножьте базовую величину БТЕ на 1,25 или 25%.

Для дома площадью 1500 квадратных футов с нормальными потолками результат составит около 37 500 БТЕ. После того, как вы рассчитали базовые БТЕ для размера вашего дома, вы сможете определить размер необходимых вам блоков переменного тока и отопления. Для кондиционера разделите число на 12000, чтобы определить требуемую вместимость. Для печи разделите БТЕ на КПД устройства в десятичном формате.

В случае дома площадью 1500 кв. Футов, кондиционер должен быть 37 500 ÷ 12 000, что составляет примерно 3 тонны. Для печи для блока с КПД 80% потребуется выходная мощность около 37 500 БТЕ, что составляет около 47 000 БТЕ.

Руководство J: профессиональный метод

Конечно, это очень простые расчеты, и они не принимают во внимание количество людей в здании, климат района, количество и расположение окон, выходят ли эти окна на север или юг, количество / тип изоляции стен, размещения освещения и множества других факторов.

Для более точных измерений профессионалы будут использовать расчеты Manual J, в которых учтены все эти факторы. Это позволяет специалисту точно знать, какой размер HVAC установить в вашем доме для оптимального комфорта и эффективности. Правильно обученный профессионал в области HVAC сможет произвести надлежащие измерения и спроектировать систему, отвечающую потребностям вашего дома в области контроля микроклимата. В Climate Tech Air Conditioning and Heating мы предоставляем необходимый опыт, чтобы обеспечить надлежащую регулировку температуры в вашем доме круглый год.Чтобы получить оценку вашего дома, позвоните нам сегодня.

Lomanco Vents — Сколько вентиляционных отверстий?

Balance — ключ к созданию эффективной системы вентиляции чердака. При сбалансированном подходе правильно спроектированная система вентиляции обеспечит непрерывный приток воздуха через чердак, отводя тепло и влагу. Подсчитать правильное количество выпускных и впускных отверстий очень просто, и вы получите эффективную сбалансированную систему.

Первым шагом к определению необходимого количества вентиляционных отверстий является расчет требуемой чистой свободной площади (NFA).В большинстве кодексов используется правило 1/300 для рекомендаций по минимальной вентиляции чердака в жилом помещении. Это означает, что на каждые 300 квадратных футов закрытого чердака требуется 1 квадратный фут вентиляции — половина в верхней части (вытяжные отверстия) и половина в нижней части (воздухозаборники). Эта формула традиционно используется для статических вентиляционных отверстий на крыше, которые рассчитаны на чистую свободную площадь в квадратных дюймах.

Давайте рассмотрим пример … Для дома с площадью чердака 2000 квадратных футов вы сначала разделите 2000 на 300 (2000/300 = 6.66). Вам нужно 6,66 квадратных футов вентиляции чердака. Поскольку вам нужна сбалансированная система, вы разделите на 2 так, чтобы половина вентиляции была приточной, а половина — вытяжной. Таким образом, 6,66, разделенные на 2, = 3,33 квадратных фута вентиляции чердака для притока и 3,33 квадратных фута вентиляции чердака для вытяжки. Поскольку вентиляционные отверстия измеряются в квадратных дюймах, вам необходимо преобразовать необходимые квадратные футы в квадратные дюймы. Это достигается путем умножения рекомендованных квадратных футов на 144. Таким образом, 3,33 X 144 = 480 квадратных дюймов вентиляции чердака требуется для притока и 480 квадратных дюймов для вытяжки.

После того, как известна рекомендуемая величина чистой свободной площади и выбран тип вентиляционных отверстий, вы можете определить, сколько вентиляционных отверстий вам понадобится. Следующим шагом является разделение требуемого NFA на рейтинг NFA вентиляционного отверстия. В нашем примере 2000 квадратных футов мы определили, что нам нужно 480 квадратных дюймов для впуска и 480 квадратных дюймов для выпуска. В этом примере давайте использовать Lomanco 750 Slant Back Vent (50 квадратных дюймов NFA) для выпускных отверстий и Deck-Air DA-4 (36 квадратных дюймов NFA) для воздухозаборных отверстий.Чтобы рассчитать необходимое количество 750 вентиляционных отверстий, разделите 480 на 50, чтобы получить 9,6 вентиляционных отверстий. В итоге вам понадобится десять (10) 750 вентиляционных отверстий. Поскольку вы всегда хотите, чтобы ваше потребление NFA соответствовало количеству NFA выхлопных газов или превышало их, мы возьмем полученное количество выхлопных газов и разделим их на рейтинг NFA Deck-Air. Чтобы рассчитать необходимое количество вентиляционных отверстий на палубе, разделите 500 (10 X 50) на 36, чтобы получить 13,9 вентиляционных отверстий. Таким образом, вам потребуется 14 вентиляционных отверстий на палубе.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *