- Расчет площади воздуховодов и фасонных изделий, калькулятор воздуховодов и фасонных частей
- Расчет площади воздуховодов и фасонных изделий, калькулятор воздуховодов и фасонных частей —
- Расчет площади воздуховодов и фасонных изделий, калькулятор воздуховодов и фасонных частей
- Онлайн расчёт воздуховодов
- 1.
- 2. Расчёт ПРЯМЫХ УЧАСТКОВ круглых воздуховодов
- 3. Расчёт ОТВОДА для прямоугольных воздуховодов
- 4. Расчёт ОТВОДА для круглого воздуховода
- 5. Расчёт ПЕРЕХОДА СЕЧЕНИЯ для прямоугольного воздуховода
- 6. Расчёт ПЕРЕХОДА СЕЧЕНИЯ для круглого воздуховода
- 7. Расчёт ПЕРЕХОДА с круглого на прямоугольное сечение
- 8.
- 9. Расчёт ТРОЙНИКА для круглого воздуховода
- Онлайн расчёт воздуховодов
- 1.
- 2. Расчёт ПРЯМЫХ УЧАСТКОВ круглых воздуховодов
- 3. Расчёт ОТВОДА для прямоугольных воздуховодов
- 4. Расчёт ОТВОДА для круглого воздуховода
- 5. Расчёт ПЕРЕХОДА СЕЧЕНИЯ для прямоугольного воздуховода
- 6. Расчёт ПЕРЕХОДА СЕЧЕНИЯ для круглого воздуховода
- 7. Расчёт ПЕРЕХОДА с круглого на прямоугольное сечение
- 8.
- 9. Расчёт ТРОЙНИКА для круглого воздуховода
- Расчет площади воздуховодов — онлайн калькулятор
- Аэродинамический расчет воздуховодов: онлайн-калькулятор
- Калькулятор эквивалентного диаметра | ВЕНТА
- Расчёт воздуховодов систем вентиляции — Мир Климата и Холода
- Расчёт воздуховодов онлайн
- Расчёт сечения воздуховодов
- Алгоритм расчета сечения воздуховодов
- Таблица сечений воздуховодов
- Пример расчёта воздуховода
- Эквивалентный диаметр воздуховода
- Что такое эквивалентный диаметр воздуховода
- Расчет эквивалентного диаметра воздуховодов
- Пример расчета эквивалентного диаметра воздуховодов и некоторые выводы
- HVAC | ServiceTitan
- Онлайн-калькулятор размеров воздуховода Ductcalc | Онлайн-калькулятор воздуховодов | Расчет размеров воздуховода в режиме онлайн | Подбор размеров воздуховодов онлайн | Метод трения | Метод скорости воздуха | Размеры воздуховода | Калькулятор размеров прямоугольного воздуховода | Калькулятор размеров круглых воздуховодов
- Все, что вам нужно знать
- Калькуляторы направляющих воздуховодов HVAC | Настраиваемые слайд-схемы калькулятора воздуховодов
- Потери на трение в воздуховоде в рабочем состоянии
- Размеры воздуховодов, расчет и проектирование для обеспечения эффективности
- Доступен новый калькулятор размеров воздуховодов
- Как посчитать площадь воздуховода прямоугольного сечения, формула
- Расчет площади воздуховода для систем вентиляции
- Расчет площади воздуховодов различной формы и фасонных изделий
- Сравнение круглых и прямоугольных воздуховодов
- кругов: Площадь
- Расход и его отношение к скорости
- Формула расхода
- Расчет CFM | РаботаACI
- — определение объемного и массового расхода
- Как рассчитать объемный расход
- Сохранение импульса с использованием контрольных объемов
Расчет площади воздуховодов и фасонных изделий, калькулятор воздуховодов и фасонных частей
Прямой участок воздуховода
Площадь воздуховода прямоугольного сечения
Исходные данные:
Итоги расчета:
Стоимость, руб:Добавить в спецификацию
Отвод
Площадь отвода круглого сечения
Исходные данные:
Угол, αοм
Итоги расчета:
Стоимость, руб:Добавить в спецификацию
Площадь отвода прямоугольного сечения
Исходные данные:
Угол, αУгол, αο
-1530456090м
Итоги расчета:
Стоимость, руб:Добавить в спецификацию
Переход
Площадь перехода круглое на круглое сечение
Итоги расчета:
Стоимость, руб:Добавить в спецификацию
Площадь перехода прямоугольное на прямоугольное сечение
Итоги расчета:
Стоимость, руб:Добавить в спецификацию
Площадь перехода круглого на прямоугольное сечение
Итоги расчета:
Стоимость, руб:Добавить в спецификацию
Врезка
Площадь врезки прямой прямоугольной
Итоги расчета:
Стоимость, руб:Добавить в спецификацию
Площадь круглой врезки с воротником
Исходные данные:
Добавить в спецификацию
Площадь прямоугольной врезки с воротником
Исходные данные:
Итоги расчета:
Добавить в спецификацию
Тройник
Площадь тройника круглого сечения
Исходные данные:
Итоги расчета:
Добавить в спецификацию
Площадь тройника круглого сечения
Исходные данные:
Итоги расчета:
Стоимость, руб:Площадь тройника прямоугольного сечения
Исходные данные:
Итоги расчета:
Стоимость, руб:Добавить в спецификацию
Исходные данные:
Итоги расчета:
Стоимость, руб:Добавить в спецификацию
Утка прямоугольного сечения
Исходные данные:
Итоги расчета:
Стоимость, руб:Добавить в спецификацию
Исходные данные:
Итоги расчета:
Стоимость, руб:Добавить в спецификацию
Вытяжные зонты над оборудованием
Площадь зонта островного типа
Исходные данные:
Итоги расчета:
Стоимость, руб:Добавить в спецификацию
Площадь зонта пристенного типа
Исходные данные:
Итоги расчета:
Стоимость, руб:Добавить в спецификацию
Сохранить текущие расчеты
Сохранить
Сохраненные спецификации
У вас еще нет сохраненных спецификаций
Расчет площади воздуховодов и фасонных изделий, калькулятор воздуховодов и фасонных частей —
Расчет площади воздуховодов и фасонных изделий, калькулятор воздуховодов и фасонных частей
Прямой участок воздуховода
Площадь воздуховода прямоугольного сечения
Исходные данные:
Итоги расчета:
Стоимость, руб:
Добавить в спецификацию
Отвод
Площадь отвода круглого сечения
Исходные данные:
Угол, αο
Угол, αο
-1530456090
м
Итоги расчета:
Стоимость, руб:
Добавить в спецификацию
Площадь отвода прямоугольного сечения
Исходные данные:
Угол, αο
Угол, αο
-1530456090
м
Итоги расчета:
Стоимость, руб:
Добавить в спецификацию
Переход
Площадь перехода круглое на круглое сечение
Исходные данные:
Итоги расчета:
Стоимость, руб:
Добавить в спецификацию
Площадь перехода прямоугольное на прямоугольное сечение
Исходные данные:
Итоги расчета:
Стоимость, руб:
Добавить в спецификацию
Площадь перехода круглого на прямоугольное сечение
Исходные данные:
Итоги расчета:
Стоимость, руб:
Добавить в спецификацию
Врезка
Площадь врезки прямой прямоугольной
Исходные данные:
Итоги расчета:
Стоимость, руб:
Добавить в спецификацию
Площадь круглой врезки с воротником
Исходные данные:
Итоги расчета:
Стоимость, руб:
Добавить в спецификацию
Площадь прямоугольной врезки с воротником
Исходные данные:
Итоги расчета:
Стоимость, руб:
Добавить в спецификацию
Тройник
Площадь тройника круглого сечения
Исходные данные:
Итоги расчета:
Стоимость, руб:
Добавить в спецификацию
Площадь тройника круглого сечения
Исходные данные:
Итоги расчета:
Стоимость, руб:
Добавить в спецификацию
Площадь тройника прямоугольного сечения
Исходные данные:
Итоги расчета:
Стоимость, руб:
Добавить в спецификацию
Площадь тройника прямоугольного сечения
Исходные данные:
Итоги расчета:
Стоимость, руб:
Добавить в спецификацию
Утка прямоугольного сечения
Площадь утки со смещением в 1-ой плоскости
Исходные данные:
Итоги расчета:
Стоимость, руб:
Добавить в спецификацию
Площадь утки со смещением в 2-х плоскостях
Исходные данные:
Итоги расчета:
Стоимость, руб:
Добавить в спецификацию
Вытяжные зонты над оборудованием
Площадь зонта островного типа
Исходные данные:
Итоги расчета:
Стоимость, руб:
Добавить в спецификацию
Площадь зонта пристенного типа
Исходные данные:
Итоги расчета:
Стоимость, руб:
Добавить в спецификацию
Сохранить текущие расчеты
Сохранить
Сохраненные спецификации
У вас еще нет сохраненных спецификаций
Онлайн расчёт воздуховодов
1.
Расчёт ПРЯМЫХ УЧАСТКОВ прямоугольных воздуховодов
Высота, А (мм)
Ширина, В (мм)
Длина участка, L (м)
Толщина металла, t (мм)0,40,50,550,60,70,80,91,01,2
Тип металлаОц. стальНерж.сталь
Тип соединительных элементов на торцеШинаРейкаНет
Вес элемента, кг
Площадь поверхности, м.кв
Количество элементов
Стоимость элемента, руб
Экспорт в спецификацию
Запись
2. Расчёт ПРЯМЫХ УЧАСТКОВ круглых воздуховодов
Диаметр воздуховода, D (мм)
Длина участка, L (м)
Толщина металла, t (мм)0,40,50,550,60,70,80,91,01,2
Тип металлаОц. стальНерж.сталь
Тип соединительных элементов на торцеФланецНиппельНет
Вес элемента, кг
Площадь поверхности, м.кв
Количество элементов
Стоимость элемента, руб
Экспорт в спецификацию
Запись
3. Расчёт ОТВОДА для прямоугольных воздуховодов
Высота, А (мм)
Ширина, B (мм)
Угол поворота, α (°)904530
Толщина металла, t (мм)0,40,50,550,60,70,80,91,01,2
Тип металлаОц. стальНерж.сталь
Тип соединительных элементов на торцеШинаРейкаНет
Вес элемента, кг
Площадь поверхности, м.кв
Количество элементов
Стоимость элемента, руб
Экспорт в спецификацию
Запись
4. Расчёт ОТВОДА для круглого воздуховода
Диаметр воздуховода, D (мм)
Угол поворота, α (°)904530
Толщина металла, t (мм)0,40,50,550,60,70,80,91,01,2
Тип металлаОц. стальНерж.сталь
Тип соединительных элементов на торцеФланецНиппельНет
Вес элемента, кг
Площадь поверхности, м.кв
Количество элементов
Стоимость элемента, руб
Экспорт в спецификацию
Запись
5. Расчёт ПЕРЕХОДА СЕЧЕНИЯ для прямоугольного воздуховода
Высота начальная, А (мм)
Ширина начальная, B (мм)
Высота конечная, a (мм)
Ширина конечная, b (мм)
Толщина металла, t (мм)0,40,50,550,60,70,80,91,01,2
Тип металлаОц. стальНерж.сталь
Тип соединительных элементов на торцеШинаРейкаНет
Вес элемента, кг
Площадь поверхности, м. кв
Количество элементов
Стоимость элемента, руб
Экспорт в спецификацию
Запись
6. Расчёт ПЕРЕХОДА СЕЧЕНИЯ для круглого воздуховода
Диаметр начальный, D (мм)
Диаметр конечный, d (мм)
Толщина металла, t (мм)0,40,50,550,60,70,80,91,01,2
Тип металлаОц. стальНерж.сталь
Тип соединительных элементов на торцеФланецНиппельНет
Вес элемента, кг
Площадь поверхности, м.кв
Количество элементов
Стоимость элемента, руб
Экспорт в спецификацию
Запись
7. Расчёт ПЕРЕХОДА с круглого на прямоугольное сечение
Высота начальная, А (мм)
Ширина начальная, B (мм)
Диаметр конечный, D (мм)
Толщина металла, t (мм)0,40,50,550,60,70,80,91,01,2
Тип металлаОц. стальНерж.сталь
Тип соединительных элементов на торцеШина-ФланецРейка-НиппельНет
Вес элемента, кг
Площадь поверхности, м.кв
Количество элементов
Стоимость элемента, руб
Экспорт в спецификацию
Запись
8.
Расчёт ТРОЙНИКА для прямоугольного воздуховода
Высота главного воздуховода, А (мм)
Ширина главного воздуховода, B (мм)
Высота врезки, a (мм)
Ширина врезки, b (мм)
Угол врезки, α (°)9045
Толщина металла, t (мм)0,40,50,550,60,70,80,91,01,2
Тип металлаОц. стальНерж.сталь
Тип соединительных элементов на торцеШинаРейкаНет
Вес элемента, кг
Площадь поверхности, м.кв
Количество элементов
Стоимость элемента, руб
Экспорт в спецификацию
Запись
9. Расчёт ТРОЙНИКА для круглого воздуховода
Диаметр главного воздуховода, D (мм)
Диаметр врезки, d (мм)
Толщина металла, t (мм)0,40,50,550,60,70,80,91,01,2
Тип металлаОц. стальНерж.сталь
Тип соединительных элементов на торцеФланецНиппельНет
Вес элемента, кг
Площадь поверхности, м.кв
Количество элементов
Стоимость элемента, руб
Экспорт в спецификацию
Запись
Онлайн расчёт воздуховодов
1.
Расчёт ПРЯМЫХ УЧАСТКОВ прямоугольных воздуховодов
Высота, А (мм)
Ширина, В (мм)
Длина участка, L (м)
Толщина металла, t (мм)0,40,50,550,60,70,80,91,0
Тип металлаОц. стальНерж.сталь
Тип соединительных элементов на торцеШинаРейкаНет
Вес элемента, кг
Площадь поверхности, м.кв
Количество элементов
Стоимость элемента, грн.
Экспорт в спецификацию
Запись
2. Расчёт ПРЯМЫХ УЧАСТКОВ круглых воздуховодов
Диаметр воздуховода, D (мм)
Длина участка, L (м)
Толщина металла, t (мм)0,40,50,550,6
0,70,80,91,0
Тип металлаОц. стальНерж.сталь
Тип соединительных элементов на торцеФланецНиппельНет
Вес элемента, кг
Площадь поверхности, м.кв
Количество элементов
Стоимость элемента, грн.
Экспорт в спецификацию
Запись
3. Расчёт ОТВОДА для прямоугольных воздуховодов
Высота, А (мм)
Ширина, B (мм)
Угол поворота, α (°)904530
Толщина металла, t (мм)0,40,50,550,60,70,80,91,0
Тип металлаОц. стальНерж.сталь
Тип соединительных элементов на торцеШинаРейкаНет
Вес элемента, кг
Площадь поверхности, м.кв
Количество элементов
Стоимость элемента, грн.
Экспорт в спецификацию
Запись
4. Расчёт ОТВОДА для круглого воздуховода
Диаметр воздуховода, D (мм)
Угол поворота, α (°)904530
Толщина металла, t (мм)0,40,50,550,60,70,80,91,0
Тип металлаОц. стальНерж.сталь
Тип соединительных элементов на торцеФланецНиппельНет
Вес элемента, кг
Площадь поверхности, м.кв
Количество элементов
Стоимость элемента, грн.
Экспорт в спецификацию
Запись
5. Расчёт ПЕРЕХОДА СЕЧЕНИЯ для прямоугольного воздуховода
Высота начальная, А (мм)
Ширина начальная, B (мм)
Высота конечная, a (мм)
Ширина конечная, b (мм)
Толщина металла, t (мм)0,40,50,550,60,70,80,91,0
Тип металлаОц. стальНерж.сталь
Тип соединительных элементов на торцеШинаРейкаНет
Вес элемента, кг
Площадь поверхности, м. кв
Количество элементов
Стоимость элемента, грн.
Экспорт в спецификацию
Запись
6. Расчёт ПЕРЕХОДА СЕЧЕНИЯ для круглого воздуховода
Диаметр начальный, D (мм)
Диаметр конечный, d (мм)
Толщина металла, t (мм)0,40,50,550,60,70,80,91,0
Тип металлаОц. стальНерж.сталь
Тип соединительных элементов на торцеФланецНиппельНет
Вес элемента, кг
Площадь поверхности, м.кв
Количество элементов
Стоимость элемента, грн.
Экспорт в спецификацию
Запись
7. Расчёт ПЕРЕХОДА с круглого на прямоугольное сечение
Высота начальная, А (мм)
Ширина начальная, B (мм)
Диаметр конечный, D (мм)
Толщина металла, t (мм)0,40,50,550,60,70,80,91,0
Тип металлаОц. стальНерж.сталь
Тип соединительных элементов на торцеШина-ФланецРейка-НиппельНет
Вес элемента, кг
Площадь поверхности, м.кв
Количество элементов
Стоимость элемента, грн.
Экспорт в спецификацию
Запись
8.
Расчёт ТРОЙНИКА для прямоугольного воздуховода
Высота главного воздуховода, А (мм)
Ширина главного воздуховода, B (мм)
Высота врезки, a (мм)
Ширина врезки, b (мм)
Угол врезки, α (°)9045
Толщина металла, t (мм)0,40,50,550,60,70,80,91,0
Тип металлаОц. стальНерж.сталь
Тип соединительных элементов на торцеШинаРейкаНет
Вес элемента, кг
Площадь поверхности, м.кв
Количество элементов
Стоимость элемента, грн.
Экспорт в спецификацию
Запись
9. Расчёт ТРОЙНИКА для круглого воздуховода
Диаметр главного воздуховода, D (мм)
Диаметр врезки, d (мм)
Толщина металла, t (мм)0,40,50,550,60,70,80,91,0
Тип металлаОц. стальНерж.сталь
Тип соединительных элементов на торцеФланецНиппельНет
Вес элемента, кг
Площадь поверхности, м.кв
Количество элементов
Стоимость элемента, грн.
Экспорт в спецификацию
Запись
Расчет площади воздуховодов — онлайн калькулятор
Автор Евгений Апрелев На чтение 3 мин. Просмотров 9.9k.
Вентиляция играет важнейшую роль в создании оптимального микроклимата в жилище. Правильно сконструированная вентиляционная система обеспечивает вывод за пределы помещения загрязненного воздуха, вредных газов, паров и пыли, которые влияют на здоровье людей, находящихся в жилом помещении. При проектировании вентиляционных систем производится огромное количество расчетов, в которых учитывается множество факторов и переменных.
В производительности вентиляционной системы не последнюю роль играю воздуховоды, а именно их длина, сечение и форма. Крайне важно чтобы расчет сечения воздуховодов был произведен правильно, так как именно от этого будет зависеть, сможет ли система воздуховодов пропускать достаточное количество воздуха, скорость воздушного потока и бесперебойная работа вентиляционной системы в целом. Благодаря грамотному расчету площади воздушных каналов, вибрация и аэродинамические шумы, производимые воздушными потоками, будут находиться в пределах допустимой нормы.
Рассчитать площадь воздуховодов для естественной вентиляционной системы можно тремя способами:
- Обратиться к профессионалам. Расчет будет произведен качественно, но дорого.
- Сделать самостоятельный расчет, используя формулы расчета удельных потерь воздуха, гравитационного подпора, поперечного сечения воздуховодов, формулу скорости движения воздушных масс в газоходах, определение потерь на трение и сопротивление.
- Воспользоваться онлайн-калькулятором.
Расчет сечения воздуховода
Для того чтобы воспользоваться онлайн-калькулятором, не нужно иметь инженерного образования или платить денег, просто введите в каждое поле калькулятора необходимые данные и получите правильный результат.
Методика самостоятельного расчета сечения воздуховодов
- Определение аэродинамических характеристик воздушного канала с естественным движением воздуха.
Rуд = Pгр/ ∑L
где
Pгр – гравитационное давление в каналах вытяжной вентиляции, Па;
L – расчетная длина участка, м.
При естественном побуждении необходимо увязать показатели гравитационных давлений в проходных каналах помещений с показателями трения и местными сопротивлениями, которые возникают по пути движения воздуха от вытяжки до устья вытяжной шахты, а именно по равенству 1, где ∑(Rln+Z) – расчетное снижение давления на местные сопротивления и трение на отрезках воздуховодов в расчетном направлении движения воздушных масс.
- Определение значения гравитационного подпора
Pгр= h(pn—pb)9.81
где
h – высота столба воздуха, м;
pn – плотность воздушных масс снаружи помещения, кг/м3,
pb – плотность воздушных масс в помещении.
- Площадь сечения воздуховода определяется по формуле
S = L * 2. 778/V
где
S – расчетная площадь сечения воздуховода см2
L – расход воздуха через воздуховод, м3/час
V – скорость движения воздуха в воздуховоде, м/с,
2,788 – коэффициент для согласования размерностей.
- Фактическая площадь сечения воздуховодов определяется по формулам:
S = π * D / 400 – для круглых воздуховодов
S = A * B / 100 – для прямоугольных воздуховодов
где
S – фактическая площадь сечения, см2
D – диаметр круглого воздуховода, мм
A и B – ширина и высота прямоугольного воздуховода, мм.
- Для расчета сопротивления сети воздуховодов используется формула:
P = R * L + Ei * V2 * Y/2 где:
R – удельные потери на трение на конкретном участке вентиляционной сети
L – длина участка воздуховода.
Ei – сумма коэффициентов местных потерь на участке воздуховода
V2 – скорость движения воздуха на участке воздуховода
Y – плотность воздуха.
Аэродинамический расчет воздуховодов: онлайн-калькулятор
Расчет расхода воздуха по кратности (подробнее)
Площадь помещения, м²:
Высота помещения, м:
Кратность воздухообмена:
Расход воздуха: м³/с
Расчет расхода воздуха по количеству людей (подробнее)
Число людей в помещении:
Активность людей в помещении:
Спокойное состояние
Умеренная деятельность
Активная деятельность
Расход воздуха: м³/с
Расчет площади сечения воздуховода (подробнее)
Расход воздуха, м³/с:
Рекомендуемая скорость, м/с:
Площадь сечения воздуховода: м²
Стандартные размеры воздуховодов по площади сечения
Прямоугольные воздуховоды Круглые воздуховоды
Расчет фактической скорости (подробнее)
Расход воздуха, м³/с:
Площадь сечения, м²:
Фактическая скорость воздуха: м/c
Расчет эквивалентного диаметра прямоугольного воздуховода (подробнее)
Высота, м:
Ширина, м:
Эквивалентный диаметр: м
Расчет потребляемой мощности вентилятора (подробнее)
Расход воздуха, м³/с:
Давление воздуха, Па:
КПД вентилятора, %:
Потребляемая мощность: кВт
Расчет расхода воздуха по кратности
L = n * S * Н / 3600, где:
L — необходимая производительность м³/с;
n — кратность воздухообмена;
S — площадь помещения;
Н — высота помещения, м.
Расчет расхода воздуха по количеству людей
L = N * Lнорм / 3600, где:
L — производительность м³/с;
N — число людей в помещении;
Lн — нормативный показатель потребления воздуха на одного человека составляющий:
при отдыхе — 20 м³/ч;
при офисной работе — 40 м³/ч;
при активной работе — 60 м³/ч.
Расчет площади сечения воздуховода
F = Q / Vрек где:
F — площадь сечения воздуховода, м²;
Q — расход воздуха м³/с;
Vрек — рекомендуемая скорость воздуха, м/с. (подбираем из таблицы)
Рекомендуемая скорость воздуха
Расчет фактической скорости
По площади F определяют диаметр D (для круглой формы) или высоту A и ширину B (для прямоугольной) воздуховода, м. Полученные величины округляют до ближайшего большего стандартного размера, т.е. Dст , Аст и Вст. Это делается для того, чтобы рассчитать фактическую скорость.
Vфакт = Q / Fфакт, где:
Vфакт — фактическая скорость воздуха, м/с;
Q — расход воздуха м³/с;
Fфакт — фактическая площадь сечения воздуховода, м².
Расчет эквивалентного диаметра прямоугольного воздуховода
DL = (2Aст * Bст) / (Aст + Bст), где:
DL — эквивалентный диаметр, м;
Aст — стандартная высота, м;
Bст — стандартная ширина, м.
Расчет потребляемой мощности вентилятора
N = (Qвент * Pвент) / (1000 * n * 100), где:
N — мощность электродвигателя приточного или вытяжного вентилятора, кВт;
Qвент — расход воздуха вентилятора, м³/с;
Pвент — давление создаваемое вентилятором, Па;
n — КПД (коэффициент полезного действия), %.
Калькулятор эквивалентного диаметра | ВЕНТА
Эквивалентный диаметр — диаметр круглого воздуховода, в котором потеря давления на трение при одинаковой длине равна его потере в прямоугольном воздуховоде.
Эквивалентный диаметр прямоугольного воздуховода
Эквивалентный диаметр прямоугольного воздуховода можно вычислить по формуле
de = 1.30 x ((a x b)0.625) / (a + b)0.25) (1)
где
de = эквивалентный диаметр (мм)
a = длина стороны A (мм)
b = длина стороны B (мм)
Эквивалентный диаметр — de (мм) | |||||||||||||||
Сторона воздуховода A мм. | Сторона воздуховода — B (мм.) | ||||||||||||||
100 | 150 | 200 | 250 | 300 | 400 | 500 | 600 | 800 | 1000 | 1200 | 1400 | 1600 | 1800 | 2000 | |
100 | 109 | 133 | 152 | 168 | 183 | 207 | 227 | ||||||||
150 | 133 | 164 | 189 | 210 | 229 | 261 | 287 | 310 | |||||||
200 | 152 | 189 | 219 | 244 | 266 | 305 | 337 | 365 | |||||||
250 | 168 | 210 | 246 | 273 | 299 | 343 | 381 | 414 | 470 | ||||||
300 | 183 | 229 | 266 | 299 | 328 | 378 | 420 | 457 | 520 | 574 | |||||
400 | 207 | 260 | 305 | 343 | 378 | 437 | 488 | 531 | 609 | 674 | 731 | ||||
500 | 227 | 287 | 337 | 381 | 420 | 488 | 547 | 598 | 687 | 762 | 827 | 886 | |||
600 | 310 | 365 | 414 | 457 | 531 | 598 | 656 | 755 | 840 | 914 | 980 | 1041 | |||
800 | 414 | 470 | 520 | 609 | 687 | 755 | 875 | 976 | 1066 | 1146 | 1219 | 1286 | |||
1000 | 517 | 574 | 674 | 762 | 840 | 976 | 1093 | 1196 | 1289 | 1373 | 1451 | 1523 | |||
1200 | 620 | 731 | 827 | 914 | 1066 | 1196 | 1312 | 1416 | 1511 | 1598 | 1680 | ||||
1400 | 781 | 886 | 980 | 1146 | 1289 | 1416 | 1530 | 1635 | 1732 | 1822 | |||||
1600 | 939 | 1041 | 1219 | 1373 | 1511 | 1635 | 1749 | 1854 | 1952 | ||||||
1800 | 1096 | 1286 | 1451 | 1598 | 1732 | 1854 | 1968 | 2073 | |||||||
2000 | 1523 | 1680 | 1822 | 1952 | 2073 | 2186 |
Эквивалентный диаметр овального воздуховода
Эквивалентный диаметр овального воздуховода можно вычислить по формуле
de = 1. 55 A0.625/P0.2 (2)
где
A = площадь поперечного сечения овального воздуховода (м2)
P = периметр овального воздуховода (м)
Площадь поперечного сечения овального воздуховода можно вычислить по формуле
A = (π b2/4) + b(a — b) (2a)
где
a = большая сторона овального воздуховода (м)
b = меньшая сторона овального воздуховода (м)
Периметр овального воздуховода можно вычислить по формуле
P = π b + 2(a — b) (2b)
Расчёт воздуховодов систем вентиляции — Мир Климата и Холода
Расчёт воздуховодов вентиляции является одним из этапов расчета вентиляции и заключается в определении размеров воздуховода в зависимости от расхода воздуха, который должен проходить через рассматриваемый воздуховод. Кроме того, возникают задачи по определению площади поверхности воздуховода. Рассмотрим их более подробно.
Расчёт воздуховодов онлайн
Курс МП1 — расчет воздуховодов и воздухообмена
Для расчета воздуховодов рекомендуем воспользоваться онлайн-калькулятором, расположенным выше. Исходными данными для расчета являются расход воздуха и максимальная допустимая скорость воздуха в воздуховоде.
Преимуществом нашего калькулятора является то, что в результате расчета вы узнаете не только рекомендуемое сечение круглых и/или прямоугольных воздуховодов, но и фактическую скорость воздуха в них, эквивалентный диаметр и потери давления на 1 метр длины.
О расчете площади воздуховодов читайте в отдельной статье.
Расчёт сечения воздуховодов
Задача расчёта сечения воздуховодов вентиляции может звучать по-разному:
- расчёт воздуховодов вентиляции
- расчёт воздуха в воздуховоде
- расчёт сечения воздуховодов
- формула расчёта воздуховодов
- расчёт диаметра воздуховода
Следует понимать, что все вышеперечисленные расчёты — по сути, одна и та же задача, которая сводится к определению площади сечения воздуховода, по которому протекает расход воздуха G [м3/час].
Алгоритм расчета сечения воздуховодов
Расчет сечения воздуховодов подразумевает определение размеров воздуховодов в зависимости от расхода пропускаемого воздуха. Он выполняется в 4 этапа:
- Пересчет расхода воздуха в м3/с
- Выбор скорости воздуха в воздуховоде
- Определение площади сечения воздуховода
- Определение диаметра круглого или ширины и высоты прямоугольного воздуховода.
На первом этапе расчёта воздуховода расход воздуха G, выраженный, как правило, в м3/час, переводится в м3/с. Для этого его необходимо разделить на 3600:
- G [м3/c] = G [м3/час] / 3600
На втором этапе следует задать скорость движения воздуха в воздуховоде. Скорость следует именно задать, а не рассчитать. То есть выбрать ту скорость движения воздуха, которая представляется оптимальной.
Высокая скорость воздуха в воздуховоде позволяет использовать воздуховоды малого сечения. Однако при этом поток воздуха будет шуметь, а аэродинамическое сопротивление воздуховода сильно возрастёт.
Малая скорость воздуха в воздуховоде обеспечивает тихий режим работы системы вентиляции и малое аэродинамическое сопротивление, но делает воздуховоды очень громоздкими.
Для систем общеобменной вентиляции оптимальной скоростью воздуха в воздуховоде считается 4 м/с. Для больших воздуховодов (600×600 мм и более) скорость воздуха может быть повышена до 6 м/с. В системах дымоудаления скорость воздуха может достигать и превышать 10 м/с.
Итак, на втором этапе расчета воздуховодов задаётся скорость движения воздуха v [м/с].
На третьем этапе определяется требуемая площадь сечения воздуховода путем деления расхода воздуха на его скорость:
- S [м2] = G [м3/c] / v [м/с]
На четвёртом, заключительном, этапе под полученную площадь сечения воздуховода подбирается его диаметр или длины сторон прямоугольного сечения.
Таблица сечений воздуховодов
В помощь проектировщикам разработано несколько таблиц сечений воздуховодов, которые позволяют быстро подобрать сечение в зависимости от полученной площади.
Пример расчёта воздуховода
В качестве примера рассчитаем сечение воздуховода с расходом воздуха 1000 м3/час:
- G = 1000/3600 = 0,28 м3/c
- v = 4 м/с
- S = 0,28 / 4 = 0,07 м2
- В случае круглого воздуховода его диаметр составил бы D = корень (4·S/ π) ≈ 0,3 м = 300мм. Ближайший стандартный диаметр воздуховода — 315 мм.
В случае прямоугольного воздуховода необходимо подобрать такие А и В, чтобы их произведение было равно примерно 0,07. При этом рекомендуется, чтобы А и В не отличались друг от друга более чем в три раза, то есть воздуховод 700×100 — не лучший вариант. Более хорошие варианты: 300×250, 350×200.
Эквивалентный диаметр воздуховода
При сравнении круглых и прямоугольных воздуховодов разного сечения с точки зрения аэродинамики прибегают к понятию эквивалентного диаметра воздуховода. С его помощью можно определить, какой из двух вариантов сечений является предпочтительным.
Что такое эквивалентный диаметр воздуховода
Эквивалентный диаметр прямоугольного воздуховода — это диаметр воображаемого круглого воздуховода, в котором потеря давления на трение была бы равна потере давления на трение в исходном прямоугольном воздуховоде при одинаковой длине обоих воздуховодов.
В книгах и учебниках В. Н. Богословского такой диаметр называется «Эквивалентный по скорости диаметр», в литературе П. Н. Каменева — «Равновеликий диаметр по потерям на трение».
Расчет эквивалентного диаметра воздуховодов
Эквивалентный диаметр прямоугольного воздуховода вычисляется по формуле:
- Dэкв_пр = 2·А·В / (А+В), где А и В — ширина и высота прямоугольного воздуховода.
Например, эквивалентный диаметр воздуховода 500×300 равен 2·500·300 / (500+300) = 375 мм. Это означает, что круглый воздуховод диаметром 375 мм будет иметь такое же аэродинамическое сопротивление, что и прямоугольный воздуховод 500×300 мм.
Эквивалентный диаметр квадратного воздуховода равен стороне квадрата:
- Dэкв_кв = 2·А·А / (А+А) = А.
И этот факт весьма интересен, ведь обычно чем больше площадь сечения воздуховода, тем ниже его сопротивление. Однако круглая форма сечения воздуховода имеет наилучшие аэродинамические показатели. Именно поэтому сопротивление квадратного и круглого воздуховодов равны, хотя площадь сечния квадратного воздуховода на 27% больше площади сечения круглого воздуховода.
В общем случае формула для эквивалентного диаметра воздуховода выглядит следующим образом:
- Dэкв = 4·S / П, где S и П — соответственно, площадь и периметр воздуховода.
Используя эту формулу можно подтвердить правильность вышеприведённых формул для прямоугольного и квадратного воздуховодов, а также убедиться в том, что эквивалентный диаметр круглого воздуховода равен диаметру этого воздуховода:
- Dкругл = 4·π·R2 / 2·π·R = 2R = D.
Кроме того, для расчета может помочь таблица эквивалентного диаметра воздуховодов
Пример расчета эквивалентного диаметра воздуховодов и некоторые выводы
В качестве примера определим эквивалентный диаметр воздуховода 600×300:
Dэкв_600_300 = 2·600·300 / (600+300) = 400 мм.
Интересно отметить, что площадь сечения круглого воздуховодам диаметром 400 мм составляет 0,126 м2, а площадь сечения воздуховода 600×300 составляет 0,18 м2, что на 42% больше. Расход стали на 1 метр круглого воздуховода сечением 400 мм составляет 1,25 м2, а на 1 метр воздуховода сечением 600×300 — 1,8 м2, что на 44% больше.
Таким образом, любой аналогичный круглому прямоугольный воздуховод значительно проигрывает ему как в компактности, так и в металлоемкости.
Рассмотрим ещё один пример — определим эквивалентный диаметр воздуховода 500×100 мм:
Dэкв_500_100 = 2·500·100 / (500+100) = 167 мм.
Здесь разница в площади сечения и в металлоемкости достигает 2,5 раз. Таким образом, формула эквивалентного диаметра для прямоугольного воздуховода объясняет тот факт, что чем больше «расплющен» воздуховод (чем больше разница между значениями А и В), тем менее эффективен этот воздуховод с аэродинамической точки зрения.
Это одна из причин, по которой в вентиляционной технике не рекомендуется применять воздуховоды, в сечении которых одна сторона превышает другую более чем в три раза.
Калькулятор воздуховодов
HVAC | ServiceTitan
Слишком большой или слишком маленький размер воздуховода HVAC может вызвать проблемы, аналогичные тем, которые случаются, когда технический персонал устанавливает блок HVAC неправильного размера. Чтобы проверить точность измерений, многие технические специалисты полагаются на бесплатные инструменты калькулятора размеров воздуховодов, такие как воздуховоды.
Использование воздуховода неправильного размера для помещения может привести к преждевременному износу компонентов HVAC и, вероятно, увеличит расходы клиентов на электроэнергию. Неправильный размер воздуховода также может вызвать недостаточный приток воздуха в определенные зоны и вызвать нежелательный шум.Ни один из этих сценариев не приводит к удовлетворению клиентов после того, как они заплатили большие деньги за новую, более эффективную систему отопления, вентиляции и кондиционирования воздуха или модернизированные воздуховоды.
Бесплатный онлайн-инструмент для воздуховодов
Калькулятор размера воздуховода, широко известный как воздуховод, зависит от таких факторов, как размер обогреваемого или охлаждаемого помещения, скорость воздушного потока, потери на трение и доступное статическое давление воздуховода. Система HVAC. Экономьте время на работе и меньше выполняйте вычисления вручную, используя наш бесплатный онлайн-сервис ServiceTitan Ductulator, который позволяет легко рассчитать воздуховод нужного размера для ваших проектов.
Ниже мы рассмотрим различные формулы, которые вам нужно будет вычислить и ввести в калькулятор воздуховода.
Рисунок Площадь помещений в квадратных метрах
Таблица размеров воздуховодов в первую очередь зависит от площади дома или офиса, но, что более важно, размера каждой отдельной комнаты в здании.
Чтобы рассчитать площадь прямоугольной или квадратной комнаты, просто умножьте длину и ширину комнаты. Вы также можете обратиться к плану здания, чертежам зонирования, хранящимся в местном отделении планирования, или к недавнему списку недвижимости для этого помещения, если таковой имеется.
Итак, если размер комнаты 10 на 10 футов, общая площадь равна 100 квадратных футов. Для комнат, которые не являются идеально квадратными или прямоугольными, например, L-образной формы, разделите комнату на секции и просуммируйте площадь каждой секции.
Определение размера воздуховода по скорости воздуха
Скорость воздуха или воздушный поток измеряется в кубических футах в минуту (CFM) и прямо пропорциональна размеру воздуховода. Вы должны найти воздуховод CFM в каждой комнате, чтобы определить размер устанавливаемых воздуховодов. Важно проводить расчеты для каждой комнаты, иначе температура, скорее всего, будет неравномерной по всему дому или офису.
Чтобы рассчитать CFM в воздуховоде для каждой комнаты, вы должны сначала выполнить расчет нагрузки HVAC для всего дома и для каждой комнаты, используя ручной метод J.
Воспользуйтесь бесплатным калькулятором нагрузки ServiceTitan HVAC, чтобы вычислить точное количество БТЕ в час, необходимое каждой комнате для достаточного отопления и охлаждения, а также допустимую нагрузку для всего дома или здания.
Требуемый размер блока HVAC
Вы также должны определить, какой размер оборудования HVAC будет работать лучше всего для удовлетворения потребностей в энергии для пространства, на основе расчетов нагрузки HVAC для всего дома или всего офиса.
Чтобы рассчитать необходимый размер оборудования, разделите нагрузку HVAC для всего здания на 12 000. Одна тонна равна 12 000 БТЕ, поэтому, если дому или офису требуется 24 000 БТЕ, потребуется 2-тонная установка HVAC. Если вы получили нечетное число, например 2,33 для допустимой нагрузки 28000 БТЕ, округлите до 2.5-тонный агрегат.
Чтобы использовать калькулятор CFM в воздуховоде, необходимо затем рассчитать расчетный воздушный поток оборудования в CFM. Умножьте требуемый тоннаж (который вы только что вычислили выше) на 400 кубических футов в минуту, что является средней производительностью блока HVAC. Для 2-тонного блока HVAC общий объем CFM оборудования составляет 800.
ПРИМЕЧАНИЕ. Средний выходной поток воздуха в режиме охлаждения составляет от 350 до 400 куб. Футов в минуту. Для воздушного потока в отопительный сезон требуется примерно 65 процентов воздушного потока, необходимого для охлаждения. Поэтому, чтобы обеспечить достаточный воздушный поток как для охлаждения, так и для обогрева, используйте верхний порог 400 куб.
Формула расчета CFM в воздуховоде
После того, как вы выполните расчеты нагрузки и определите требуемую мощность оборудования, примените эту формулу расчета CFM в воздуховоде для определения потребности каждого помещения:
CFM в помещении = (нагрузка помещения / нагрузка всего дома) ✕ Оборудование CFM
В качестве примера скажем, что для помещения A требуется 2 000 БТЕ тепла на основе расчетов нагрузки системы отопления, вентиляции и кондиционирования воздуха для каждой комнаты, а для всего дома требуется 24 000 БТЕ, что требует 2-тонной печи со скоростью 800 кубических футов в минуту.
24000 БТЕ ÷ 12000 БТЕ в 1 тонне = 2 тонны ✕ 400 куб. Футов в минуту на тонну = 800 куб. Футов в минуту
Помещение A = (2000 БТЕ ÷ 24000 БТЕ) ✕ 800 куб.
СОВЕТ: Для нагрева или охлаждения от 1 до 1,25 квадратных футов площади пола требуется примерно 1 куб. Фут / мин воздуха. Чтобы охладить помещения с большим количеством окон или под прямыми солнечными лучами, требуется около 2 куб. Футов в минуту.
Изобразите коэффициент потерь на трение
Коэффициент трения (FR) поможет вам выбрать диаметр и форму воздуховодов, которые вы можете использовать, без отрицательного воздействия на оптимальный воздушный поток.Он рассчитывается путем деления доступного статического давления (ASP) на общую эффективную длину (TEL) и умножения на 100, чтобы показать, какой перепад давления система может выдержать на 100 футов эффективной длины. Вам нужна более высокая скорость трения, потому что это означает, что вы можете использовать меньшие, более узкие воздуховоды, чем в проекте HVAC, спроектированном с более низкой скоростью трения, что требует больших воздуховодов. При низком коэффициенте трения один неисправный компонент может серьезно затруднить воздушный поток, потому что меньше места для ошибки.
Обратитесь к таблице CFM воздуховода в технических характеристиках производителя HVAC, чтобы определить внешнее статическое давление воздуходувки для этой конкретной модели HVAC. Обычно он отображается в виде диаграммы CFM для HVAC, которая разбивает различные настройки вентилятора и общие CFM, необходимые для дома или здания.
Общее внешнее статическое давление (TESP) измеряется в дюймах водяного столба (wc или iws). Как показывает опыт, в большинстве систем коэффициент трения по умолчанию составляет 0,05 дюйма вод. самостоятельно, чтобы получить более точное измерение.
Отсюда вычтите падение давления, создаваемое любыми компонентами, которые вы планируете добавить в систему распределения воздуха, такими как внешние змеевики, фильтры, решетки, регистры и заслонки. Метод Manual D, который фокусируется на том, как проектировать системы воздуховодов, предлагает использовать 0,03 iwc для регистра подачи, возвратной решетки и балансировочной заслонки. Воздушные фильтры обычно указывают предполагаемое падение давления на упаковке продукта или на веб-сайте производителя.
Этот вычет дает вам доступное статическое давление (ASP) или бюджет статического давления, с которым вы работаете при проектировании системы воздуховодов.Вы не можете превышать ASP, иначе система будет обеспечивать неправильный воздушный поток и со временем вызовет проблемы с оборудованием.
ASP влияет на размер воздуховодов HVAC. Чем меньше статическое давление, тем больше требуется воздуховод. Если прогнозируемая скорость кажется слишком высокой для системы, выберите следующий по величине размер воздуховода.
Общая эффективная длина воздуховодов
Общая эффективная длина (TEL) равна измеренной длине от самого дальнего выходного отверстия через оборудование и до самого дальнего обратного выхода плюс эквивалентная длина всех витков и фитингов.Скорость трения рассчитывается на основе падения давления на 100 футов.
TEL учитывает перепады давления, которые могут возникнуть из-за трещин, поворотов и других фитингов в плане воздуховодов HVAC. Вместо того, чтобы пытаться рассчитать все эти отдельные случаи потери давления, специалисты по HVAC измеряют длину прямого участка воздуховода, которая создаст такое же падение давления, что называется эффективной длиной. Каждый фитинг имеет эффективную длину, равную перепаду давления в эквивалентном прямом воздуховоде.
Чтобы сконфигурировать TEL, сложите эффективную длину всех фитингов в наиболее ограниченном участке и добавьте это число к длине прямых участков между возвратом и подачей в этом участке. Зная TEL, вы готовы рассчитать коэффициент трения, который инструмент для измерения размеров воздуховодов HVAC использует для определения размеров всех стволов и ответвлений воздуховодов.
Скорость трения = (ASP X 100) ÷ TEL
Вот пример расчета скорости трения:
Измеренная длина прямого воздуховода = 50 футов
Эквивалентные длины витков и фитингов между началом и концом прямого воздуховода : 150 футов
50 футов + 150 футов = 200 футов TEL
Внешнее статическое давление обработчика воздуха при 1000 кубических футов в минуту = 0. 5 дюймов вод. Ст.
Вычтите падение статического электричества для компонентов = 0,03 дюйма вод. Ст. Для регистра, 0,03 дюйма вод. Ст. Для решетки и 0,15 дюйма вод. Ст. Для фильтра: 0,5 — 0,03 — 0,03 — 0,15 = 0,29 дюйма вод. 100) ÷ 200 = 0,145 ‘вод. Ст.
Прочие сведения для калькулятора размеров воздуховодов
Есть несколько других важных факторов, которые следует учитывать при использовании бесплатного калькулятора размеров воздуховодов для ОВКВ, например, тип материала воздуховода. Планируете ли вы установить прямоугольный или круглый воздуховод HVAC?
Имейте в виду, что выбор материала воздуховода также влияет на сопротивление воздушному потоку и статическое давление, поэтому расчеты размеров гибких воздуховодов немного отличаются от воздуховодов из листового металла.Гибкий воздуховод CFM будет измерять меньше, чем воздушный поток в листовом металле и для воздуховодов из стекловолокна с покрытием. Жесткий листовой металл обеспечивает наименьшее сопротивление потоку воздуха. Гибкий воздуховод CFM меняется в зависимости от способа его установки: производительность резко снижается, если он не растягивается полностью, или из-за резких поворотов и поворотов.
В ServiceTitan Ductulator выберите тип и форму воздуховода, который вы планируете использовать, чтобы получить правильные соответствующие измерения в таблице размеров воздуховода.
Хотите развивать свой бизнес в сфере HVAC? Узнайте больше о том, что программное обеспечение HVAC может сделать для вас, запланировав демонстрацию сегодня.
Подрядчики справляются с ростом бизнеса с помощью этого мощного инструмента.
Подробнее
Заявление об отказе от ответственности
* Добросовестная оценка, калькулятор размеров воздуховода предназначен исключительно для общих информационных целей. Мы не гарантируем точность этой информации. Обратите внимание, что другие внешние факторы могут повлиять или исказить рекомендации этого инструмента. Для получения точных значений проконсультируйтесь с лицензированным специалистом по отоплению и кондиционированию воздуха или инженером-строителем.
Онлайн-калькулятор размеров воздуховода Ductcalc | Онлайн-калькулятор воздуховодов | Расчет размеров воздуховода в режиме онлайн | Подбор размеров воздуховодов онлайн | Метод трения | Метод скорости воздуха | Размеры воздуховода | Калькулятор размеров прямоугольного воздуховода | Калькулятор размеров круглых воздуховодов
Что вы получаете:
В дополнение ко всем стандартным методам расчета и функциям Ductcalc.Ca вы получаете:
1. Размеры гибких воздуховодов: в соответствии с главой 21 «Основы руководства ASHRAE» 2017 года по проектированию воздуховодов.
2. Перечень материалов воздуховодов: включая футеровку воздуховодов, гибкий воздуховод, ПВХ, алюминий, гальванизированную сталь, бетон и другие материалы в соответствии с главой 21 Руководства ASHRAE по конструкции воздуховодов 2017 года.
3. Поправка на сжатие гибкого воздуховода: в соответствии с вышеупомянутой главой ASHRAE.
4. Метод определения размеров для расчета скорости воздуха и потери статического давления на основе размеров воздуховода (используется для проверки конструкции существующих воздуховодов).
5.Никакой рекламы.
6. Приложение для iOS (для iPhone и iPad): загрузите из App Store и используйте его в автономном режиме, когда нет подключения к Интернету.
7. Платежный шлюз Secure Stripe.
8. Мы не храним конфиденциальную информацию, такую как (номера кредитных карт, номера банковских счетов и т. Д.) На наших серверах. Мы проверяем статус оплаты вашего аккаунта только с помощью Stripe secure API.
9. Поддержите постоянное существование и развитие Ductcalc.Ок.
Сколько вы платите:
— Вы будете платить ежемесячную подписку в размере 25 долларов США, включая налог (при наличии).
— Отменить подписку в любое время из (учетная запись -> управление-премиум).
— Извините за то, что на данный момент не предлагает никаких пробных версий или возмещения, так как многие люди использовали эту возможность для бесплатного использования премиум-класса.
— Для долгосрочных контрактов на подписку или для рекламы свяжитесь с нами напрямую, используя нашу контактную форму.
Все, что вам нужно знать
По jsg / в размерах воздуховодов /
Мощность системы HVAC может быть прямо пропорциональна ее размеру, но это не означает, что вы выиграете от покупки крупногабаритной системы HVAC для своего дома.
Системы HVAC должны иметь соответствующий размер, в зависимости от размера и площади вашего дома. Блок, который слишком мал для вашего дома, должен будет работать непрерывно, чтобы обеспечить вам необходимое количество кондиционированного воздуха.
Это вызовет ненужный износ компонентов. Слишком большой агрегат будет продолжать выключаться и включаться, создавая нагрузку на компрессор и другие части. Вы также будете слишком много тратить на счета за электроэнергию.
а.Значение диаметра воздуховода
Имеет значение не только размер блока HVAC, но и размер вашей системы воздуховодов. Воздуховоды неправильного размера вызовут аналогичные проблемы, подобные тем, которые вызваны блоком неправильного размера, что в конечном итоге окажет слишком большое давление на ваше устройство.
Размер воздуховода
зависит от множества факторов, таких как размер вашего дома, скорость воздушного потока, потери на трение и статическое давление в системе отопления, вентиляции и кондиционирования воздуха.
г. Площадь вашего дома
Размер вашего воздуховода зависит не только от размера всего вашего дома, но и от размера каждой отдельной комнаты.Таким образом, необходимо измерить квадратные метры всего дома, а также всех комнат, чтобы определить размер воздуховода.
Подсчет площади всего вашего дома может быть сложным, поэтому лучше доверить его специалисту по HVAC.
г. Кубические футы в минуту (CFM)
кубических футов в минуту определяет скорость воздуха, необходимую для обогрева или охлаждения каждой комнаты вашего дома. Скорость воздуха или воздушный поток прямо пропорциональны размеру воздуховода.Следовательно, перед принятием решения о размере устанавливаемых воздуховодов необходимо обязательно найти CFM каждой комнаты.
Расчет
кубических футов в минуту требует, чтобы размер вашего блока HVAC в тоннах был умножен на 400 (средняя мощность блока HVAC). Общая сумма должна быть разделена на квадратные метры вашего дома.
г. Коэффициент потерь на трение воздуховодов
Расход воздуха из вашей системы также зависит от степени потерь на трение в воздуховодах. Проверяя этот коэффициент, подрядчики могут определить статическое давление для вашего блока HVAC по всей длине воздуховода.
Коэффициент потерь на трение, в свою очередь, зависит от множества факторов, таких как длина каждого воздуховода, количество катушек, фильтров, заслонок, решеток и регистров, а также количество витков в воздуховоде.
Хотя доступны онлайн-калькуляторы потерь на трение, получение этого числа — сложный процесс, и профессиональные подрядчики лучше всего могут его рассчитать.
эл. Калькуляторы для расчета размеров воздуховодов HVAC
Блок HVAC и воздуховоды нужного размера обеспечивают комфортную внутреннюю среду.
Специалисты
HVAC используют сложные инструменты и калькуляторы для измерения размеров дома и воздуховода, давая вам точные цифры. Это безопаснее, чем домовладельцы, которые рассчитывают все самостоятельно. Плюс — не все так хороши в математике!
Таблица размеров воздуховодов Sandium_com
Калькуляторы направляющих воздуховодов HVAC | Настраиваемые слайд-схемы калькулятора воздуховодов
HVAC — Калькуляторы воздуховодов — функция
Используется инструкторами, преподавателями и техническими специалистами для получения следующей информации:
— Трение
— Скорость
— Размер круглого воздуховода
— Размер прямоугольного воздуховода
Совместите правильный расход воздуха (CFM) с потерями на трение для расчета скорости, диаметра круглого воздуховода и диаметра прямоугольного воздуховода.
ДЕТАЛИ ПРОДУКТА
КАЛЬКУЛЯТОР НАПРАВЛЯЮЩИХ НАПРАВЛЯЮЩИХ ВОЗДУХОВОДОВ
Размер: 4 «x9,25»
Материал: Толстая доска калькулятора с покрытием
Производство: Каждый заказ изготавливается на заказ с информацией вашей компании и в выбранном вами цвете.
ВОЗДУХОВОДЫ WIZARD DUCTULATORS
Размер: 8,5 «x 11» карта с 7,25-дюймовым колесом
Материалы: толстая доска калькулятора с покрытием
Производство: Изготовлено на заказ с информацией вашей компании и в ваших цветах. «x7.Карточка 5 дюймов с циферблатом 5 дюймов
Материал: Толстая доска калькулятора с покрытием
Производство: Изготовлено на заказ с использованием информации вашей компании и в ваших цветах.
Пользовательские опции
Мы изготовили много различных калькуляторов HVAC.
- Калькуляторы холодильного оборудования
- Калькулятор линейных направляющих для высокоскоростных воздуховодов
- Калькуляторы переохлаждения / перегрева
- Калькуляторы относительной влажности
- Селектор кондиционера
- Селекторы установки на крыше
- Селекторы переходника бордюра
Сообщите нам, что вам нужно.Мы можем помочь с идеями, сметой и образцами.
Калькулятор линейных направляющих для воздуховодов
Воздуховоды Wizard Ductulators
Колесо калькулятора конструкции воздуховода
ЗДЕСЬ ССЫЛКА НА ВИДЕО КАЛЬКУЛЯТОРА ВОЗДУХОВОДА
Вытяжки: | |||||
Как выглядят эти вытяжки? | |||||
Нет | Обычный конец воздуховода | Конец воздуховода с фланцем | |||
Bellmouth Entry | Отверстие с острыми краями | Стандартный кожух шлифовального станка (конический t. о.) | |||
Стандартный кожух шлифовального станка (без конуса) | Ловушка или отстойная камера | ||||
Абразивоструйная камера | Абразивоструйный подъемник | Сепаратор абразива | |||
Лифты (корпуса) | Фланцевая труба с закрытым коленом | Труба гладкая с закрытым коленом | |||
Покажите мне, как выглядит коническая вытяжка | |||||
Конические кожухи | Угол конуса (градусы): 15304560 150180 | Тип кожуха: ПРЯМОУГОЛЬНЫЙ ИЛИ КВАДРАТНЫЙ | |||
Покажите мне, как выглядит составной кожух | |||||
Составные вытяжки | |||||
Размеры паза: | Номер слота: | Угол конуса (градусы): | |||
Высота (дюйм.): | 15304560 150180 | ||||
Длина (дюймы): | Тип кожуха: ПРЯМОУГОЛЬНЫЙ ИЛИ КВАДРАТНЫЙ | ||||
Другое | |||||
Коэффициент потерь для другого типа воздуховода: | |||||
Вводы ответвлений (поправки на изменение скорости): | |||||
Покажите мне конфигурацию входа ветки | |||||
Сегмент воздуховода берет начало в филиале | |||||
Расход во входном патрубке №1 (ACFM): | |||||
Давление скорости во входном патрубке №1 (дюймы водяного столба): | |||||
Расход во входном патрубке №2 (ACFM): | |||||
Скоростное давление входного ответвления №2 (дюймы водяного столба): | |||||
Примечание. Сумма потоков в ответвлениях №1 и №2 должна равняться скорости потока во вводе ACFM выше. | |||||
Примечание: нельзя смешивать воздуховоды круглого и прямоугольного сечения в одном расчете. | |||||
Круглые воздуховоды: | |||||
Покажите мне, как выглядят эти круглые локти | |||||
Номер: | Тип: Штампованные: 5 шт., 4 шт., 3 шт. 0.50.751.001.502.002.50 | Размах локтя (градусы): | |||
Номер: | Тип: Штампованные: 5 шт., 4 шт., 3 шт. 0.50.751.001.502.002.50 | Размах локтя (градусы): | |||
Номер: | Тип: Штампованные: 5 шт., 4 шт., 3 шт. 0.50.751.001.502.002.50 | Размах локтя (градусы): | |||
Воздуховоды прямоугольного сечения (можно выбрать до трех различных типов колен): | |||||
Покажите мне, как выглядят эти прямоугольные локти | |||||
Номер: | Соотношение сторон (Ш / Г): 0. 250.51.02.03.04.0 | П / Д: 0.00.51.01.52.03.0 | |||
Номер: | Соотношение сторон (W / D): 0.250.51.02.03.04.0 | П / Д: 0.00.51.01.52.03.0 | |||
Номер: | Соотношение сторон (W / D): 0.250.51.02.03.04.0 | П / Д: 0.00.51.01.52.03.0 | |||
Магистральный воздуховод | |||||
(ветвь 1 на этом чертеже) | |||||
Филиал Вход | Угол входа ответвления (градусы): 1015202530354045506090 | ||||
(ветвь 2 на этом чертеже) | |||||
Покажите мне, как выглядят эти расширения и сокращения | |||||
Расширение в воздуховоде | Угол конуса (градусы): 3.55101520253090 | ||||
Соотношение диаметров (выходной диаметр / входной диаметр): 1.25: 11.5: 11.75: 12: 12. 5: 1 | |||||
Расширение превышает 5 диаметров от колена или вентилятора ?: ДА НЕТ | |||||
Расширение в конце воздуховода | Отношение длины конуса к диаметру входного отверстия: 1.0: 11.5: 12.0: 13.0: 14.0: 15.0: 17.5: 1 | ||||
Соотношение диаметров (выходной диаметр / входной диаметр): 1.2: 11.3: 11.4: 11.5: 11.6: 11.7: 1 | |||||
Расширение превышает 5 диаметров от колена или вентилятора ?: ДА НЕТ | |||||
Конический контакт | Угол усадки конуса (градусы): 510152025304560 Более 60 | ||||
Диаметр выпускной трубы (дюймы): | |||||
Вертикальный выпуск, без потерь |
Размеры воздуховодов, расчет и проектирование для обеспечения эффективности
как спроектировать систему воздуховодов ws
Как спроектировать систему воздуховодов. В этой статье мы узнаем, как рассчитать и спроектировать систему воздуховодов для повышения эффективности. Мы включим полностью проработанный пример, а также использование моделирования CFD для оптимизации производительности и эффективности с помощью SimScale. Прокрутите вниз, чтобы посмотреть БЕСПЛАТНЫЙ видеоурок на YouTube!
🏆🏆🏆 Создайте бесплатную учетную запись SimScale для тестирования облачной платформы моделирования CFD здесь: https://www.simscale.com/ Имея более 100 000 пользователей по всему миру, SimScale — это революционная облачная платформа CAE, которая мгновенно доступ к технологиям моделирования CFD и FEA для быстрого и простого виртуального тестирования, сравнения и оптимизации конструкций в нескольких отраслях, включая HVAC , AEC и электронику .
Методы проектирования воздуховодов
Существует множество различных методов, используемых для проектирования систем вентиляции, наиболее распространенными из которых являются:
- Метод снижения скорости: (жилые или небольшие коммерческие установки)
- Метод равного трения: (от среднего до большого размера коммерческие установки)
- Восстановление статического электричества: очень большие установки (концертные залы, аэропорты и промышленные объекты)
Мы собираемся сосредоточиться на методе равного трения в этом примере, поскольку это наиболее распространенный метод, используемый для коммерческих систем HVAC и его достаточно просто следовать.
Пример проектирования
План здания
Итак, мы сразу перейдем к проектированию системы. Мы возьмем небольшое инженерное бюро в качестве примера, и мы хотим сделать чертеж-компоновку здания, который мы будем использовать для проектирования и расчетов. Это действительно простое здание, в нем всего 4 офиса, коридор и механическое помещение, в котором будут расположены вентилятор, фильтры и воздухонагреватель или охладитель.
Нагрузка на отопление и охлаждение в здании
Первое, что нам нужно сделать, это рассчитать нагрузку на отопление и охлаждение для каждой комнаты.Я не буду рассказывать, как это сделать, в этой статье, нам придется рассказать об этом в отдельном руководстве, так как это отдельная предметная область.
Когда они у вас есть, просто сложите их вместе, чтобы найти самую большую нагрузку, поскольку нам нужно определить размер системы, чтобы она могла работать при пиковом спросе. Охлаждающая нагрузка обычно самая высокая, как в данном случае.
Теперь нам нужно преобразовать охлаждающую нагрузку в объемный расход, но для этого нам сначала нужно преобразовать это в массовый расход, поэтому мы используем формулу:
mdot = Q / (cp x Δt)
Рассчитать массовый расход воздуха скорость от охлаждающей нагрузки
Где mdot означает массовый расход (кг / с), Q — охлаждающая нагрузка помещения (кВт), cp — удельная теплоемкость воздуха (кДж / кг.K), а Δt — разница температур между расчетной температурой воздуха и расчетной температурой обратки. Просто отметим, что в качестве стандарта мы будем использовать cp 1,026 кДж / кг.k., а дельта T должна быть меньше 10 * C, поэтому мы будем использовать 8 * c.
Нам известны все значения этого параметра, поэтому мы можем рассчитать массовый расход (сколько килограммов в секунду воздуха необходимо для поступления в комнату). Если мы посмотрим на расчет для помещения 1, то увидим, что он требует 0,26 кг / с. Поэтому мы просто повторяем этот расчет для остальной части комнаты, чтобы найти все значения массового расхода.
Расчет массового расхода воздуха для каждой комнаты
Теперь мы можем преобразовать их в объемный расход. Для этого нам нужен определенный объем или плотность воздуха. Мы укажем 21 * c и примем атмосферное давление 101,325 кПа. Мы можем найти это в наших таблицах свойств воздуха, но я предпочитаю использовать онлайн-калькулятор http://bit.ly/2tyT8yp, поскольку он работает быстрее. Мы просто добавляем эти числа и получаем плотность воздуха 1,2 кг / м3.
Вы видите, что плотность измеряется в кг / м3, но нам нужен удельный объем, который составляет м3 / кг, поэтому для преобразования мы просто возьмем обратное, что означает вычисление 1.-1), чтобы получить ответ 0,83 м3 / кг.
Теперь, когда у нас есть, что мы можем рассчитать объемный расход по формуле:
vdot = mdot, умноженное на v.
Рассчитайте объемный расход воздуха на основе массового расхода
, где vdot равно объемному расходу, mdot равно массовому расходу скорость комнаты и v равна удельному объему, который мы только что рассчитали.
Итак, если мы опустим эти значения для помещения 1, мы получим объемный расход 0,2158 м3 / с, то есть сколько воздуха необходимо для входа в комнату, чтобы удовлетворить охлаждающую нагрузку.Так что просто повторите этот расчет для всех комнат.
Объемный расход воздуха в здании — размер воздуховода
Теперь мы нарисуем наш маршрут воздуховода на плане этажа, чтобы мы могли начать его размер.
Схема воздуховодов
Прежде чем мы продолжим, нам нужно рассмотреть некоторые вещи, которые будут играть большую роль в общей эффективности системы.
Соображения по конструкции
Первый вопрос — форма воздуховода. Воздуховоды бывают круглой, прямоугольной и плоскоовальной формы.Круглый воздуховод, безусловно, является наиболее энергоэффективным типом, и это то, что мы будем использовать в нашем рабочем примере позже. Если мы сравним круглый воздуховод с прямоугольным, мы увидим, что:
Сравнение круглого воздуховода и прямоугольного воздуховода
Круглый воздуховод с площадью поперечного сечения 0,6 м2 имеет периметр 2,75 м
Прямоугольный воздуховод с равной площадью поперечного сечения имеет периметр 3,87 м
Таким образом, прямоугольный воздуховод требует больше металла для своей конструкции, что увеличивает вес и стоимость конструкции. Более крупный периметр также означает, что больше воздуха будет контактировать с материалом, и это увеличивает трение в системе. Трение в системе означает, что вентилятор должен работать интенсивнее, а это приводит к более высоким эксплуатационным расходам. По возможности всегда используйте круглый воздуховод, хотя во многих случаях необходимо использовать прямоугольный воздуховод, поскольку пространство ограничено.
Падение давления в воздуховодах
Второе, что следует учитывать, — это материал, из которого изготовлены воздуховоды, и шероховатость этого материала, поскольку он вызывает трение. Например, если у нас есть два воздуховода с одинаковыми размерами, объемным расходом и скоростью, единственная разница заключается в материале.Один изготовлен из стандартной оцинкованной стали, другой — из стекловолокна, перепад давления на расстоянии 10 м для этого примера составляет около 11 Па для оцинкованной стали и 16 Па для стекловолокна.
Энергоэффективная арматура для воздуховодов
Третье, что мы должны учитывать, — это динамические потери, вызванные арматурой. Мы хотим использовать максимально гладкую фурнитуру для повышения энергоэффективности. Например, используйте изгибы с большим радиусом, а не под прямым углом, поскольку резкое изменение направления тратит огромное количество энергии.
Моделирование воздуховодов CFD
Мы можем быстро и легко сравнить характеристики воздуховодов различных конструкций с помощью CFD или вычислительной гидродинамики. Эти симуляции были произведены с использованием революционной облачной инженерной платформы CFD и FEA компанией SimScale, которая любезно спонсировала эту статью.
Вы можете получить бесплатный доступ к этому программному обеспечению, щелкнув здесь, и они предлагают несколько различных типов учетных записей в зависимости от ваших потребностей моделирования.
SimScale не ограничивается только проектированием воздуховодов, он также используется для центров обработки данных, приложений AEC, проектирования электроники, а также теплового и структурного анализа.
Просто взгляните на их сайт, и вы можете найти тысячи симуляторов для всего, от зданий, систем отопления, вентиляции и кондиционирования, теплообменников, насосов и клапанов до гоночных автомобилей и самолетов, которые можно скопировать и использовать в качестве шаблонов для вашего собственного дизайна. анализ.
Они также предлагают бесплатные вебинары, курсы и учебные пособия, которые помогут вам настроить и запустить собственное моделирование. Если, как и я, у вас есть некоторый опыт создания симуляций CFD, то вы знаете, что этот тип программного обеспечения обычно очень дорогое, и вам также понадобится мощный компьютер для его запуска.
Однако с SimScale все можно сделать из веб-браузера. Поскольку платформа основана на облаке, их серверы выполняют всю работу, и мы можем получить доступ к нашим проектным симуляциям из любого места, что значительно упрощает нашу жизнь как инженеров.
Итак, если вы инженер, дизайнер, архитектор или просто кто-то заинтересован в испытании технологии моделирования, я настоятельно рекомендую вам проверить это программное обеспечение, получить бесплатную учетную запись, перейдя по этой ссылке.
CFD конструкция воздуховодов стандартная и оптимизированная
Теперь, если мы посмотрим на сравнение двух конструкций, мы увидим стандартную конструкцию слева и более эффективную конструкцию справа, оптимизированную с помощью simscale. В обеих конструкциях используется скорость воздуха 5 м / с, цвета представляют скорость: синий означает низкую скорость, а красный — области высокой скорости.
Стандартный дизайн воздуховодов
Из цветовой шкалы скорости и линий тока видно, что на рисунке слева входящий воздух прямо ударяет по резким поворотам, присутствующим в системе, что вызывает увеличение статического давления. Резкие повороты вызывают появление большого количества рециркуляционных зон внутри воздуховодов, что препятствует плавному движению воздуха.
Тройник на дальнем конце главного воздуховода заставляет воздух внезапно делиться и менять направление. Здесь наблюдается большой обратный поток, который снова увеличивает статическое давление и снижает количество подаваемого воздуха.
Высокая скорость в главном воздуховоде, вызванная резкими поворотами и резкими изгибами, снижает поток в 3 ответвления на оставил.
Оптимизированная конструкция воздуховодов с энергоэффективностью
Если теперь мы сосредоточимся на оптимизированной конструкции справа, мы увидим, что используемые фитинги имеют гораздо более гладкий профиль без внезапных препятствий, рециркуляции или обратного потока, что значительно улучшает скорость воздушного потока в системе. В дальнем конце основного воздуховода воздух делится на две ветви через пологую изогнутую тройниковую секцию. Это позволяет воздуху плавно менять направление и, таким образом, не происходит резкого увеличения статического давления, а скорость потока воздуха в комнаты резко увеличивается.
Три ответвления в главном воздуховоде теперь получают равный воздушный поток, что значительно улучшает конструкцию. Это связано с тем, что дополнительная ветвь теперь питает три меньшие ветви, позволяя некоторой части воздуха плавно отделяться от основного потока и поступать в эти меньшие ветви.
С учетом этих соображений мы можем вернуться к конструкции воздуховода.
Этикетки для воздуховодов и фитингов
Теперь нам нужно пометить каждую секцию воздуховодов, а также фитинги буквой. Обратите внимание, что мы разрабатываем здесь только очень простую систему, поэтому я включил только воздуховоды и базовую арматуру, я не включил такие вещи, как решетки, впускные отверстия, гибкие соединения, противопожарные клапаны и т. Д.
Теперь мы хотим сделать стол с строки, помеченные как в примере. Каждому воздуховоду и штуцеру нужен отдельный ряд. Если воздушный поток разделяется, например, в тройнике, тогда нам нужно добавить линию для каждого направления, мы увидим это позже в статье.
Просто добавьте буквы в отдельные строки и укажите, какой тип фитинга или воздуховода соответствует.
Диаграмма расхода воздуха в воздуховодах
Мы можем начать вводить некоторые данные, сначала мы можем включить объемный расход для каждого из ответвлений, это просто, так как это просто объемный расход для помещения, которое он обслуживает. Вы можете видеть на диаграмме, которую я заполнил.
Схема воздуховодов Скорость потока в главном воздуховоде
Затем мы можем приступить к определению размеров главных воздуховодов. Для этого убедитесь, что вы начинаете с самого дальнего главного воздуховода.Затем мы просто складываем объемные расходы для всех ответвлений ниже по потоку. Для главного воздуховода G мы просто суммируем ветви L и I. Для D это просто сумма L I и F, а для воздуховода A — это сумма L, I, F и C. Просто введите их в таблицу.
По черновому чертежу мы измеряем длину каждой секции воздуховода и заносим ее в таблицу.
Размеры воздуховодов — Как определить размеры воздуховодов
Для определения размеров воздуховодов вам понадобится таблица размеров воздуховодов. Вы можете получить их у производителей воздуховодов или в отраслевых организациях, таких как CIBSE и ASHRAE.Если у вас его нет, вы можете найти их по следующим ссылкам. Ссылка 1 и Ссылка 2
Эти диаграммы содержат много информации. Мы можем использовать их, чтобы найти падение давления на метр, скорость воздуха, объемный расход, а также размер воздуховода. Схема диаграммы может немного отличаться в зависимости от производителя, но в этом примере вертикальные линии показывают падение давления на метр воздуховода. Горизонтальные линии показывают объемный расход. Нисходящие диагональные линии соответствуют скорости, восходящие диагональные линии — диаметру воздуховода.
Мы начинаем подбирать размеры с первого главного воздуховода, который является участком А. Чтобы ограничить шум в этом разделе, мы укажем, что он может иметь максимальную скорость только 5 м / с. Мы знаем, что для этого воздуховода также требуется объемный расход 0,79 м3 / с, поэтому мы можем использовать скорость и объемный расход, чтобы найти недостающие данные.
Пример размера воздуховода
Возьмем диаграмму и прокрутим ее снизу слева, пока не достигнем объемного расхода 0,79 м3 / с. Затем мы определяем точку, где линия скорости составляет 5 м / с, и проводим линию поперек, пока не достигнем ее.Затем, чтобы найти перепад давления, мы проводим вертикальную линию вниз от этого пересечения. В данном случае мы видим, что он составляет 0,65 па на метр. Так что добавьте эту цифру в диаграмму. Поскольку мы используем метод равного падения давления, мы можем использовать это падение давления для всех длин воздуховодов, поэтому заполните и их. Затем мы снова прокручиваем вверх и выравниваем наше пересечение с направленными вверх диагональными линиями, чтобы увидеть, что для этого требуется воздуховод диаметром 0,45 м, поэтому мы также добавляем его в таблицу.
Нам известны объемный расход и падение давления, поэтому теперь мы можем рассчитать значения для секции C, а затем для остальных воздуховодов.
Для остальных воздуховодов мы используем тот же метод.
Определение размеров воздуховода, метод равного давления
На диаграмме мы начинаем с рисования линии от 0,65 Па / м на всем протяжении вверх, а затем проводим линию поперек нашего требуемого объемного расхода, в данном случае для секции C нам нужно 0,21 м3 / с . На этом пересечении мы проводим линию, чтобы найти скорость, и мы видим, что она попадает в пределы линий 3 и 4 м / с, поэтому нам нужно оценить значение, в этом случае оно составляет около 3,6 м / с, поэтому мы добавляем что к диаграмме.Затем мы рисуем еще одну линию на другой диагональной сетке, чтобы найти диаметр нашего воздуховода, который в данном случае составляет около 0,27 м, и мы тоже добавим его в таблицу.
Повторяйте этот последний процесс для всех оставшихся воздуховодов и ответвлений, пока таблица не будет заполнена.
Теперь найдите общие потери в воздуховоде для каждого воздуховода и ответвления. Это очень легко сделать, просто умножив длину воздуховода на падение давления на метр. В нашем примере мы обнаружили, что оно составляет 0,65 Па / м. Проделайте это со всеми воздуховодами и ответвлениями на столе.
Подбор размеров фитингов для воздуховодов
Первый фитинг, который мы рассмотрим, это изгиб 90 * между воздуховодами J и L
Для этого мы ищем наш коэффициент потерь для изгиба от производителя или промышленного органа, вы можете найти, что нажав на эту ссылку.
Коэффициент потери давления в фитинге изгиба воздуховода
В этом примере мы видим, что коэффициент равен 0,11
Затем нам нужно рассчитать динамические потери, вызванные изгибом, изменяющим направление потока. Для этого мы используем формулу Co, умноженную на rho, умноженную на v в квадрате, деленную на 2, где co — наш коэффициент, rho — плотность воздуха, а v — скорость.
Формула потери давления на изгибе воздуховода
Мы уже знаем все эти значения, поэтому, если мы опустим цифры, мы получим ответ 0,718 паскаля. Так что просто добавьте это в таблицу. (Посмотрите видео внизу страницы, чтобы узнать, как это вычислить).
Потери давления на тройнике в воздуховоде
Следующий фитинг, который мы рассмотрим, это тройник, который соединяет основной воздуховод с ответвлениями. Мы будем использовать пример тройника с буквой H между G и J в системе. Теперь для этого нам нужно учитывать, что воздух движется в двух направлениях, прямо и также сворачивает в ответвление, поэтому нам нужно выполнить расчет для обоих направлений.
Если мы посмотрим на воздух, движущийся по прямой, то сначала мы найдем соотношение скоростей, используя формулу скорости на выходе, деленной на скорость на входе. В этом примере выход воздуха составляет 3,3 м / с, а входящий воздух — 4 м / с, что дает us 0,83
Затем мы выполняем еще один расчет, чтобы найти отношение площадей, для этого используется формула: диаметр вне квадрата, деленный на диаметр в квадрате. В этом примере выходной диаметр составляет 0,24 м, а внутренний диаметр — 0,33 м, поэтому, если мы возведем их в квадрат, а затем разделим, мы получим 0. 53
Теперь мы ищем фитинги, которые мы используем, от производителя или отраслевого органа, снова ссылка здесь для этого.
Размер тройника для воздуховода
В руководствах мы находим две таблицы, одна из которых зависит от направления потока. Мы используем прямое направление, поэтому определяем ее местоположение и затем просматриваем каждое соотношение, чтобы найти коэффициент потерь. Здесь вы можете увидеть, что оба рассчитанных нами значения попадают между значениями, указанными в таблице, поэтому нам необходимо выполнить билинейную интерполяцию. Чтобы сэкономить время, мы просто воспользуемся онлайн-калькулятором, чтобы найти это, ссылка здесь (посмотрите видео, чтобы узнать, как выполнить билинейную интерполяцию).
Мы заполняем наши значения и находим ответ 0,143
Расчет потери давления в тройнике
Теперь мы рассчитываем динамические потери для прямого пути через тройник, используя формулу co, умноженную на rho, умноженную на v в квадрате, деленную на 2. Если мы опускаем наши значения и получаем ответ 0,934 паскаля, так что добавьте это в таблицу.
Затем мы можем рассчитать динамические потери для воздуха, который превращается в изгиб. Для этого мы используем те же формулы, что и раньше. Выходная скорость рассчитывается путем вычисления нашего отношения скоростей.Затем мы находим соотношение площадей, используя формулу: диаметр вне квадрата, деленный на диаметр в квадрате. Мы берем наши значения из нашей таблицы и используем 3,5 м / с, разделенные на 4 м / с, чтобы получить 0,875 для отношения скоростей, и мы используем 0,26 м в квадрате, деленные на 0,33 м в квадрате, чтобы получить 0,62 для отношения площадей.
Изгиб фитинга тройника с потерями
Затем мы используем таблицу изгиба для тройника, опять же между значениями, указанными в таблице, поэтому нам нужно найти числа, используя билинейную интерполяцию. Мы опускаем значения, чтобы получить ответ 0.3645 паскалей. Так что просто добавьте это в таблицу.
Теперь повторите этот расчет для других тройников и фитингов, пока таблица не заполнится.
Поиск индексного участка — размер воздуховода
Затем нам нужно найти индексный участок, который является участком с наибольшим падением давления. Обычно это самый длинный пробег, но также может быть пробег с наибольшим количеством приспособлений.
Это легко найти, сложив все потери давления от начала до выхода каждой ветви.
Например, чтобы добраться от A до C, мы теряем 5.04 Па
A (1,3 Па) + B (1,79 Па) + C (1,95 Па)
От A до F мы теряем 8,8 Па
A (1,3 Па) + B (1,7 Па) + D (1,3 Па) + E ( 2,55 Па) + F (1,95)
От A до I мы теряем 10,56
A (1,3 Па) + B (1,7 Па) + D (1,3 Па) + E (1,34 Па) + G (2,6 Па) + H ( 0,36 Па) + I (1,95 Па)
От A до L мы теряем 12,5 Па
A (1,3 Па) + B (1,7 Па) + D (1,3 Па) + E (1,34 Па) + G (2,6 Па) + H (0,93 Па) + J (0,65 Па) + K (0,72 Па) + L (1,95 Па)
Следовательно, вентилятор, который мы используем, должен преодолевать пробег с наибольшими потерями, а именно A — L с 12.5pa, это индексный прогон.
Заслонки воздуховода — балансировка системы
Чтобы сбалансировать систему, нам необходимо добавить заслонки в каждую из ветвей, чтобы обеспечить равный перепад давления во всех помещениях, чтобы достичь проектных расходов в каждой комнате.
Мы можем рассчитать, какой перепад давления должен обеспечивать каждый демпфер, просто вычитая потери в ходе прогона из индекса.
От A до C составляет 12,5 Па — 5,04 Па = 7,46 Па
От A до F составляет 12,5 Па — 8,8 Па = 3,7 Па
От A до I составляет 12.5 Па — 10,56 Па = 1,94 Па
И это наша система воздуховодов. Мы сделаем еще один урок, посвященный дополнительным способам повышения эффективности системы воздуховодов.
Доступен новый калькулятор размеров воздуховодов
Контактное лицо для СМИ:
Аллен Хейнс
404.446.1677
[email protected]
ATLANTA (20 декабря 2016 г.) — Новый калькулятор размеров воздуховодов от ASHRAE и Института распределения воздуха (ADI) позволяет разработчикам систем распределения воздуха HVAC более точно определять размеры воздуховодов, особенно гибких воздуховодов при различной степени сжатия, на основе результаты исследования.
Калькулятор размеров воздуховода — это быстрый справочный инструмент для приблизительного определения размеров воздуховодов и эквивалентных размеров воздуховодов из листового металла по сравнению с гибкими воздуховодами. В калькуляторе используется информация из исследовательского проекта ASHRAE 1333 «Меры эффективности воздуховодов HVAC», который был разработан при финансовой поддержке ASHRAE и ADI. Технический комитет ASHRAE 5.2, Дизайн воздуховодов, спонсировал проект.
«Хотя калькулятор напоминает колесо, подобное тому, что использовалось во времена правил скольжения, он включает три новых поля для эквивалентных размеров воздуховода», — сказал Крис Ван Райт, разработчик калькулятора.«Эти новые поля помогают продемонстрировать значительную потерю воздушного потока из-за неправильной установки гибких воздуховодов».
В калькуляторе есть поля для 4, 15 и 30 процентов сжатия в гибких воздуховодах. Ван Райт отмечает, что расчеты, использованные для создания этих эталонов размеров, основаны на прямолинейном сжатии, которое выполняется в лаборатории на плоской поверхности. Устанавливаемые на месте гибкие воздуховоды с изгибами, перегибами и чрезмерной длиной будут иметь дополнительное сопротивление, что приведет к уменьшению воздушного потока.
«Использование этого инструмента позволяет проектировщикам воздуховодов учитывать неоптимальную установку и дает более точное соответствие конструкции установленным характеристикам», — сказал Ван Райт.
Исследование ASHRAE количественно оценило эффекты сжатия (не растяжения) гибкого воздуховода, что увеличивает шероховатость и, следовательно, потери на трение внутри гибкого воздуховода. Тестирование воздушного потока проводится в соответствии с протоколами, предписанными стандартом ANSI / ASHRAE 120-2008 «Метод тестирования для определения гидравлического сопротивления воздуховодов и фитингов HVAC».
Испытания в Национальной лаборатории Лоуренса в Беркли и Техасском университете A&M вместе с анализом данных, проведенным Техническим университетом Теннесси, позволили количественно оценить неблагоприятное воздействие сжатия на воздушный поток. Эти корреляции полностью совпадают с уравнениями, опубликованными в главе 21 Справочника ASHRAE 2013 г. «Основы», поэтому уравнения были использованы для создания нового калькулятора, сказал он.
Калькулятор размеров воздуховода показывает единицы измерения дюйм-фунт (I-P) с одной стороны и международную систему единиц (SI) с другой.
Стоимость калькулятора составляет 34 доллара США для членов ASHRAE (40 долларов США, не являющиеся членами). Чтобы сделать заказ, посетите сайт www.ashrae.org/bookstore или свяжитесь с центром обслуживания клиентов ASHRAE по телефону 1-800-527-4723 (США и Канада) или 404-636-8400 (по всему миру) или по факсу 678-539-2129.
О компании ASHRAE
Компания ASHRAE, основанная в 1894 году, представляет собой глобальное общество, способствующее повышению благосостояния людей с помощью устойчивых технологий для искусственной среды.
Как посчитать площадь воздуховода прямоугольного сечения, формула
Перед созданием вентиляционной системы особое значение уделяется правильной планировке и расчету всех необходимых параметров. Наиболее важным из таких параметров считается площадь будущего воздуховода. Чтобы выполнить подобную задачу квалифицированные мастера учитывают такие параметры, как:
- — объемы воздуха;
- — скорость воздушных масс;
- — потери давления.
Количество материалов
Выполняются подобные расчеты с целью определения количества требуемых материалов. Это зависит от:
- — габаритов канала;
- — количества комнат;
- — конструктивных особенностей будущей вентиляционной системы.
Измеряя величину сечения, необходимо учесть особо важную деталь. Чем больше такая величина, тем более медленно будут двигаться по трубам воздушные массы. Многие неопытные домовладельцы не знают, как посчитать площадь воздуховода прямоугольного сечения. Профессиональные мастера используют для подобной задачи специальную формулу. Системы с высокими показателями сечения отличаются низким показателем аэродинамического шума. Следовательно, принудительная вентиляция в подобных системах потребует меньших расходов на электроэнергию.
Каждая проектируемая вентиляционная система имеет особые:
- — базовые габариты;
- — конфигурацию;
- — дополнительные элементы;
- — конструкцию.
Перечисленные критерии необходимо учесть при подсчете суммарной площади требуемого материала, с использованием которого будет создаваться воздуховод. Прямоугольные конструкции вентиляционных систем требуют определения:
- — суммарной длины;
- — высоты;
- — ширины.
Полученные показатели позволяют специалистам выбрать оптимальное количество материалов. Общие подсчеты также предполагают учет:
- — полуотводов;
- — отводов.
Перечисленные детали могут иметь различную конфигурацию. Если круглые элементы требуют знания диаметра будущего воздуховода, то для вычисления площади прямоугольных систем, необходим учет:
- — высоты отвода;
- — угла поворота;
- — ширины изделия.
Любой подобный расчет предполагает использование специалистом конкретной формулы. Для обустройства качественной вентиляционной системы опытные мастера чаще всего выбирают оцинкованные фасонные элементы и воздуховоды, обладающие продленным ресурсом. Расчет площади считается наиболее важным параметром при сооружении прямоугольной вентиляции. Полученные показатели позволяют профессионалам создавать оптимальные системы, которые прослужат многие годы.
Расчет площади воздуховода для систем вентиляции
Вычисление количества и площади воздуховодов, которые являются составной частью вентиляционной системы, — это один из главных этапов монтажа. Все процедуры основаны на определении размерных характеристик с учетом расхода воздуха, который будет проходить через воздуховод. Нередко также требуется заранее рассчитать всю площадь воздуховодов. Эти процессы стоит рассмотреть более подробно.Какие данные используются при расчете вентиляции?
Первоначально требуется отметить, что во внимание принимаются ключевые показатели самого сооружения. К ним относится назначение здания, внутренняя площадь комнат, число сотрудников и посетителей, которые постоянно пребывают в сооружении. Если планируется устанавливать вентиляционную систему в промышленном сооружении, обязательно учитываются особенности ведения производственного процесса. При проектировании вентиляционной системы руководствуются определенным перечнем нормативной документации. К ним относятся:
- СНиП 41-01-2003.
- СП 7.13130.2013
- ГОСТ 12.1.005-88 и пр.
Как рассчитывается площадь воздуховодов с разным сечением?
Квадратура вентиляционных труб с разными типами сечения обладает своими особенностями. Это обязательно учитывается при расчете площади, так как расход воздушных масс у каждой вентиляционной системы может значительно отличаться. Это не зависит от скорости перемещения воздуха в трубах. Осуществляя расчет систем вентиляции большой протяженности и с множеством разветвлений, обязательно учитывается уровень влажности и температура окружающего пространства, если она более +20 градусов Цельсия. Нужно учесть также аэродинамические показатели самих воздуховодов и фасонных деталей. Параметры зависят от формы изделия и материала, из которого оно изготовлено. Расчет вентиляции осуществляется с применением поправочных коэффициентов и специальных формул. Важно знать, что параметры квадратуры вентиляционного канала и скорость перемещения воздушных масс имеют обратную пропорциональность. Если сказать иными словами, при большом сечении вентиляционной трубы требуется меньшая скорость транспортировки воздушных масс, которые нужны для обеспечения подачи необходимого объема. Расчет площади элкментов системы вентиляции осуществляется с учетом двух параметров, которые берутся из нормативно-правовой базы. Стоит отметить, что в фактическом плане такие параметры описывают кратность обмена воздушных масс. К ним относятся:
- Расход воздушных масс (R). Параметр измеряется в м3/час.
- Скорость движения воздушных масс (V). Параметр измеряется в м/с.
S = R/k × V
Здесь k является коэффициентом, который равен 3600.
Есть большое количество и альтернативных формул, где оперируются другие коэффициенты, но ключевые параметры остаются неизменными. Пример:S = R × 2,778/V
Если запланировано использовать воздуховоды с большим сечением, вы можете рассчитывать на значительное снижение шума при движении воздушных потоков. Также существенно снижаются затраты на электроэнергию, которая необходима для организации перемещения. В этом случае материалоемкость будет существенно больше, поэтому увеличивается итоговая стоимость комплектующих деталей для вентиляционных систем. На эффективность передвижения воздушных масс может повлиять и форма сечения воздуховодов. При прохождении прямоугольных конструкций воздушные потоки сталкиваются с большим сопротивлением, но монтировать такие воздуховоды значительно проще. Особенно это актуально при необходимости создания системы вентиляции в стесненных условиях, так как прямоугольные воздуховоды можно закрепить впритык со стенами и иными конструкциями. Круглые изделия отличаются оптимальными аэродинамическими качествами, но не всегда способны вписаться в интерьер помещения. Имеются в продаже конструкции с хорошими эстетическими свойствами, но их покупка приведет к значительным расходам. В качестве альтернативного варианта потребителям предлагаются воздуховоды с овальной формой. Именно они сочетают в себе оптимальную эффективность эксплуатации эргономичность.Расчет площади воздуховодов при помощи калькуляторов
Если углубиться в тематику расчета системы вентиляции, разобраться со всеми нюансами не составит труда. Но есть и более простой, альтернативный вариант – использование наших калькуляторов для расчета площади элементов системы вентиляции. Они позволят исключить вероятность совершения ошибки, которая по итогу может обойтись дорого. Пользоваться специальными калькуляторами весьма просто. Достаточно указать требуемые параметры и буквально через долю секунды вы получите показатели. Если самостоятельно разбираться в особенностях расчета системы вентиляции нет времени, лучше обратиться к специалистам компании «ВИНТЭЛ». Они имеют большой опыт в этом направлении.
Расчет площади воздуховодов различной формы и фасонных изделий
Содержание статьи
Производительность системы вентиляции напрямую зависит от правильности ее проектирования. Важнейшую роль в этом играет верный расчет площади воздуховодов. От него зависит:
- Беспрепятственное движение воздушного потока в нужных объемах, его скорость;
- Герметичность системы;
- Уровень шума;
- Расход электроэнергии.
Воздуховод
Для того чтобы узнать все нужные значения, можно обратиться в соответствующую компанию или же воспользоваться специальными программами (их можно легко отыскать в интернете). Однако, при необходимости, найти все необходимые параметры возможно и самостоятельно. Для этого существуют формулы.
Использование их довольно просто. Вам также достаточно вписать параметры вместо соответствующих букв и найти результат. Формулы помогут вам отыскать точные значения, с учетом всех индивидуальных факторов. Обычно они применяются при инженерных работах по проектированию системы вентиляции.
Вернуться к содержанию ↑Как найти верные значения
Для того чтобы произвести расчет площади сечения нам потребуется информация:
- О минимально необходимом воздушном потоке;
- О предельно возможной скорости воздушного потока.
Для чего нужен правильный расчет площади:
- Если скорость потока будет выше положенного предела, то это станет причиной падения давления. Эти факторы, в свою очередь, повысят расход электроэнергии;
- Аэродинамический шум и вибрации, если все выполнено верно, будут в пределах нормы;
- Обеспечение нужного уровня герметичности.
Воздуховод в разборе
Это также позволит повысить эффективность системы, поможет сделать ее долговечной и практичной. Нахождение оптимальных параметров сети – принципиально важный момент в проектировании. Только в этом случае система вентиляции прослужит долго, отлично справляясь со всеми своими функциями. Особенно это актуально для больших помещений общественного и производственного значения.
Чем большим будет сечение, тем ниже будет скорость воздушного потока. Это также уменьшит аэродинамический шум и расход электроэнергии. Но есть и минусы: стоимость таких воздуховодов будет выше, и конструкции не всегда можно установить в пространство над навесным потолком. Однако это возможно с прямоугольными изделиями, высота которых меньше. В то же время изделия круглой формы проще устанавливаются и обладают важными эксплуатационными преимуществами.
Что именно выбрать, зависит от ваших требований, приоритета экономии электроэнергии, самих особенностей помещения. Если вы желаете сэкономить электроэнергию, сделать шум минимальным и у вас есть возможность установить крупную сеть, выбирайте систему прямоугольной формы. Если же приоритетом является простота установки или в помещении сложно установить конструкции прямоугольного типа, вы можете выбрать изделия круглого сечения.
Расчет площади выполняется по следующей формуле:
Sc = L * 2, 778/V
Sc здесь – площадь сечения;
L – расход воздушного потока в метрах в кубе/час;
V – скорость воздушного потока в воздуховоде в метрах в секунду;
2,778 – необходимый коэффициент.
Трубы для воздуховода
После того, как расчет площади выполнен, вы получите результат в квадратных сантиметрах.
Фактическую площадь воздуховодов помогут определить следующие формулы:
Для круглых: S = Пи * D в квадрате /400
Для прямоугольных: S = A * B /100
S здесь – фактическая площадь сечения;
D – диаметр конструкции;
A и B – высота и ширина конструкций.
Как определить потери давления
Расчет сопротивления сети позволяет принять во внимание потери давления. Поток воздуха, во время движения, испытывает определенное сопротивление. Для его преодоления важно соответствующее давление. Давление это измеряется в Па.
Для того чтобы узнать нужный параметр, потребуется следующая формула:
P = R * L + Ei * V2 * Y/2
R здесь – удельные сокращения давления на трение в сети;
L – протяженность воздуховодов;
Ei – коэффициент местных потерь в сети в сумме;
V – скорость воздуха на рассматриваемом участке сети;
Y – плотность воздуха.
R можно узнать в соответствующем справочнике. Ei зависит от местного сопротивления.
Как узнать оптимальную мощность нагревателя воздуха
Для того чтобы узнать оптимальную мощность нагревателя воздуха, требуются показатели нужной температуры воздуха и самой минимальной температуры снаружи помещения.
Составные элементы воздуховода
Минимальная температура в системе вентиляции – 18 градусов. Температура снаружи помещения зависит от климатических условий. Для квартир оптимальная мощность нагревателя обычно составляет от 1 до 5 кВт, для офисных помещений – 5-50 кВт.
Точный расчет мощности нагревателя в сети позволит выполнить следующая формула:
P = T * L * Cv /1000
P здесь – мощность нагревателя в кВт;
T – разность температуры воздуха внутри и снаружи помещения. Это значение можно найти в СНиП;
L – производительность системы вентиляции;
Cv – теплоемкость, равная 0,336 Вт*ч/метры квадратные/градус по Цельсию.
Дополнительная информация
Для того чтобы узнать нужные параметры фасонных изделий и самой конструкции, не обязательно самостоятельно выполнять расчет частей сети вентиляции. Для нахождения всех значений существуют специальные программы. Вам достаточно ввести требуемые числа, и вы получите результат за доли секунды.
Рассчитываются значения креплений, фасонных частей, воздуховодов обычно инженерами, занимающимися проектированием систем вентиляции. Но и они применяют таблицы, в которых имеются все требуемые коэффициенты, формулы, значения.
Также существует специальная таблица эквивалентных диаметров воздуховодов. Это таблица диаметров воздуходувов круглой формы, в которых снижение давления на трение равна снижению давления в конструкциях прямоугольной формы. Эквивалентный диаметр конструкции воздуходува требуется тогда, когда необходимо произвести расчет прямоугольных воздуходувов, и при этом применяется таблица для изделий круглой формы.
Стальные трубы для воздуховода
Известно три способа узнать эквивалентное значение:
- Ориентируясь на скорость;
- По поперечному сечению;
- По расходу.
Все эти значения связаны с шириной и другими значениями воздуховодов. Для каждого из параметров применяется своя методика пользования таблицами. Итоговый результат – значение потери давления на трение. Вне зависимости от того, какую методику вы применили, результат получается одинаковым.
В интернете вы легко сможете найти таблицы, программы, справочники, необходимые для подсчета площади и иных параметров самих конструкций, креплений. Самое простое – воспользоваться специальными программами. В этом случае от вас требуется только ввод нужных значений. При этом результаты вы получите довольно точные.
Вернуться к содержанию ↑Пример создания воздуховодов
Автор | Поделитесь | Оцените | Виктор Самолин |
---|
Сравнение круглых и прямоугольных воздуховодов
В этой статье мы расскажем о преимуществах и недостатках использования воздуховодов круглого и прямоугольного сечения.
Неотъемлемой частью вентиляционных систем является магистраль, по ней и доставляется воздух из пункта «А» в пункт «Б». Она состоит из воздуховодов, которые бывают двух видов – круглые и прямоугольные. Давайте разберемся, какие воздуховоды подойдут для решения Вашей задачи.
Круглые воздуховоды
Основным преимуществом воздуховодов круглого сечения является герметичность. Спирально-навивные воздуховоды имеют плотные швы, которые дают им дополнительную жесткость, а за счет того, что при соединении воздуховодов используется ниппель. Все фасонные изделия также имеют зауженное сечение — минимизируются потери транспортируемого воздуха.
«Живое » сечение круглого воздуховода охватывает весь его периметр, что совместно с плавными поворотами фасонных изделий позволяет использовать его аэродинамические свойства с максимальным КПД, и минимальной потерей давления. Это напрямую отразится на стоимости вентиляционной установки и количестве потребляемой ей электроэнергии в пользу потребителя.
Не менее важным преимуществом является цена. Круглые воздуховоды значительно дешевле прямоугольных, потому что периметр прямоугольного воздуховода больше чем длина окружности круглого с такой же площадью сечения , соответственно на изготовление и дальнейшую изоляцию используется меньше материалов. Производство круглых воздуховодов на данный момент полностью автоматизировано. Это тоже позволяет снизить издержки при их изготовлении.
Собирать системы из таких воздуховодов тоже значительно проще – ниппель вставляется в воздуховод, скручивается саморезами в нескольких местах и проклеивается алюминиевым скотчем.
Основной недостаток круглых воздуховодов — это габариты. В помещениях с низкими потолками, узких шахтах и т.п. выгоднее использовать прямоугольные воздуховоды. По ГОСТ 24751-81 допустимое соотношение сторон прямоугольных воздуховодов 6,3. Так, круглый воздуховод диаметром 315 мм можно заменить на прямоугольный 550х150мм, и сэкономить 165 мм пространства. Но тут важно учесть, что прямоугольные воздуховоды имеют выступы в виде фланцевых соединений.
С некоторыми неудобствами можно столкнуться при монтаже воздуховодов круглого сечения. Смонтировать врезку по месту, или изготовить недостающее фасонное изделие сможет только опытный монтажник, и для этого понадобится специальное оборудование.
Прямоугольные воздуховоды
Что касается воздуховодов прямоугольного сечения, то пожалуй, их единственным преимуществом является возможность маневрирования соотношением сторон, чтобы вместить систему в ограниченное пространство.
Эквивалентный диаметр — диаметр круглого воздуховода, в котором потеря давления на трение при одинаковой длине равна его потере в прямоугольном воздуховоде.
i Эквивалентный диаметр прямоугольного воздуховода можно вычислить по формуле:
de = 1.30 x ((a * b)0.625) / (a + b)0.25) (1), где
de = эквивалентный диаметр (мм)
a = длина стороны A (мм)
b = длина стороны B (мм)
Это означает что площадь сечения прямоугольного воздуховода будет больше площади сечения круглого воздуховода с эквивалентным диаметром
Если S1 = S2, то A+A+B+B (периметр) > 2*π*R (длина окружности)
Надеемся, что наша статья будет полезной для Вас при подборе воздуховодов!
Автор статьи: Сергей Шаповалов
Заместитель генерального директора
по производству ООО “ЦВС”.
кругов: Площадь
А круг — это множество всех точек на плоскости на заданном расстоянии (называемое радиус ) из заданной точки (называемой центром).
Отрезок, соединяющий две точки на окружности и проходящий через центр, называется отрезком. диаметр круга.
Очевидно, что если d представляет длину диаметра и р представляет длину радиуса, тогда d знак равно 2 р .
В длина окружности C круга — это расстояние по внешней стороне. Для любого круга эта длина связана с радиусом р по уравнению
C знак равно 2 π р
куда π (произносится » Пи «) является иррациональный константа примерно равна 3,14 .
В площадь круга задается формулой
А знак равно π р 2 .
Пример 1:
Какова площадь круглого стола диаметром 6 футов?
При этом диаметр круглого стола равен 6 футов
Итак, радиус круглого стола равен половине диаметра. То есть радиус 3 футов
Используйте формулу для площади круга, А знак равно π р 2 , куда р это радиус круга.
Заменять 3 для р в формуле.
А знак равно π ( 3 ) 2 знак равно π ( 9 ) ≈ 28.26
Следовательно, площадь круглого стола составляет около 28,26 футов 2
Пример 2:
Какова площадь заштрихованной области на показанном рисунке?
Ясно отмечено, что больший круг имеет радиус 11 см. Итак, его площадь составляет
А большой круг знак равно π р 2 знак равно π ( 11 ) 2 знак равно 121 π ≈ 379.94 см 2
А как насчет меньшего круга? Ну а расстояние от центра до края 11 см; диаметр меньшего круга 11 — 4 знак равно 7 см. Так что радиус меньшего круга 3.5 см.
А маленький круг знак равно π р 2 знак равно π ( 3.5 ) 2 знак равно 12,25 π ≈ 39.47 см 2
Чтобы получить площадь заштрихованной области, вычтите площадь меньшего круга из площади большего круга.
379,94 — 38,47 знак равно 341,47
Следовательно, площадь заштрихованной области составляет около 341,47 см 2 .
Расход и его отношение к скорости
Цели обучения
К концу этого раздела вы сможете:
- Рассчитать расход.
- Определите единицы объема.
- Опишите несжимаемые жидкости.
- Объясните последствия уравнения неразрывности.
Скорость потока Q определяется как объем жидкости, проходящей через некоторое место через область в течение периода времени, как показано на рисунке 1. В символах это может быть записано как
[латекс] Q = \ frac {V} {t} \\ [/ latex],
, где V — объем, а t — прошедшее время.Единица СИ для расхода — м 3 / с, но обычно используются другие единицы для Q . Например, сердце взрослого человека в состоянии покоя перекачивает кровь со скоростью 5 литров в минуту (л / мин). Обратите внимание, что литровый (L) равен 1/1000 кубического метра или 1000 кубических сантиметров (10 -3 м 3 или 10 3 см 3 ). В этом тексте мы будем использовать любые метрические единицы, наиболее удобные для данной ситуации.
Рисунок 1.Скорость потока — это объем жидкости в единицу времени, проходящий мимо точки через область A . Здесь заштрихованный цилиндр жидкости проходит через точку P по однородной трубе за время t . Объем цилиндра составляет Ad , а средняя скорость составляет [латекс] \ overline {v} = d / t \\ [/ latex], так что расход составляет [латекс] Q = \ text {Ad} / t. = A \ overline {v} \\ [/ латекс].
Пример 1. Расчет объема по скорости потока: сердце накачивает много крови за всю жизнь
Сколько кубических метров крови перекачивает сердце за 75 лет жизни, если средняя скорость потока равна 5. {3} \ text {L}} \ right) \ left (5.{3} \ end {array} \\ [/ latex].
ОбсуждениеЭто количество около 200 000 тонн крови. Для сравнения, это значение примерно в 200 раз превышает объем воды, содержащейся в 6-полосном 50-метровом бассейне с дорожками.
Расход и скорость связаны, но совершенно разными физическими величинами. Чтобы сделать различие ясным, подумайте о скорости течения реки. Чем больше скорость воды, тем больше скорость течения реки. Но скорость потока также зависит от размера реки.Быстрый горный ручей несет гораздо меньше воды, чем, например, река Амазонка в Бразилии. Точное соотношение между расходом Q и скоростью [латекс] \ bar {v} \\ [/ latex] составляет
[латекс] Q = A \ overline {v} \\ [/ latex],
, где A — площадь поперечного сечения, а [latex] \ bar {v} \\ [/ latex] — средняя скорость. Это уравнение кажется достаточно логичным. Это соотношение говорит нам, что скорость потока прямо пропорциональна величине средней скорости (далее называемой скоростью) и размеру реки, трубы или другого водовода.Чем больше размер трубы, тем больше площадь его поперечного сечения. На рисунке 1 показано, как получается это соотношение. Заштрихованный цилиндр имеет объем
.V = Ad,
, который проходит через точку P за время t . Разделив обе стороны этого отношения на т , получим
[латекс] \ frac {V} {t} = \ frac {Ad} {t} \\ [/ latex].
Отметим, что Q = V / t и средняя скорость [latex] \ overline {v} = d / t \\ [/ latex].Таким образом, уравнение принимает вид [латекс] Q = A \ overline {v} \\ [/ latex]. На рис. 2 показана несжимаемая жидкость, текущая по трубе с уменьшающимся радиусом. Поскольку жидкость несжимаема, одно и то же количество жидкости должно пройти через любую точку трубы за заданное время, чтобы обеспечить непрерывность потока. В этом случае, поскольку площадь поперечного сечения трубы уменьшается, скорость обязательно должна увеличиваться. Эту логику можно расширить, чтобы сказать, что скорость потока должна быть одинаковой во всех точках трубы. В частности, для точек 1 и 2,
[латекс] \ begin {case} Q_ {1} & = & Q_ {2} \\ A_ {1} v_ {1} & = & A_ {2} v_ {2} \ end {cases} \\ [/ latex ]
Это называется уравнением неразрывности и справедливо для любой несжимаемой жидкости.Следствия уравнения неразрывности можно наблюдать, когда вода течет из шланга в узкую форсунку: она выходит с большой скоростью — это и есть назначение форсунки. И наоборот, когда река впадает в один конец водохранилища, вода значительно замедляется, возможно, снова набирая скорость, когда она покидает другой конец водохранилища. Другими словами, скорость увеличивается, когда площадь поперечного сечения уменьшается, и скорость уменьшается, когда увеличивается площадь поперечного сечения.
Рисунок 2.Когда трубка сужается, тот же объем занимает большую длину. Для того, чтобы тот же объем проходил через точки 1 и 2 за заданное время, скорость должна быть больше в точке 2. Процесс в точности обратим. Если жидкость течет в обратном направлении, ее скорость будет уменьшаться при расширении трубки. (Обратите внимание, что относительные объемы двух цилиндров и соответствующие стрелки вектора скорости не в масштабе.)
Поскольку жидкости по существу несжимаемы, уравнение неразрывности справедливо для всех жидкостей.Однако газы сжимаемы, поэтому уравнение следует применять с осторожностью к газам, если они подвергаются сжатию или расширению.
Пример 2. Расчет скорости жидкости: скорость увеличивается, когда труба сужается
Насадка радиусом 0,250 см присоединяется к садовому шлангу радиусом 0,900 см. Скорость потока через шланг и сопло составляет 0,500 л / с. Рассчитайте скорость воды (а) в шланге и (б) в форсунке.
СтратегияМы можем использовать соотношение между расходом и скоростью, чтобы найти обе скорости.{2}} = 1,96 \ text {m / s} \\ [/ latex].
Решение для (b)Мы могли бы повторить этот расчет, чтобы найти скорость в сопле [латекс] \ bar {v} _ {2} \\ [/ latex], но мы воспользуемся уравнением непрерывности, чтобы получить несколько иное представление. {2}} \ bar {v} _ {1} \\ [/ latex].{2}} 1,96 \ text {m / s} = 25,5 \ text {m / s} \\ [/ latex].
ОбсуждениеСкорость 1,96 м / с примерно подходит для воды, выходящей из шланга без сопел. Сопло создает значительно более быстрый поток, просто сужая поток до более узкой трубки.
Решение последней части примера показывает, что скорость обратно пропорциональна квадрату радиуса трубы, что дает большие эффекты при изменении радиуса. Мы можем задуть свечу на большом расстоянии, например, поджав губы, тогда как задувание свечи с широко открытым ртом совершенно неэффективно.Во многих ситуациях, в том числе в сердечно-сосудистой системе, происходит разветвление потока. Кровь перекачивается из сердца в артерии, которые подразделяются на более мелкие артерии (артериолы), которые разветвляются на очень тонкие сосуды, называемые капиллярами. В этой ситуации непрерывность потока сохраняется, но сохраняется сумма и скоростей потоков в каждом из ответвлений на любом участке вдоль трубы. Уравнение неразрывности в более общем виде принимает вид
[латекс] {n} _ {1} {A} _ {1} {\ overline {v}} _ {1} = {n} _ {2} {A} _ {2} {\ overline {v} } _ {2} \\ [/ latex],
, где n 1 и n 2 — количество ответвлений в каждой из секций вдоль трубы.
Пример 3. Расчет скорости потока и диаметра сосуда: разветвление сердечно-сосудистой системы
Аорта — это главный кровеносный сосуд, по которому кровь покидает сердце и циркулирует по телу. (а) Рассчитайте среднюю скорость кровотока в аорте, если скорость потока составляет 5,0 л / мин. Аорта имеет радиус 10 мм. (б) Кровь также течет через более мелкие кровеносные сосуды, известные как капилляры. Когда скорость кровотока в аорте составляет 5,0 л / мин, скорость кровотока в капиллярах составляет около 0.33 мм / с. Учитывая, что средний диаметр капилляра составляет 8,0 мкм м, рассчитайте количество капилляров в системе кровообращения.
СтратегияМы можем использовать [latex] Q = A \ overline {v} \\ [/ latex] для расчета скорости потока в аорте, а затем использовать общую форму уравнения непрерывности для расчета количества капилляров как всех другие переменные известны. {2} \ left (0.{9} \ text {capillaries} \\ [/ latex].
ОбсуждениеОбратите внимание, что скорость потока в капиллярах значительно снижена по сравнению со скоростью в аорте из-за значительного увеличения общей площади поперечного сечения капилляров. Эта низкая скорость обеспечивает достаточное время для эффективного обмена, хотя не менее важно, чтобы поток не становился стационарным, чтобы избежать возможности свертывания. Кажется ли разумным такое большое количество капилляров в организме? В активной мышце можно найти около 200 капилляров на мм 3 , или около 200 × 10 6 на 1 кг мышцы.На 20 кг мышц это составляет примерно 4 × 10 9 капилляров.
Сводка раздела
- Расход Q определяется как объем V , протекающий через момент времени t , или [латекс] Q = \ frac {V} {t} \\ [/ latex], где V объем и т время.
- Единица объема в системе СИ — м 3 .
- Другой распространенной единицей измерения является литр (л), который составляет 10 -3 м 3 .
- Расход и скорость связаны соотношением [латекс] Q = A \ overline {v} \\ [/ latex], где A — площадь поперечного сечения потока, а [латекс] \ overline {v} \\ [ / латекс] — его средняя скорость.
- Для несжимаемых жидкостей скорость потока в различных точках постоянна. То есть
[латекс] \ begin {case} Q_ {1} & = & Q_ {2} \\ A_ {1} v_ {1} & = & A_ {2} v_ {2} \\ n_ {1} A_ {1 } \ bar {v} _ {1} & = & n_ {2} A_ {2} \ bar {v} _ {2} \ end {case} \\ [/ latex].
Концептуальные вопросы
1. В чем разница между расходом и скоростью жидкости? Как они связаны?
2. На многих рисунках в тексте показаны линии тока. Объясните, почему скорость жидкости максимальна там, где линии тока находятся ближе всего друг к другу.(Подсказка: рассмотрите связь между скоростью жидкости и площадью поперечного сечения, через которую она протекает.)
3. Определите некоторые вещества, которые несжимаемы, а некоторые — нет.
Задачи и упражнения
1. Каков средний расход бензина в см 3 / с на двигатель автомобиля, движущегося со скоростью 100 км / ч, если он составляет в среднем 10,0 км / л?
2. Сердце взрослого человека в состоянии покоя перекачивает кровь со скоростью 5,00 л / мин. (a) Преобразуйте это в см 3 / с.(b) Какова эта скорость в м 3 / с?
3. Кровь перекачивается из сердца со скоростью 5,0 л / мин в аорту (радиусом 1,0 см). Определите скорость кровотока по аорте.
4. Кровь течет по артерии радиусом 2 мм со скоростью 40 см / с. Определите скорость потока и объем, который проходит через артерию за 30 с.
5. Водопад Хука на реке Вайкато — одна из самых посещаемых природных достопримечательностей Новой Зеландии (см. Рис. 3).В среднем река имеет скорость потока около 300 000 л / с. В ущелье река сужается до 20 м в ширину и в среднем 20 м в глубину. а) Какова средняя скорость реки в ущелье? b) Какова средняя скорость воды в реке ниже водопада, когда она расширяется до 60 м, а глубина увеличивается в среднем до 40 м?
Рис. 3. Водопад Хука в Таупо, Новая Зеландия, демонстрирует скорость потока. (Источник: RaviGogna, Flickr)
6. Основная артерия с площадью поперечного сечения 1.00 см 2 разветвляется на 18 артерий меньшего размера, каждая со средней площадью поперечного сечения 0,400 см 2 . Во сколько раз снижается средняя скорость крови при переходе в эти ветви?
7. (a) Когда кровь проходит через капиллярное русло в органе, капилляры соединяются, образуя венулы (маленькие вены). Если скорость кровотока увеличивается в 4 раза, а общая площадь поперечного сечения венул составляет 10,0 см 2 , какова общая площадь поперечного сечения капилляров, питающих эти венулы? (б) Сколько вовлечено капилляров, если их средний диаметр равен 10.0 мкм м?
8. Система кровообращения человека имеет примерно 1 × 10 9 капиллярных сосудов. Каждый сосуд имеет диаметр около 8 мкм м. Предполагая, что сердечный выброс составляет 5 л / мин, определите среднюю скорость кровотока через каждый капиллярный сосуд.
9. (a) Оцените время, необходимое для наполнения частного бассейна емкостью 80 000 л с использованием садового шланга, производящего 60 л / мин. (b) Сколько времени потребуется для заполнения, если вы сможете переправить в него реку среднего размера, текущую на высоте 5000 м 3 / с?
10.Скорость потока крови через капилляр с радиусом 2,00 × 10 -6 составляет 3,80 × 10 9 . а) Какова скорость кровотока? (Эта малая скорость дает время для диффузии материалов в кровь и из нее.) (B) Если предположить, что вся кровь в организме проходит через капилляры, сколько их должно быть, чтобы нести общий поток 90,0 см 3 / с? (Полученное большое количество является завышенной оценкой, но все же разумно.)
11. (a) Какова скорость жидкости в пожарном шланге с 9.Диаметр 00 см, пропускающий 80,0 л воды в секунду? б) Какая скорость потока в кубических метрах в секунду? (c) Вы бы ответили иначе, если бы соленая вода заменила пресную воду в пожарном шланге?
12. Диаметр главного всасывающего воздуховода воздухонагревателя составляет 0,300 м. Какова средняя скорость воздуха в воздуховоде, если его объем равен объему внутри дома каждые 15 минут? Внутренний объем дома эквивалентен прямоугольному массиву шириной 13,0 м на 20.0 м в длину на 2,75 м в высоту.
13. Вода движется со скоростью 2,00 м / с по шлангу с внутренним диаметром 1,60 см. а) Какая скорость потока в литрах в секунду? (b) Скорость жидкости в сопле этого шланга составляет 15,0 м / с. Каков внутренний диаметр сопла?
14. Докажите, что скорость несжимаемой жидкости через сужение, например, в трубке Вентури, увеличивается в раз, равный квадрату коэффициента уменьшения диаметра. (Обратное применимо к потоку из сужения в область большего диаметра.)
15. Вода выходит прямо из крана диаметром 1,80 см со скоростью 0,500 м / с. (Из-за конструкции крана скорость потока в потоке не меняется.) (A) Какова скорость потока в см 3 / с? (b) Каков диаметр ручья на 0,200 м ниже крана? Пренебрегайте эффектами поверхностного натяжения.
16. Необоснованные результаты Горный ручей имеет ширину 10,0 м и среднюю глубину 2,00 м. Во время весеннего стока расход в ручье достигает 100 000 м 3 / с.а) Какова средняя скорость потока в этих условиях? б) Что неразумного в этой скорости? (c) Что неразумно или непоследовательно в помещениях?
Глоссарий
- расход:
- сокращенно Q , это объем V , который проходит мимо определенной точки в течение времени t , или Q = V / t
- литр:
- единица объема, равная 10 −3 м 3
Избранные решения проблем и упражнения
1.2,78 см 3 / с
3. 27 см / с
5. (а) 0,75 м / с (б) 0,13 м / с
7. (а) 40.0 см 2 (б) 5.09 × 10 7
9. (а) 22 ч (б) 0,016 с
11. (а) 12,6 м / с (б) 0,0800 м 3 / с (в) Нет, не зависит от плотности.
13. (а) 0,402 л / с (б) 0,584 см
15. (а) 128 см 3 / с (б) 0,890 см
Формула расхода
Расход жидкости — это мера объема жидкости, которая движется за определенный промежуток времени.Скорость потока зависит от площади трубы или канала, по которому движется жидкость, и скорости жидкости. Если жидкость течет по трубе, площадь равна A = πr 2 , где r — радиус трубы. Для прямоугольника площадь равна A = wh , где w — ширина, а h — высота. Расход может быть измерен в метрах в кубе в секунду ( м 3 / с ) или в литрах в секунду ( л / с ).Литры чаще используются для измерения объема жидкости, и 1 м 3 / с = 1000 л / с .
расход жидкости = площадь трубы или канала × скорость жидкости
Q = Av
Q = расход жидкости ( м 3 / с или л / с )
A = площадь трубы или канала ( м 2 )
v = скорость жидкости ( м / с )
Формула расхода Вопросы:
1) Вода течет по круглой трубе с радиусом 0.0800 м . Скорость воды 3,30 м / с . Какой расход воды в литрах в секунду ( л / с, )?
Ответ: Расход зависит от площади круглой трубы:
A = πr 2
A = π (0,0800 м) 2
A = π (0,00640 м 2 )
A = 0,0201 м 2
Площадь трубы 0,0201 м 2 .Расход можно найти в м 3 / с по формуле:
Q = Av
Q = (0,0201 м 2 ) (3,30 м / с)
Q = 0,0663 м 3 / с
Расход можно преобразовать в литры в секунду с помощью: 1 м 3 / с = 1000 л / с.
Q = 66,3 л / с
Расход воды по круглой трубе 66,3 л / с.
2) Вода стекает по открытому прямоугольному желобу. Желоб 1,20 м шириной , глубина протекающей по нему воды 0,200 м . Скорость воды идет по круглой трубе с радиусом 0,0800 м . Скорость воды 5,00 м / с . Какой расход воды через желоб в литрах в секунду ( л / с) ?
Ответ: Скорость потока зависит от площади желоба, через которую протекает вода:
A = wh
А = (1.20 м) (0,200 м )
A = 0,240 м 2
Площадь воды, протекающей по желобу, составляет 0,240 м 2 . Расход можно найти в м 3 / с по формуле:
Q = Av
Q = (0,240 м 2 ) (5,00 м / с)
Q = 1,20 м 3 / с
Расход можно преобразовать в литры в секунду с помощью: 1 м 3 / с = 1000 л / с.
Q = 1200 л / с
Расход воды в желобе 1200 л / с .
Расчет CFM | РаботаACI
Расчет объема воздушного потока с помощью датчиков перепада давления ACI
Расчет объема воздушного потока (CFM) в вашем ПЛК или системе управления зданием на основе выходных данных датчика перепада давления стоит лишь небольшую часть того, что вы могли бы потратить на дорогие мониторы скорости воздуха или CFM.В этом сообщении блога объясняется, как использовать выходной сигнал датчика перепада давления и простую математику, чтобы найти переменные в следующем уравнении, используемом для расчета объема потока:
CFM = FPM x Площадь поперечного сечения воздуховода
Определение скорости потока , , обычно выражаемое в футах в минуту (FPM), является первым шагом в заполнении переменных нашего уравнения. Чтобы найти скорость потока, мы используем уравнение:
FPM = 4005 x √ΔP (квадратный корень из скорости давления)
Значение давления скорости будет предоставлено преобразователем перепада давления ACI DLP или MLP2, соединенным с дифференциальной трубкой Пито PT, установленной в воздуховоде.PT — это трубка Пито из АБС-пластика, имеющая длину 3, 5,2, 7,5, 9,7 дюйма. Глубина вставки должна охватывать как можно большую ширину воздуховода, не касаясь противоположной стороны. На всем протяжении PT имеется несколько точек отбора проб, причем количество точек отбора проб зависит от длины PT.
Порт «H» трубки Пито PT подключается к порту HIGH датчика перепада давления, а порт «L» — к порту LOW. Разница между показанием общего давления, отслеживаемым на порте «H» ПТ, и статическим давлением, отслеживаемым на порте «L», и есть давление скорости.Выходной сигнал датчика перепада давления DLP или MLP2 обеспечивает значение давления скорости, которое будет использоваться в нашем уравнении.
Например: Если давление при скорости 0,45 дюйма вод. Ст. измеряется нашим датчиком давления и вводится в наше уравнение, мы видим, что скорость потока составляет 2686 футов в минуту (FPM).
FPM = 4005 x √.45
FPM = 2,686
Наше решение скорости потока 2686 FPM теперь может быть вставлено в наше уравнение, используемое для расчета объема потока в CFM:
куб. Фут / мин = 2,686 x площадь поперечного сечения воздуховода
Затем нам нужно определить площадь поперечного сечения воздуховода .
Есть два уравнения для определения площади поперечного сечения воздуховода. Один используется для квадратного или прямоугольного воздуховода, а другой — для круглого воздуховода.
Уравнение квадратного или прямоугольного воздуховода:
A (площадь поперечного сечения воздуховода) = X (высота в футах) x Y (ширина в футах)
Уравнение круглого воздуховода:
A (площадь поперечного сечения воздуховода) = π x r (радиус воздуховода в футах) ²
Если у нас есть круглый воздуховод диаметром 14 дюймов, радиус будет вдвое меньше, или 7 дюймов, что преобразуется в.585 футов (7 дюймов / 12 дюймов).
Подставляя наши значения в уравнение, мы видим, что площадь поперечного сечения воздуховода равна пи, или 3,14159 умножить на нашего радиуса, 0,585 в квадрате , что дает нам решение 1,07 квадратных футов .
A = π x 0,585²
A = 1,07 кв. Футов
Теперь, когда мы рассчитали нашу скорость потока ( 2686 футов в минуту), и площадь поперечного сечения воздуховода (1,07 квадратных футов), мы можем рассчитать воздушный поток в кубических футах в минуту для нашего воздуховода диаметром 14 дюймов, используя наше уравнение.
Расход воздуха в кубических футов в минуту = скорость потока в футах в минуту x площадь поперечного сечения воздуховода
CFM = FPM x Площадь поперечного сечения воздуховода
CFM = 2686 x 1,07 кв. Футов
кубических футов в минуту = 2 874
Скорость воздушного потока = 2,874 кубических футов в минуту
Калькулятор расхода— определение объемного и массового расхода
Хотите верьте, хотите нет, но наш калькулятор расхода полезен не только в механике жидкости, но и при решении повседневных задач.Это не только поможет вам, если вы хотите узнать расход садового шланга или насадки для душа, но и если вам интересно, сколько крови перекачивает ваше сердце каждую минуту (это сердечный выброс). Он также может служить в качестве простого калькулятора скорости в трубе .
Для полного понимания темы вы можете найти раздел, объясняющий, что такое скорость потока, ниже, а также параграф, помогающий понять, как рассчитать скорость потока. Будьте осторожны, так как сам термин «скорость потока» может быть неоднозначным! К счастью для вас, мы реализовали две формулы расхода, так что вы подойдете к обоим случаям.Это означает, что наш инструмент может служить одновременно калькулятором объемного расхода и калькулятором массового расхода .
Что такое скорость потока? Объемный и массовый расход
Когда мы говорим о расходе, вы, скорее всего, представляете себе концепцию объемного расхода (также известного как расход жидкости, объемный расход или объемная скорость). Объемный расход можно определить как объем данной жидкости, который проходит через заданную площадь поперечного сечения в единицу времени .Обычно обозначается символом Q (иногда V̇ — V с точкой)
Объемный расход = В / т = Объем / время
Другая связанная концепция — массовый расход , иногда называемый массовым потоком или массовым током. На этот раз дело не в объеме, а в массе вещества , которое проходит через заданную площадь поперечного сечения за единицу времени.
Массовый расход = м / т = масса / время
Массовый расход обычно используется, помимо прочего, в спецификациях вентиляторов и турбин.
Если вас интересует механика жидкости, вам также следует взглянуть на калькулятор уравнения Бернулли, чтобы определить скорость и давление несжимаемой жидкости. Также могут быть полезны калькуляторы гидростатического давления и плавучести.
Как рассчитать расход? Формулы расхода
TL; версия DR
Формула объемного расхода :
Объемный расход = A * v
, где
A
— площадь поперечного сечения,v
— скорость потокаФормула массового расхода :
Массовый расход = ρ * Объемный расход = ρ * A * v
где
ρ
— плотность жидкости
Более подробное объяснение:
Формулу объемного расхода можно записать в альтернативной (читай: более полезной) форме.Вы можете сначала рассчитать объем порции жидкости в канале как:
Объем = А * л
Где A
— это площадь поперечного сечения жидкости, а l
— ширина данной части жидкости. Если наша труба круглая, это просто формула для объема цилиндра. Подставляя приведенную выше формулу в уравнение из определения расхода, получаем:
Объемный расход = В / т = А * л / т
Поскольку л / т
— это объемная длина, разделенная на время, вы можете видеть, что это просто скорость потока.Итак, формула для объемного расхода сводится к:
Объемный расход = A * v
Большинство труб имеют цилиндрическую форму, поэтому формула для объемного расхода будет иметь следующий вид:
Объемный расход для цилиндрической трубы = π * (d / 2) ² * v
, где d
— диаметр трубы
Уравнение можно переформулировать, чтобы найти формулу для скорости в трубе.
Чтобы найти формулу массового расхода , нам нужно сначала напомнить себе определение плотности:
ρ = м / В
и м = ρ * В
Поскольку массовый расход — это масса вещества, проходящего за единицу времени, мы можем записать формулу как:
Массовый расход = м / т = ρ * V / t = ρ * Объемный расход = ρ * A * v
Массовый расход = ρ * A * v
Как пользоваться калькулятором расхода
Теперь, когда вы знаете, какова скорость потока, давайте проверим это на простом примере:
Сначала выберите фигуру из раскрывающегося списка .В этом примере мы хотели бы знать расход воды в круглой трубе, поэтому мы выберем опцию
круглая (полная)
.Введите размеры, необходимые для вычисления площади поперечного сечения . Если поперечное сечение представляет собой круг или квадрат / прямоугольник, вы найдете этот вариант в списке. В любом другом случае вы можете ввести значение площади прямо в калькулятор (вы можете использовать наш комплексный калькулятор площади, чтобы помочь вам). Выберем трубу внутренним диаметром 3 дюйма.
Введите среднюю скорость потока . Выберем 10 футов / с.
И вот, первая часть расчетов сделана: инструмент работал как калькулятор объемного расхода . Мы выяснили, что объемный расход составляет 0,4909 фут3 / с. Помните, что вы всегда можете изменить единицы измерения, поэтому не беспокойтесь, если вам нужно работать в галлонах в минуту или литрах в час.
Если вам известна плотность, вы также можете рассчитать массовый расход, просто введите плотность материала потока .В нашем примере вода имеет расход около 998 кг / м³ (плотность воды при 68 ° F / 20 ° C). Однако, если вы хотите быть сверхточным, воспользуйтесь нашим калькулятором плотности воды, так как плотность изменяется в зависимости от температуры, солености и давления.
Инструмент показал массовый расход , равный 30,58 фунт / с. Большой!
Не забывайте, что наши инструменты гибкие, поэтому вы можете использовать их в качестве калькулятора скорости в трубе. Вы можете, например, определить скорость воды в кране по диаметру (например,г., 0,5 дюйма) и расход кухонного смесителя (обычно 1-2,2 галлона в минуту, в зависимости от типа аэратора). Кстати, видели ли вы наш калькулятор водопроводной воды, который показывает ваши сбережения, если вы перейдете с бутилированной воды на водопроводную?
Как рассчитать объемный расход
Обновлено 15 декабря 2020 г.
Кевин Бек
Объемный расход — это термин в физике, который описывает, сколько вещества — с точки зрения физических размеров, а не массы — перемещается в пространстве на единицу время.Например, когда вы запускаете смеситель на кухне, определенное количество воды (которое вы можете измерить в жидких унциях, литрах или чем-то еще) выходит из отверстия крана за заданный промежуток времени (обычно секунды или минуты). Это количество считается объемным расходом.
Термин «объемный расход» почти всегда применяется к жидкостям и газам; твердые тела не «текут», даже если они тоже могут двигаться с постоянной скоростью в пространстве.
Уравнение объемного расхода
Основное уравнение для задач такого рода:
Q = AV
, где Q — объемный расход, A — площадь поперечного сечения занята текущим материалом, а V — средняя скорость потока. V считается средним значением, потому что не каждая часть текущей жидкости движется с одинаковой скоростью. Например, когда вы наблюдаете, как вода реки неуклонно движется вниз по течению с заданным числом галлонов в секунду, вы замечаете, что на поверхности здесь более медленные течения, а там — более быстрые.
Поперечное сечение часто представляет собой круг из-за проблем с объемным расходом, поскольку эти проблемы часто связаны с круглыми трубами. В этих случаях вы найдете площадь A , возведя в квадрат радиус трубы (который составляет половину диаметра) и умножив результат на константу пи (π), которая имеет значение около 3.14159.
Обычная система СИ (от французского «международная система», что эквивалентно «метрической») единицы расхода — это литры в секунду (л / с) или миллилитры в минуту (мл / мин). Однако, поскольку в США давно используются имперские (английские) единицы измерения, по-прежнему гораздо чаще можно увидеть объемный расход, выраженный в галлонах в день, галлонах в минуту (gpm) или кубических футах в секунду (cfs). Чтобы найти объемный расход в единицах, которые обычно не используются для этой цели, вы можете использовать онлайн-калькулятор расхода, подобный тому, что указан в Ресурсах.
Массовый расход
Иногда вам нужно знать не только объем жидкости, движущейся в единицу времени, но и величину массы, которую он представляет. Это, очевидно, критично в инженерии, когда необходимо знать, какой вес может безопасно выдержать данная труба, другой трубопровод или резервуар для жидкости.
Формула массового расхода может быть получена из формулы объемного расхода путем умножения всего уравнения на плотность жидкости, ρ .Это следует из того факта, что плотность равна массе, разделенной на объем, что также означает, что масса равна плотности, умноженной на объем. В уравнении объемного расхода уже есть единицы объема в единицу времени, поэтому, чтобы получить массу в единицу времени, вам просто нужно умножить на плотность.
Следовательно, уравнение массового расхода:
\ dot {m} = \ rho AV
ṁ , или «м-точка», является обычным символом для массового расхода.
Проблемы с объемным расходом
Допустим, вам дали трубу с радиусом 0.2} = 0,52 \ text {m / s} = 52 \ text {cm / s}
Вода должна проходить через трубу с быстрой, но вероятной скоростью около полуметра или чуть более 1,5 футов в секунду. правильно слить воду из бака.
Сохранение импульса с использованием контрольных объемов
Сохранение импульса с использованием контрольных объемовСохранение импульса с использованием контрольных объемов
Сохранение линейного импульса Напомним закон сохранения количества движения для
система:
Чтобы преобразовать это для
использовать в контрольном объеме, использовать RTT с B = m V , beta
= В
получаем:
ПРИМЕЧАНИЕ. Напомним, что в любой момент времени t система
& CV занимают ОДНО ЖЕ физическое пространство.
Итак, силы системы одинаковы на силы контрольного объема в данный момент.
- Во-первых, предположим, что у нас есть одномерные воздухозаборники.
и торговые точки. Это означает, что наш вектор скорости V параллелен
к нашей нормали к поверхности вектору n . Мы также предполагаем, что скорость
постоянна на поверхности входа или выхода.
Предполагая, что плотность постоянна, мы можем переписать последний член в нашем уравнении CLM :
Это верно, потому что V точка n = V для розеток и -V для впускные отверстия.Мы можем сделать дальнейшее упрощение, если заметим, что определение для массового расхода это (плотность) (скорость) (площадь). Следовательно, наше уравнение для члена потока становится: - Если поток устойчивый , мы можем опустить член (d / dt).
Большинство проблем, с которыми мы сталкиваемся, имея устойчивый поток, также имеют одномерное
входы и выходы с постоянной плотностью. Наше уравнение сохранения
количества движения теперь становится:
Обратите внимание, что это векторное уравнение. Поэтому мы можем разбить это на три компонента.Поскольку вектор скорости = (u, v, w), а вектор силы = (F x , F y , F z ), наш уравнение можно переписать в три уравнения:
- Силы тела :
Гравитация — это сила тела, действующая в отрицательном направлении оси z. - Наземные войска: Эти силы включают:
- Давление — только нормальные силы.
- Вязко-вязкие силы и силы трения вносят свой вклад в нормальный и поперечные силы.
- Прочие силы из-за нарезания контрольного объема через болты или распорки.
В этом уравнении можно использовать либо абсолютное давление , либо манометрическое давление как пока вы везде последовательны! Чтобы доказать это, рассмотрим произвольный контрольный объем с определенным полем давления. Допустим, есть высокое давление в двух местах и атмосферное давление везде. Осознавая определение избыточного давления, Pg = Абсолютное — Атмосферное, мы можем вычесть атмосферное давление от всего. Мы понимаем, что сумма сил из-за давления одинаково в обоих случаях. чистая сила давления не изменит . Это верно, потому что любая форма в униформе Поле давления имеет нулевую чистую силу давления.
Эту силу трудно вычислить, потому что она имеет нормальную и тангенциальную компонент, действующий в произвольном направлении. Чтобы решить эту проблему термин вам придется интегрировать напряжение сдвига по всему контролю поверхность. К счастью, для этого термина нам обычно не нужно интегрировать.Мы часто можем выбрать «разумную» регулировку громкости, чтобы устранить эту сложный срок. Это делается путем выбора контрольной громкости так, чтобы никакая часть поверхности руля действуют вязкие силы. Мы могли бы также оставить вязкий член как неизвестный член, и решите его, вычислив нашу другие условия.
- Несжимаемая струя имеет давление на выходе, равное
атмосферное давление . Окружающее давление обычно атмосферное.
Поэтому, когда вы рисуете контрольную громкость, разумно разрезать
струя на выходе из самолета. Это вызовет атмосферное давление повсюду.
- Давление в любом срезе примерно равное окружающему. через несжимаемую струю . Когда вы движетесь по течению, давление все еще равно атмосферному давлению.
- Массовый расход и импульсный расход равны нулю
по обтекаемой линии . Поэтому часто бывает выгодно выбрать элемент управления.
поверхность так, чтобы двигаться по линии тока.
Когда вы это сделаете V dot n равно нулю, потому что они перпендикулярны.Это вызовет члены потока (масса, импульс и энергия) должны быть равны нулю вдоль обтекает. - Массовый расход и импульсный расход равны нулю вдоль сплошная стена . Это верно, поскольку сплошная стена всегда имеет обтекаемую форму. Никакая масса не может пройти сквозь твердую стену. Обратите внимание, что давление и вязкая сила члены не могут равняться нулю вдоль линий тока, однако иногда это «разумно» выбрать контрольный объем вдоль сплошной стены.
Примеры проблем
Дано: Струя воды со скоростью V j и толщиной D j сталкивается с поворотным блоком, который удерживается на месте силой F x , как показано на рисунке.
Когда вода покидает блок, круглая струя сглаживается и замедляется из-за трения о стену. Вода поворачивается на 180 градусов и превращается в прямоугольник толщиной D j /6 и шириной 10D j в поперечном сечении. Течение стабильное.
a) Найдите : V e , выходную скорость струи.
Решение:
- Сначала выберите контрольный объем, который проходит через вход и выход, но не включает поворотный блок.
- Используйте сохранение массы для устойчивого одномерного потока:
b) Найдите : F x , усилие, необходимое для удержания блока на месте.
Решение:
- Выберите новый контрольный объем, потому что трение вдоль стены было бы очень трудно оценить с помощью предыдущего C.V. Выберите C.V. который прорезает вход и выход и включает в себя весь поворотный блок. Самый разумный выбор регулирующего объема — тот, который прорезает там, где сила F x действует на токарный блок, поскольку F x нам неизвестно.
- Напишите уравнение импульса для устойчивого одномерного входа / выхода в направлении x:
Изучите каждый член слева: (нет гравитации в x-dir), (p = p a везде), (мудрый выбор CV) и - Таким образом, уравнение количества движения сводится к
- Теперь вспомните, на входе или выходе. Здесь на входе,
- Итак, решаем:
Или, наконец, это наш окончательный ответ. - Примечание. Это не просто академическое упражнение. Испытательный центр в Исследовательском центре НАСА в Лэнгли использует этот принцип для перемещения испытательного стенда по трассе для проверки шасси самолета и т. Д.Экспериментальная установка, называемая «Центр динамики посадки самолета», использует струю воды под высоким давлением, которая попадает в поворотный ковш на испытательной тележке, как и в вышеупомянутой задаче. Тележка разгоняется с нуля до 250 миль в час за две секунды!
Поправочный коэффициент потока импульса
- Опять же, как и в уравнении сохранения массы, даже если у нас действительно нет одномерных (однородных) входов и выходов, мы все равно хотели бы использовать упрощенную версию уравнения сохранения импульса.Т.е. мы хотели бы использовать V av вместо V в уравнении.
- Таким образом, эквивалентный профиль и фактический профиль имеют идентичный массовый расход,.
- А как насчет скорости потока количества движения или потока количества движения, МП? Имеют ли фактические и эквивалентные профили одинаковый поток импульса? Нет ! Оказывается, после интеграции, что:
- Итак, мы не можем просто заменить V av на V в уравнении импульса, иначе мы получим неправильный ответ.Итак, вместо этого, давайте введем поправочный коэффициент магнитного потока:
Определить:
Оказывается, что:,
и,. - Примеры:
1) Одномерный однородный поток, по определению
2) полностью развитый ламинарный поток в трубе,
3) полностью развитый турбулентный поток в трубе, - Теперь мы можем использовать одномерную форму уравнения импульса, но с добавленными поправочными коэффициентами потока импульса:
Для фиксированного контрольного объема с постоянным потоком,
и - К счастью, большинство проблем в реальных приложениях турбулентное, не ламинарное, и мы обычно можем пренебречь поправочными коэффициентами потока импульса, так как он близок к 1.0.
Наиболее полезная форма уравнения моментума
- Для установившегося потока с фиксированным контрольным объемом наиболее полезной формой уравнения количества движения является:
, где поправочный коэффициент потока количества движения, и.
Пример проблемы
Дано: Рассмотрим поток несжимаемой жидкости на входе в круглую трубу.
Входной поток равномерный u 1 = U 0 . Течение на участке 2 создается ламинарным трубным потоком.U 0 , p 1 , p 2 , R, и, также известны. На участке 2.
Найти: Полная сила трения в жидкости от 1 до 2.
Решение:
- Сначала нарисуйте C.V. Снова прорежьте вход и выход 1 и 2. Но теперь мы хотим разрезать вдоль стен, поскольку трение F нам неизвестно.
- Изобразите все силы, действующие на C.V. в x-направлении.
- Упрощения: Предположим устойчивый, несжимаемый, однородный одномерный вход, но не однородный одномерный выход.
- Итак, давайте использовать модифицированное уравнение импульса для не одномерных входов / выходов в x-направлении:
- Теперь посмотрим на каждый термин:
(без гравитации в x-dir)
(это наше неизвестное)
(без распорок, болтов и т. Д.)
(впуск 1-D, так что)
: Это термин сложнее всего. Прежде всего, что такое u av ? Т.е. какова эквивалентная одномерная скорость? Ну, поскольку площадь на выходе такая же, как и на входе, u av на выходе должно равняться U 0 . - Что на торговой точке? По определению, . Вы можете подключить уравнение и интегрировать [Попробуйте сами]. Вы получите (значение для ламинарного потока в трубе).
- Таким образом, член потока импульса на выходе становится
- Наконец, затем просуммируйте все и решите неизвестное:
- Обратите внимание, если игнорировать, то есть (установить), этот последний член будет полностью отменен, и ответ будет неправильным.
Дополнительные примеры задач
Проблема №3.58 в тексте:
Дано : Тележка с водой
струя, дефлектор, как показано
В этой задаче известны площадь струи A, средняя скорость
V av , угол отклонения струи,,
и импульс. поправочный коэффициент струи,.
Также предполагается использование колес без трения.
Найти : Натяжение кабеля в момент времени t = 0.
Решение :
- Как всегда, первый шаг в любой контрольной громкости Проблема заключается в том, чтобы выбрать и нарисовать контрольный объем.Силы и системы координат обозначены на эскизе. Вот подходит, чтобы разрезать струю и разрезать неизвестное усилие T (натяжение троса), как показано на рисунке.
- Упрощения :
Несжимаемый? Да (жидкость — это вода, примерно несжимаемая жидкость)
Устойчивый? — Нет, не совсем, так как уровень воды в баке падение. Но все, что нас просят, это T в момент времени t = 0, так что подумайте этого как псевдостабильную задачу , чтобы найти T.Примечание: падающий уровень воды не повлияет на x-импульс. уравнение в любом случае, так как его скорость вертикальна. - Теперь используйте x-компоненту уравнения импульса.
в устойчивом виде:
Имеется только одна розетка, у которой
.
Величина u av в члене выходного потока импульса в вышеприведенное уравнение необходимо внимательно рассмотреть. Это не V av , а скорее является x-компонентой V av . Из небольшого триггера видно, что
Таким образом, выходной член в правой части уравнения импульса равно
, а окончательная форма уравнения x-импульса (решение для T): - Вставьте цифры последними: плотность воды
при комнатной температуре — 998.кг / м 3 , скорость струи,
V av составляет 8 м / с, площадь поперечного сечения A соответствует площади поперечного сечения
круг диаметром 0,04 м, угол струи равен 60 o ,
а поправочный коэффициент потока импульса струи равен 1,0 для равномерного
струя. Это дает:
или T = 40,1 Н. - Вопрос : На что
угол, напряжение максимальное?
Ответ : Когда угол отклонения струи равен нулю, т.е. струя просто горизонтально уходит в атмосферу. Это ясно видно в приведенном выше уравнении, поскольку косинус нуля равен единице.
Пример Водяной пожарный насос (старый экзамен проблема.)
Дано: Насос закреплен.
к земле, как показано, с V j = 35,0 м / с и d j = 3,00
см. Предположим, что струя имеет полностью развитый профиль турбулентного потока в трубе.
на его выходе.
картинка wat_pump.gif
Найти: Горизонтальная сила требуется для удержания платформы на месте.
Решение:
- Первый шаг в решении любой проблемы с контрольным объемом состоит в том, чтобы выбрать и нарисовать контрольный объем.Как показано, контрольная громкость должен прорезать выпускной патрубок и через болты или что-то еще держит платформу твердо к земле. Вход в контрольный объем легче всего взять у поверхности воды, где давление и скорость известны (p = p a и V = 0 на поверхности). Примечание: когда эта проблема была задана как вопрос экзамена, многие студенты взяли свой вход контроля объема на входе в трубу. Это усложняет задачу. Воспоминание первое правило выбора контрольной громкости — ленись!
- Примените уравнение x-импульса:
Гравитационный член слева равен нулю, потому что гравитация не действует в направлении x.Точно так же член давления ноль, потому что везде на руле над водой давление атмосферное (включая часть контрольной поверхность, которая рассекает струю). Под водой давление является гидростатическим, и любая сила давления, оказываемая на левая сторона руля точно уравновешена той, что на правая сторона панели управления. В контрольном объеме выбрано, чистая вязкая сила не действует на регулятор объем. Таким образом, первые три члена в левой части Уравнение x-импульса равняется нулю.Единственная «другая» сила на контрольную поверхность действует сила земли, действующая на платформе, как показано на эскизе. Направление этого предполагается, что сила действует вправо; если это не так, результат будет отрицательным.
В правой части (члены потока импульса) нет x-компонент скорости на любом входе, поэтому последний член на право равно нулю. Есть только одна розетка, с u av равной x-компоненте вектора скорости струи. Таким образом, уравнение x-импульса сводится к
Это ответ в переменной форме. - Наконец, вставьте цифры, отметив, что для
полностью развитый турбулентный поток в трубе коррекция потока импульса
коэффициент составляет около 1,02:
или, наконец, горизонтальное усилие, необходимое для удержания платформы на месте 799. N .
Задача № 3.51 в тексте:
Дано: Колесо турбины,
приводится в действие водяной струей, как показано на рисунке (в момент времени t = 0)
Турбина вращается с постоянной скоростью вращения.
Предположения:
- 1-D вход и выход
- Пренебрежение трением в поворотном ковше
(a) Найдите: Сила поворота ковша. на турбинном колесе в этот момент времени.
Решение:
- Выберите контрольную громкость. Здесь мы выберем движущийся регулятор громкости , что немного усложняет задачу. При перемещении контрольной громкости необходимо использовать относительный скорость , т.е. относительно движущегося C.V.
- Таким образом, на входе относительная скорость на
входное отверстие получается путем вычитания скорости C.V.
от абсолютной скорости на входе, т.е.
, где Vj — величина абсолютной скорости на входе, и его направление находится в положительном направлении оси x. Второй член справа представляет скорость контрольного объема в абсолютном опорном кадре, который вычитается, как показано. Компонент x этой относительной скорости на входе — это просто величина указанного выше вектора скорости, так как вектор действует только в положительном направлении оси x, т.е.е. - Теперь примените сохранение массы к этому движению.
регулировка громкости. Примечание: здесь относительных скоростей должны быть
используются, поскольку они представляют собой фактически входящие скорости и
оставляя контрольную громкость по мере ее перемещения.
Обратите внимание, что области по обе стороны от уравнения идентичны. исходным предположением о незначительных вязких эффектах. Также предположение о несжимаемости приводит к падению плотности. В момент времени t = 0, когда поворотный ковш находится наверху турбины. колесо, как показано, скорость на входе в положительном направлении оси x, в то время как выходное отверстие находится в отрицательном направлении оси x.Таким образом, x-компонента относительной выходной скорости — это просто отрицательное значение относительной скорости на входе, т.е.
Другими словами, поворотный ковш изменяет направление струя воды на 180 градусов, но при этом не меняет величины скорости струи. (Если трение по стенкам токарной с учетом лопасти, величина скорости струи будет тоже измениться.) - Теперь примените сохранение x-импульса для нашего движущегося C.V.
Обратите внимание, что используются компоненты относительной скорости x в членах потока импульса в правой части, поскольку это движущийся контрольный объем.Член гравитации в левой части равен нулю, потому что гравитация не действует в направлении x. Так же, член давления равен нулю, потому что всюду на контрольной поверхности давление атмосферное (включая участки контрольной поверхность, которая прорезает форсунки). В выбранной контрольной громкости нет никакой чистой вязкой силы, действующей на контрольный объем. (Этот было бы верно, даже если бы вязкие силы вдоль поворотной лопатки были не игнорируется, так как руль не проходит по поворотная стенка лопатки.) Таким образом, первые три члена слева стороны уравнения x-импульса равны нулю. Единственный «другой» сила, действующая на рулевую поверхность, — это сила турбины. колесо действует на поворотный ковш, равный и противоположный силе поворотного ковша, действующей на турбинное колесо, как показано на эскизе. Направление силы ковша предполагается, что колесо действует вправо; если это неправильно, результат будет отрицательным.
В правой части (члены потока импульса) есть только один вход и один выход.Как на входе, так и на выходе x-компонента вектора относительной скорости струи известна из сохранения массового анализа выше. Поскольку трение не учитывается, предполагается, что поправка к потоку импульса факторы — единство. Таким образом, уравнение x-импульса сводится к
Это сила вращения ковша на турбинном колесе.
(b) Находка: Сила P доставлена колесо в этот момент времени (t = 0).
Решение:
- Мощность на вращающемся колесе определяется как крутящий момент
умноженная на угловую скорость колеса.Крутящий момент за счет этого
поворот ковша — это только что полученная сила, умноженная на радиус
колесо, R. Таким образом,
(c) Найти: Угловая скорость, обеспечивающая максимальная мощность на руль.
Решение:
- Чтобы найти максимальную мощность, возьмите производную
мощности по угловой скорости.
- Значения угловой скорости, при которых это производная равна нулю, то представляют условия, при которых мощность равна либо минимум, либо максимум.