Площадь фасонных частей воздуховодов калькулятор онлайн: Расчет площади воздуховодов и фасонных изделий

Содержание

Онлайн расчёт воздуховодов

1. Расчёт ПРЯМЫХ УЧАСТКОВ прямоугольных воздуховодов

Высота, А (мм)

Ширина, В (мм)

Длина участка, L (м)

Толщина металла, t (мм)0,40,50,550,60,70,80,91,0

Тип металлаОц. стальНерж.сталь

Тип соединительных элементов на торцеШинаРейкаНет

Вес элемента, кг

Площадь поверхности, м.кв

Количество элементов

Стоимость элемента, грн.

Экспорт в спецификацию

Запись

2. Расчёт ПРЯМЫХ УЧАСТКОВ круглых воздуховодов

Диаметр воздуховода, D (мм)

Длина участка, L (м)

Толщина металла, t (мм)0,40,50,550,6

0,70,80,91,0

Тип металлаОц. стальНерж.сталь

Тип соединительных элементов на торцеФланецНиппельНет

Вес элемента, кг

Площадь поверхности, м.кв

Количество элементов

Стоимость элемента, грн.

Экспорт в спецификацию

Запись

3. Расчёт ОТВОДА для прямоугольных воздуховодов

Высота, А (мм)

Ширина, B (мм)

Угол поворота, α (°)904530

Толщина металла, t (мм)0,40,50,550,60,70,80,91,0

Тип металлаОц.

стальНерж.сталь

Тип соединительных элементов на торцеШинаРейкаНет

Вес элемента, кг

Площадь поверхности, м.кв

Количество элементов

Стоимость элемента, грн.

Экспорт в спецификацию

Запись

4. Расчёт ОТВОДА для круглого воздуховода

Диаметр воздуховода, D (мм)

Угол поворота, α (°)904530

Толщина металла, t (мм)0,40,50,550,60,70,80,91,0

Тип металлаОц. стальНерж.сталь

Тип соединительных элементов на торцеФланецНиппельНет

Вес элемента, кг

Площадь поверхности, м.кв

Количество элементов

Стоимость элемента, грн.

Экспорт в спецификацию

Запись

5. Расчёт ПЕРЕХОДА СЕЧЕНИЯ для прямоугольного воздуховода

Высота начальная, А (мм)

Ширина начальная, B (мм)

Высота конечная, a (мм)

Ширина конечная, b (мм)

Толщина металла, t (мм)0,40,50,550,60,70,80,91,0

Тип металлаОц. стальНерж.сталь

Тип соединительных элементов на торцеШинаРейкаНет

Вес элемента, кг

Площадь поверхности, м. кв

Количество элементов

Стоимость элемента, грн.

Экспорт в спецификацию

Запись

6. Расчёт ПЕРЕХОДА СЕЧЕНИЯ для круглого воздуховода

Диаметр начальный, D (мм)

Диаметр конечный, d (мм)

Толщина металла, t (мм)0,40,50,550,60,70,80,91,0

Тип металлаОц. стальНерж.сталь

Тип соединительных элементов на торцеФланецНиппельНет

Вес элемента, кг

Площадь поверхности, м.кв

Количество элементов

Стоимость элемента, грн.

Экспорт в спецификацию

Запись

7. Расчёт ПЕРЕХОДА с круглого на прямоугольное сечение

Высота начальная, А (мм)

Ширина начальная, B (мм)

Диаметр конечный, D (мм)

Толщина металла, t (мм)0,40,50,550,60,70,80,91,0

Тип металлаОц. стальНерж.сталь

Тип соединительных элементов на торцеШина-ФланецРейка-НиппельНет

Вес элемента, кг

Площадь поверхности, м.кв

Количество элементов

Стоимость элемента, грн.

Экспорт в спецификацию

Запись

8.

Расчёт ТРОЙНИКА для прямоугольного воздуховода

Высота главного воздуховода, А (мм)

Ширина главного воздуховода, B (мм)

Высота врезки, a (мм)

Ширина врезки, b (мм)

Угол врезки, α (°)9045

Толщина металла, t (мм)0,40,50,550,60,70,80,91,0

Тип металлаОц. стальНерж.сталь

Тип соединительных элементов на торцеШинаРейкаНет

Вес элемента, кг

Площадь поверхности, м.кв

Количество элементов

Стоимость элемента, грн.

Экспорт в спецификацию

Запись

9. Расчёт ТРОЙНИКА для круглого воздуховода

Диаметр главного воздуховода, D (мм)

Диаметр врезки, d (мм)

Толщина металла, t (мм)0,40,50,550,60,70,80,91,0

Тип металлаОц. стальНерж.сталь

Тип соединительных элементов на торцеФланецНиппельНет

Вес элемента, кг

Площадь поверхности, м.кв

Количество элементов

Стоимость элемента, грн.

Экспорт в спецификацию

Запись

Расчет площади воздуховодов — онлайн калькулятор

Автор Евгений Апрелев На чтение 3 мин Просмотров 10к. Обновлено

Вентиляция играет важнейшую роль в создании оптимального микроклимата в жилище. Правильно сконструированная вентиляционная система обеспечивает вывод за пределы помещения загрязненного воздуха, вредных газов, паров и пыли, которые влияют на здоровье людей, находящихся в жилом помещении. При проектировании вентиляционных систем производится огромное количество расчетов, в которых учитывается множество факторов и переменных.

В производительности вентиляционной системы не последнюю роль играю воздуховоды, а именно их длина, сечение и форма. Крайне важно чтобы расчет сечения воздуховодов был произведен правильно, так как именно от этого будет зависеть, сможет ли система воздуховодов пропускать достаточное количество воздуха, скорость воздушного потока и бесперебойная работа вентиляционной системы в целом. Благодаря грамотному расчету площади воздушных каналов, вибрация и аэродинамические шумы, производимые воздушными потоками, будут находиться в пределах допустимой нормы.

Рассчитать площадь воздуховодов для естественной вентиляционной системы можно тремя способами:

  • Обратиться к профессионалам. Расчет будет произведен качественно, но дорого.
  • Сделать самостоятельный расчет, используя формулы расчета удельных потерь воздуха, гравитационного подпора, поперечного сечения воздуховодов, формулу скорости движения воздушных масс в газоходах, определение потерь на трение и сопротивление.
  • Воспользоваться онлайн-калькулятором.

Расчет сечения воздуховода

Для того чтобы воспользоваться онлайн-калькулятором, не нужно иметь инженерного образования или платить денег, просто введите в каждое поле калькулятора необходимые данные и получите правильный результат.

Методика самостоятельного расчета сечения воздуховодов

  1. Определение аэродинамических характеристик воздушного канала с естественным движением воздуха.

Rуд = Pгр/ ∑L

где

Pгр – гравитационное давление в каналах вытяжной вентиляции, Па;

L – расчетная длина участка, м.

При естественном побуждении необходимо увязать показатели гравитационных давлений в проходных каналах помещений с показателями трения и местными сопротивлениями, которые возникают по пути движения воздуха от вытяжки до устья вытяжной шахты, а именно по равенству 1, где ∑(Rln+Z) – расчетное снижение давления на местные сопротивления и трение на отрезках воздуховодов в расчетном направлении движения воздушных масс.

  1. Определение значения гравитационного подпора

Pгр= h(pnpb)9.81

где

h – высота столба воздуха, м;

pn – плотность воздушных масс снаружи помещения, кг/м3,

pb – плотность воздушных масс в помещении.

  1. Площадь сечения воздуховода определяется по формуле

S = L * 2.778/V

где

S – расчетная площадь сечения воздуховода см2

L – расход воздуха через воздуховод, м3/час

V – скорость движения воздуха в воздуховоде, м/с,

2,788 – коэффициент для согласования размерностей.

  1. Фактическая площадь сечения воздуховодов определяется по формулам:

S = π * D / 400 – для круглых воздуховодов

S = A * B / 100 – для прямоугольных воздуховодов

где

S – фактическая площадь сечения, см2

D – диаметр круглого воздуховода, мм

A и B – ширина и высота прямоугольного воздуховода, мм.

  1. Для расчета сопротивления сети воздуховодов используется формула:

P = R * L + Ei * V2 * Y/2 где:

R – удельные потери на трение на конкретном участке вентиляционной сети

L – длина участка воздуховода.

Ei – сумма коэффициентов местных потерь на участке воздуховода

V2 – скорость движения воздуха на участке воздуховода

Y – плотность воздуха.

Расчет площади воздуховодов и вентиляционных систем а так же фасонных изделий

Если вас интересует стоимость изготовления продукции, отправьте нам техническое задание на почту info@plast‑product.

ru или позвоните по телефону 8 800 555‑17‑56

Эффективность функционирования вентиляционных систем зависит от правильного подбора отдельных элементов и оборудования. Расчет площади воздуховода производится с целью обеспечения требуемой кратности смены воздуха в каждом помещении в зависимости от его назначения. Принудительная и естественная вентиляция требует отдельных алгоритмов проектных работ, но имеет общие направления. Во время определения сопротивления воздушному потоку учитывается геометрия и материал изготовления воздуховодов, их общая длина, кинематическая схема, наличие ответвлений. Дополнительно выполняется расчет потерь тепловой энергии для обеспечения благоприятного микроклимата и снижения затрат на содержание здания в зимний период времени.

Расчет площади сечения выполняется на основе данных по аэродинамическому расчету воздуховодов. С учетом полученных значений производится:

  1. Подбор оптимальных размеров поперечных сечений воздуховодов с учетом нормативных допустимых скоростей движения воздушного потока.
  2. Определение максимальных потерь давления в системе вентиляции в зависимости от геометрии, скорости движения и особенностей схемы воздуховода.

Последовательность расчета вентиляционных систем

1.Определение расчетных показателей отдельных участков общей системы. Участки ограничиваются тройниками или технологическими заслонками, расход воздуха по длине всего участка стабильный. Если от участка есть ответвления, то их расход по воздуху суммируется, а для участка определяется общий. Полученные значения отображаются на аксонометрической схеме.

2.Выбор магистрального направления системы вентиляции или отопления. Магистральный участок имеет самый большой расход воздуха среди всех выделенных во время расчетов. Он должен быть наиболее протяженным из всех последовательно расположенных отдельных участков и отводов. Согласно нормативным документам нумерация участков начинается с наименее нагруженного и продолжается по возрастанию воздушного потока.

Примерная схема системы вентиляции с обозначениями ответвлений и участков

3. Параметры сечений расчетных участков системы вентиляции подбираются с учетом рекомендованных стандартами скоростей в воздуховодах и жалюзийных решетках. Согласно государственным стандартам скорость воздуха в магистральных трубопроводах ≤ 8 м/с, в ответвлениях ≤ 5 м/с, в решетках жалюзи ≤ 3 м/с.

С учетом имеющихся предварительных условий выполняются расчеты по вентиляционной системе.

Общие потери давления в воздуховодах:

Расчет прямоугольных воздуховодов по потере давления:

R – удельные потери на трение о поверхность воздуховода;

L – длина воздуховода;

n – поправочный коэффициент в зависимости от показателей шероховатости воздуховодов.

Удельные потери давления для круглых сечений определяются по формуле:

λ – коэффициент величины гидравлического сопротивления трения;

d – диаметр сечения воздуховода;

Рд – фактическое давление.

Для расчета коэффициента сопротивления трения для круглого сечения трубы применяется формула:

Во время расчетов допускается использование таблиц, в которых на основании вышеизложенных формул определены практические потери на трение, показатели динамического давления и расход воздуха для различных скоростей потока для воздуховодов круглой формы.

Нужно иметь в виду, что показатели фактического расхода воздуха в прямоугольном и круглом воздуховодах с одинаковой площадью сечений неодинаковы даже при полном равенстве скоростей движения воздушного потока. Если температура воздуха превышает +20°С, то нужно пользоваться поправочными коэффициентами на трение и местное сопротивление.

Расчет системы вентиляции состоит из расчета основной магистрали и всех ответвлений, подключенных к ней. При этом нужно добиваться положения, чтобы скорость движения воздуха постоянно возрастала по мере приближения к всасывающему или нагнетающему вентилятору. Если схема воздуховода не позволяет учесть потери ответвлений, а их значения не превышают 10% общего потока, то разрешается использовать диаграмму для гашения избыточного давления. Коэффициент сопротивления воздушным потокам диафрагмы рассчитывается по формуле:

Приведенные выше расчеты воздуховодов пригодны для использования следующих типов вентиляции:

  1. Вытяжной. Используется для удаления из производственных, торговых, спортивных и жилых помещений отработанного воздуха. Дополнительно может иметь специальные фильтры для очистки выбрасываемого наружу воздуха от пыли или вредных химических соединений, могут монтироваться внутри или снаружи помещений.
  2. Приточной. В помещения подается подготовленный (нагретый или очищенный) воздух, может иметь специальные приспособления для понижения уровня шума, автоматизации управления и т. д.
  3. Приточно/вытяжной. Комплекс оборудования и устройств для подачи/удаления воздуха из помещений различного назначения, может иметь установки рекуперации тепла, что значительно сокращает затраты на поддержание в помещениях благоприятного микроклимата.

Движение воздушных потоков по воздуховодам может быть горизонтальным, вертикальным или угловым. С учетом архитектурных особенностей помещений, их количества и размеров воздуховоды могут монтироваться в несколько ярусов в одном помещении.

Расчет площади сечения трубопровода

После того как определена скорость движения воздуха по воздуховодам с учетом требуемой кратности обмена, можно рассчитывать параметры сечения воздуховодов по формуле S=R\3600v, где S – площадь сечения воздуховода, R – расход воздуха в м3/час, v – скорость движения воздушного потока, 3600 – временной поправочный коэффициент. Площадь сечения позволяет определить диаметр круглого воздуховода по формуле:

Если в помещении смонтирован воздуховод квадратного сечения, то его рассчитывают по формуле de = 1.30 x ((a x b)0.625 / (a + b)0.25).

de – эквивалентный диаметр для круглого воздуховода в миллиметрах;

a и b длина сторон квадрата или прямоугольника в миллиметрах. Для упрощения расчетов пользуйтесь переводной таблицей № 1.

Таблица № 1

Для вычисления эквивалентного диаметра овальных воздуховодов используется формула d = 1.55 S0.625/P0.2

S – площадь сечения воздуховода овального воздуховода;

P ­– периметр трубы.

Площадь сечения овальной трубы вычисляется по формуле S = π×a×b/4

S – площадь сечения овального воздуховода;

π = 3,14;

a = большой диаметр овального воздуховода;

b = меньший диаметр овального воздуховода.
Подбор овального или квадратного воздуховодов по скорости движения воздушного потокаДля облегчения подбора оптимального параметра проектировщики рассчитали готовые таблицы. С их помощью можно выбрать оптимальные размеры воздуховодов любого сечения в зависимости от кратности обмена воздуха в помещениях. Кратность обмена подбирается с учетом объема помещения и требований СанПин.


Расчет параметров воздуховодов и систем естественной вентиляцииВ отличие от принудительной подачи/удаления воздуха для естественной вентиляции важны показания разницы давления снаружи и внутри помещений. Расчет сопротивления и выбор направления надо делать таким способом, чтобы гарантировать минимальную потерю давления потока.

При расчетах выполняется увязка существующих гравитационных давлений с фактическими потерями давления в вертикальных и горизонтальных воздуховодах.


Классификаций исходных данных во время проведения расчетов сечения воздуховодовВо время расчетов нужно принимать во внимание требования действующего СНиПа 2.04.05-91 и СНиПа 41-01-2003. Расчет систем вентиляции по диаметру воздуховодов и используемому оборудованию должен обеспечивать:

  1. Нормируемые показатели по чистоте воздуха, кратности обмена и показателям микроклимата в помещениях. Выполняется расчет мощности монтируемого оборудования. При этом уровень шума и вибрации не может превышать установленных пределов для зданий и помещений с учетом их назначения.
  2. Системы должны быть ремонтнопригодными, во время проведения плановых регламентных работ технологический цикл функционирования предприятий не должен нарушаться.
  3. В помещениях с агрессивной средой предусматриваются только специальные воздуховоды и оборудование, исключающее искрообразование. Горячие поверхности должны дополнительно изолироваться.
Нормативы расчетных условий для определения сечения воздуховодов

Расчет площади воздуховодов должен обеспечивать:

  1. Надлежащие условия по чистоте и температурному режиму в помещениях. Для помещений с избытком теплоты обеспечивать его удаление, а в помещениях с недостатком теплоты минимизировать потери теплого воздуха. При этом следует придерживаться экономической целесообразности выполнения названных условий.
  2. Скорость движения воздуха в помещениях не должна ухудшать комфортность пребывания в помещениях людей. При этом принимается во внимание обязательная очистка воздуха в рабочих зонах. В струе входящего в помещение воздуха скорость движения Nх определяется по формуле Nх = Кn × n. Максимальная температура входящего воздуха определяется по формуле tx = tn + D t1, а минимальная по формуле tcx = tn + D t2. Где: nn, tn – нормируемая скорость воздушного потока в м/с и температура воздуха на рабочем месте в градусах Цельсия, К =6 (коэффициент перехода скорости воздуха на выходе из воздуховода и в помещении), D t1, D t2 – максимально допустимое отклонение температуры.
  3. Предельную концентрацию вредных для здоровья химических соединений и взвешенных частиц согласно ГОСТ 12.1.005-88. Дополнительно нужно учитывать последние постановления Госнадзора.
  4. Параметры наружного воздуха. Регулируются в зависимости от технологических особенностей производственного процесса, конкретного назначения сооружения и зданий. Показатели концентрации взрывоопасных соединений и веществ должны отвечать требованиями противопожарных государственных органов.

Монтаж вентиляционных систем с принудительной подачей/удалением воздуха нужно делать только в тех случаях, когда характеристики естественной вентиляции не могут обеспечивать требуемых параметров по чистоте и температурному режиму в помещениях или здания имеют отдельные зоны с полным отсутствием естественного притока воздуха. Для некоторых помещений площадь воздуховодов подбирается с таким условием, чтобы в помещениях постоянно поддерживался подпор и исключалась подача наружного воздуха. Это касается приямков, подвалов и иных помещений, в которых есть вероятность скапливания вредных веществ. Дополнительно воздушное охлаждение должно присутствовать на рабочих местах, которые имеют тепловое облучение более 140 Вт/м2.
Требования к системам вентиляцииЕсли расчетные данные по системам вентиляции понижают температуру в помещениях до +12°С, то в обязательном порядке нужно предусматривать одновременное отопление. К системам присоединяются отопительные агрегаты соответствующей мощности с целью доведения температурных значений до нормированных государственными стандартами. Если вентиляция монтируется в производственных зданиях или общественных помещениях, в которых постоянно пребывают люди, то нужно предусматривать не менее двух приточных и двух вытяжных постоянно действующих агрегатов. Размер площади воздуховодов должен обеспечивать расчетную величину воздушных потоков. Для соединенных или смежных помещений допускается иметь две системы вытяжки и одну систему притока или наоборот.

Если помещения должны вентилироваться в круглосуточном режиме, то к смонтированным воздуховодам обязательно нужно подключать резервное (аварийное) оборудование. Дополнительные ответвления должны учитываться, по ним делается отдельный расчет площади. Резервный вентилятор можно не устанавливать лишь в случаях если:

  1. После выхода из строя системы вентиляции есть возможность быстро остановить рабочий процесс или вывести людей из помещения.
  2. Технические параметры аварийной вентиляции полностью обеспечивают требования по чистоте и температуре воздуха в помещениях.

Общие требования к воздуховодамРасчет окончательных параметров воздуховодов должен предусматривать возможность:

  1. Монтажа противопожарных клапанов вертикальном или горизонтальном положении.
  2. Установки на межэтажных площадках воздушных затворов. Конструктивные особенности устройств должны гарантировать выполнение нормативных требований по аварийному перекрытию отдельных ответвлений вентиляционной системы и предотвращению распространения дыма или огня по всему зданию. При этом длина участка, на котором присоединяются затворы, не должна быть менее двух метров.
  3. К каждому поэтажному коллектору может присоединяться не более пяти воздуховодов. Узел соединения создает дополнительное сопротивление воздушному потоку, эту особенность нужно учитывать во время расчета размеров.
  4. Установку систем автоматической противопожарной сигнализации. Если привод сигнализации монтируется внутри воздуховода, то при определении его оптимального диаметра следует принимать во внимание уменьшение эффективного диаметра и появление дополнительного сопротивления воздушному потоку из-за завихрений. Такие же требования выдвигаются при установке обратных клапанов, предупреждающих протекание вредных химических соединений из одного производственного помещения в другое.

Воздуховоды из негорючих материалов должны устанавливаться для систем вентиляции с отсосом пожароопасных продуктов или с температурой более +80°С. Главные транзитные участки вентиляции должны быть металлическими. Кроме того, металлические воздуховоды монтируются на чердачных помещениях, в технических комнатах, в подвалах и подпольях.

Общие потери воздуха для фасонных изделий определяются по формуле:

Где р – удельные потери давления на квадратный метр развернутого сечения воздуховода, ∑Ai – обща развернутая площадь. В пределах одной схемы монтажа системы вентиляции потери можно принимать по таблице.

Во время расчетов размеров воздуховодов в любом случае понадобится инженерная помощь, сотрудники нашей компании имеют достаточно знаний для решения всех технических вопросов.

Калькуляторы площади окраски

Калькуляторы площади окраски

Калькуляторы площади окраски

  • Трубы без фасонных частей, креплений, крючьев, выступов
  • Cтальные трубопроводы, включая площади выступов от фасонных частей и крючьев и крепления
  • Чугунные трубопроводы, включая площади выступов от раструбов и креплений
  • Мойки и раковины
  • Ванны
  • Смывные бачки
  • Чугунные радиаторы МС-140М-500-0.9
  • Чугунные радиаторы МС-140М-300-0.9
  • Лепные потолки
  • Кесонные потолки
  • Потолки ребристых перекрытий
  • Вагонка (евровагонка)
  • Бревенчатые стены
  • Лепные изделия
  • Стальные решетки: для простых решеток без рельефа с заполнением до 20% типа парапетных, пожарных лестниц, проволочных сеток с рамкой и т.п.
  • Стальные решетки: для решеток средней сложности без рельефа и с рельефом с заполнением до 30% типа лестничных, балконных и т.п.
  • Стальные решетки: для решеток сложных с рельефом и с заполнением более 30% типа жалюзийных, радиаторных, художественных и т.п.
  • Волнистые поверхности асбоцементных листов и стали
  • Оконные проемы жилых и общественных зданий c раздельными переплетами
  • Оконные проемы жилых и общественных зданий cо спаренными переплетами
  • Оконные проемы промышленных зданий
  • Балконные двери
  • Глухие дверные полотна
  • Остекленные дверные полотна
  • Шкафные двери
  • Обрамление открытого проема

Площадь окраски стальных металлоконструкций


Расчет площади воздуховодов и фасонных изделий: инженерная помощь

Расчет площади воздуховодов и фасонных изделий необходимо производить перед монтажом вентиляционных коммуникаций. От достоверности вычислений будут зависеть эксплуатационные качества вентиляционной системы в целом. Для практического применения опытными мастерами используются две основные методики определения сечения: математические формулы и онлайн-приложения.

Содержание статьи

Цель расчета

Структура вентиляционного комплекса формируется из различных элементов. Для правильного подбора всех необходимых деталей потребуется вычислить их сечения, от которых будут зависеть значения приведенных характеристик:

  • объёма и стремительности рециркулируемого воздуха;
  • непроницаемости стыковки;
  • шумового загрязнения в процессе функционирования вентиляционного комплекса;
  • энергопотребления.

С помощью грамотно произведенных исчислений возможно выяснить приемлемую численность специальных трубопроводных изделий, применяемых в разветвленных местах, изгибах или переходах между двумя сегментами с разными диаметрами для создания вентиляционной системы в конкретной комнате. Это позволит сократить напрасные затраты на покупку деталей, которые в дальнейшем окажутся непригодными.

Использование математических формул

Производительность работы вентиляционной системы базируется на правильном подборе определенных деталей и технического оснащения. Отрицательное воздействие на микроклиматические условия может оказать перепроектирование помещения, если не воспользоваться инженерной помощью в расчете площади воздуховодов.

Цель расчета заключается в обеспечении необходимого соотношения замещения воздуха во всех помещениях в соответствии с их предназначением. Для принудительной и естественной фильтровентиляции необходимы индивидуальные инструкции, но содержащие совокупную ориентированность. В ходе установления противодействия воздушному потоку принимают во внимание геометрическую форму и вещество, из которого изготавливаются воздуховоды.

Также принимается в расчет их суммарная длина, кинематическая схема и присутствие разветвлений. Отдельным пунктом рассчитываются теплопотери для поддержания благоприятных микроклиматических условий и сокращения расходов на техническое обслуживание зданий в холодное время.

Для того чтобы рассчитать площадь воздуховодов, пользуются коэффициентами аэродинамических вычислений. Учитывая полученные величины, подбирают приемлемые габариты латерального сечения воздушного канала в зависимости от нормативной величины быстроты перемещения воздушной струи. Затем определяют пиковые потери давления в вентиляционной системе, ориентируясь на геометрическую форму, темп передвижения и характеристики модели вентиляционного канала.

Очередность проектирования вентиляционной системы

В первую очередь определяются расчетные показатели отдельных частей общего вентиляционного комплекса. Для ограничения участков используются тройники или технологические заслонки, потребление воздуха вдоль всех участков стабильное. Если участок имеет разветвления, то их величина потребления воздуха суммируется, а на участке устанавливают общее значение. На аксонометрическую схему наносят полученные показатели.

После этого выбирается магистральное направление вентиляционной или отопительной системы. Магистральный участок характеризуется самой высокой потребляемой величиной воздуха по сравнению со всеми выделенными участками на момент вычислений и является самым протяженным. В соответствии с нормативными документами нумерацию участков следует начинать с минимально загруженного и продолжать по нарастанию воздушных потоков.

Подбор параметров расчетного участка осуществляется в зависимости от рекомендованных нормативными требованиями скоростей в вентиляционном канале и в жалюзийной решетке. Чтобы эстетично оформить воздухоотводное отверстие, используют торцевую площадку для воздуховода.

По основной категории нормативных требований устанавливается стремительность воздушной струи для:

  • центральных воздухопроводов в пределах 8 м/с;
  • разветвлений в границах 5 м/с;
  • решеток жалюзи в диапазоне 3 м/с.

Учитывая имеющиеся необходимые предпосылки, производится проектирование для вентиляционного комплекса. В ходе проведения вычисления можно пользоваться таблицами, где на базе математических предписаний установлены фактические затраты на абразивный износ, данные динамического давления и потребления воздуха.

Следует учитывать, что фактический расход воздуха для круглого и прямоугольного воздуховодов с одинаковым сечением отличается даже при полной эквивалентности скоростей передвижения воздушных потоков. При температуре воздуха, превышающей +20°С, необходимо использовать поправочные коэффициенты на трение и местные сопротивления.

Расчет вентиляционной системы складывается из вычислений основного магистрального трубопровода и всех отводов, подключенных к нему. Вместе с этим следует добиваться условий, которые бы способствовали постоянному возрастанию скорости движения воздуха по мере сближения со всасывающим или нагнетающим вентилятором. Если конструкция воздуховода не дает возможности подсчитать потери отводов, а их показатели выходят за пределы 10% общих потоков, то допускается использование диаграммы для сдерживания избыточного давления.

Определение сечения поверхности воздуховодов

Расчетом площади воздуховодов должно гарантироваться обеспечение надлежащих санитарных условий и температурного режима в помещении. Для помещений с избыточным количеством тепла его следует удалить, а в комнатах с недостатком обогрева свести к минимуму теплопотери. Вместе с тем не следует забывать об экономической рациональности при соблюдении перечисленных требований.

Темп циркуляции воздуха в комнатах не должен нарушать комфортное пребывание людей в помещении. При этом учитывается обязательная пылегазоочистка рабочего пространства. Предельно допустимая концентрация опасных для здоровья синтетических и взвешенных веществ регламентируется государственными стандартами.

Дополнительно следует рассматривать последние предписания Госнадзора. Нормы воздуха устанавливаются с учетом технологических характеристик промышленного процесса, конкретной функции здания или сооружений. Взрывоопасные вещества и соединения, находящиеся в воздухе, не должны превышать значений предельно допустимой концентрации, установленных противопожарными государственными органами.

Установку вентиляционного комплекса с принудительным притоком/оттоком воздуха необходимо производить лишь в том случае, когда функциональность естественной вентиляции не может гарантировать необходимых характеристик по санитарным нормам и микроклиматическим условиям.

Общие требования

Воздуховоды из термостойких материалов необходимо устанавливать в системах вентиляции, предназначенных для удаления легковоспламеняющихся соединений или откачки воздуха, температура которого превышает 80 °C. Основные транзитные сегменты вентиляции выполняются из металла.

В расчете итоговых характеристик воздуховодов должна быть предусмотрена возможность осуществить:

  • установку устройств, автоматически перекрывающих во время пожара проем воздуховода и препятствующих распространению огня и продуктов горения;
  • монтаж воздушных затворов на промежуточных лестничных площадках;
  • включение максимум пяти воздуховодов в каждый поэтажный коллектор;
  • монтирование систем АПС (автоматической противопожарной сигнализации).

Чтобы определить необходимые размеры фасонных частей и самой системы, можно прибегнуть к специальным программам. Стоит только вписать требуемые данные, и результат вычисления появится практически мгновенно. Существуют также специальные таблицы со всеми требуемыми коэффициентами, формулами и значениями.

Простому обывателю, не имеющему профильных знаний в определенной инженерной области, не по силам реализовать все стадии расчетов. Поэтому выполнять конструкторскую разработку не только вентиляционной, но и любых других коммуникационных систем следует доверить профессионалам.

Онлайн калькулятор расчета вентиляции

Этап первый

Сюда входит аэродинамический расчёт механических систем кондиционирования или вентиляции, который включает ряд последовательных операций.Составляется схема в аксонометрии, которая включает вентиляцию: как приточную, так и вытяжную, и подготавливается к расчёту.

Размеры площади сечений воздуховодов определяются в зависимости от их типа: круглого или прямоугольного.

Формирование схемы


Схема составляется в аксонометрии с масштабом 1:100. На ней указываются пункты с расположенными вентиляционными устройствами и потреблением воздуха, проходящего через них.

Выстраивая магистраль, следует обратить внимание на то какая система проектируется: приточная или вытяжная

Приточная

Здесь линия расчёта выстраивается от самого удалённого распределителя воздуха с наибольшим потреблением. Она проходит через такие приточные элементы, как воздуховоды и вентиляционная установка вплоть до места где происходит забор воздуха. Если же система должна обслуживать несколько этажей, то распределитель воздуха располагают на последнем.

Вытяжная

Строится линия от самого удалённого вытяжного устройства, максимально расходующего воздушный поток, через магистраль до установки вытяжки и дальше до шахты, через которую осуществляется выброс воздуха.

Если планируется вентиляция для нескольких уровней и установка вытяжки располагается на кровле или чердаке, то линия расчёта должна начинаться с воздухораспределительного устройства самого нижнего этажа или подвала, который тоже входит в систему. Если установка вытяжки находится в подвальном помещении, то от воздухораспределительного устройства последнего этажа.

Вся линия расчёта разбивается на отрезки, каждый из них представляет собой участок воздуховода со следующими характеристиками:

  • воздуховод единого размера сечения;
  • из одного материала;
  • с постоянным потреблением воздуха.

Следующим шагом является нумерация отрезков. Начинается она с наиболее удалённого вытяжного устройства или распределителя воздуха, каждому присваивается отдельный номер. Основное направление – магистраль выделяется жирной линией.

Далее, на основе аксонометрической схемы для каждого отрезка определяется его протяжённость с учётом масштаба и потребления воздуха. Последний представляет собой сумму всех величин потребляемого воздушного потока, протекающего через ответвления, которые примыкают к магистрали. Значение показателя, который получается в результате последовательного суммирования, должно постепенно возрастать.

Определение размерных величин сечений воздуховодов


Производится исходя из таких показателей, как:

  • потребление воздуха на отрезке;
  • нормативные рекомендуемые значения скорости движения воздушного потока составляют: на магистралях — 6м/с, на шахтах где происходит забор воздуха – 5м/с.

Рассчитывается предварительное размерная величина воздуховода на отрезке, которая приводится к ближайшему стандартному. Если выбирается прямоугольный воздуховод, то значения подбираются на основе размеров сторон, отношение между которыми составляет не более чем 1 к 3.

Исходные данные для вычислений

Когда известна схема вентиляционной системы, размеры всех воздухопроводов подобраны и определено дополнительное оборудование, схему изображают во фронтальной изометрической проекции, то есть аксонометрии. Если ее выполнить в соответствии с действующими стандартами, то на чертежах (или эскизах) будет видна вся информация, необходимая для расчета.

  1. С помощью поэтажных планировок можно определить длины горизонтальных участков воздухопроводов. Если же на аксонометрической схеме проставлены отметки высот, на которых проходят каналы, то протяженность горизонтальных участков тоже станет известна. В противном случае потребуются разрезы здания с проложенными трассами воздухопроводов. И в крайнем случае, когда информации недостаточно, эти длины придется определять с помощью замеров по месту прокладки.
  2. На схеме должно быть изображено с помощью условных обозначений все дополнительное оборудование, установленное в каналах. Это могут быть диафрагмы, заслонки с электроприводом, противопожарные клапаны, а также устройства для раздачи или вытяжки воздуха (решетки, панели, зонты, диффузоры). Каждая единица этого оборудования создает сопротивление на пути воздушного потока, которое необходимо учитывать при расчете.
  3. В соответствии с нормативами на схеме возле условных изображений воздуховодов должны быть проставлены расходы воздуха и размеры каналов. Это определяющие параметры для вычислений.
  4. Все фасонные и разветвляющие элементы тоже должны быть отражены на схеме.

Если такой схемы на бумаге или в электронном виде не существует, то придется ее начертить хотя бы в черновом варианте, при вычислениях без нее не обойтись.

2. Вычисление потерь на трение

Потери
энергии потока вычисляются пропорционально
так называемому
«динамическому» напору, величине
pW2/2,
где р -плотность
воздуха при температуре потока
(определяется по таблице (1)
и (2)), a
W
— скорость в том или ином сечении контура
циркуляции воздуха.

Падение
давления воздуха вследствие действия
трения вычисляют
по формуле Вейсбаха:

=

гдеl
— длина участка контура циркуляции, м,
dэкв-эквивалентный
диаметр поперечного сечения участка,
м,

dэкв=

-коэффициент
сопротивления трения.

Коэффициент

сопротивления
трения определяется режимом течениявоздуха
в рассматриваемом сечении контура
циркуляции, или величиной
критерия Рейнольдса:

Re=

dэкв

где
Widэкв
— скорость и эквивалентный диаметр
канала
и
кинематический коэффициент вязкости
воздуха (определяется по таблицам
/1/ и /2/,
м
/с.

Значение

для значенийReв
интервале 105
-10
8
(развитое
турбулентное
значение) определяется по формуле
Никурадзе:

=3,2
.
10
-3
0,231
.Re-0,231

Более
подробные сведения по выбору

можно получить из /4/ и /5/ В
/5/
приведена диаграмма для нахождения
значения
,
облегчающая
расчеты.
Вычисленные значения
выражаются в паскалях (Па).

В
таблице 3 сведены значения исходных
данных для каждого канала
скорость,
длина, поперечное сечение,
эквивалентный диаметр,
величина
критерия Рейнольдса, коэффициент
сопротивления,
динамический
напор и величина вычисленных потерь на
трение.

Таблица 3

№ канала
(рис5)

W,

м/с

F,

м2

dэкв

М

l,
м

W2/2,
Н

Re

,
Па

1

15

0.8

0,77

1,0

76,5

3,5
.
105

0,015

1,5

2

25

0,87

0,88

1,75

212,5

6,7
.
105

0,013

5,5

3

21,7

1,0

0,60

3,0

160,1

3,9
.
105

0,014

11,2

4

28,9

0,75

0,60

1,75

283,9

5,3
.
105

0,0135

11,2

Расчеты
сопротивлений трения в каналах печи

5.3.
«Местные» потери
— под этим термином понимают потери
энергии в тех
местах, где поток воздуха внезапно
расширяется или суживается, претерпевает
повороты и т.д.
В
проектируемой печи таких мест достаточно
много — калориферы, повороты
каналов, расширения или сужения каналов
и др.
Эти
потери вычисляются также, как доля
динамического напора p=W2/2,
умножая
его на так называемый «коэффициент
местного сопротивления»

:

Сумма
29.4
Па

местн
=/2

Коэффициент
местного сопротивления определяется
но таблицам /1/ и /5/ в зависимости от типа
местного сопротивления, и габаритных
характеристик. Например, в
данной печи местное сопротивление типа
внезапного сужения имеет место
в канале 1-2 (см. рис.7). Соотношение сечений
(узкого к широкому).По
приложению /1 / находим
=0,25


= 160Па,

Совершенно
аналогично вычисляются другие местные
потери. Необходимо
отметить, что в ряде случаев местные
потери обусловлены
действием сразу двух видов сопротивлений.
Например, имеет
место поворот канала и одновременно
изменение его сечения (сужение
или расширение) следует провести
вычисление потерь для
обоих случаев и результаты сложить.
Результаты вычислений местных потерь
сведены в таблицу 4

Тип
местного
сопротивления

W,

м/с

Па

Прим.

Внезапное
сужение

43,4

0,125

160

Нах. по табл

1-1

Поворот
на 90°

25

1,5

318

~

2-3

Скругленный
поворот

25

О,1

21,3

~

3

Диафрагмы в

потоке
(калориферы)

35,8

3,6

601

~

3-4

Скругленный
поворот

21,7

0,28

44,8

~

4-1

Поворот
на 90
с раширением

28,9

0,85

241

~

4-1

Внезапное
сужение

28,9

0,09

25,5

~

Сумма

=1411,6 Па

Суммарные
потери:

=30 + 1410 =1440 Па

Вентиляторы
выбираем по характеристикам
центробежных

вентиляторов
, предположительно для типа ВРС № 10
(рабочее

колесо
диаметром 1000
мм
).

Для
производительности 21,5
м
3
и необходимого напора Н>1440

Па..
Получаем: n=550
об/мин;

,5;
Nуст
25
кВт.

Привод
вентилятора от асинхронного двигателя,
мощностью 30
кВт

типа
АО
при 720
об/мин
,
через клиноременную передачу.

Этап второй

Здесь рассчитываются аэродинамические показатели сопротивления. После выбора стандартных сечений воздуховодов уточняется величина скорости воздушного потока в системе.

Расчёт потерь давления на трение


Следующим шагом является определение удельных потерь давления на трение исходя из табличных данных или номограмм. В ряде случаев может пригодиться калькулятор для определения показателей на основе формулы, позволяющей произвести расчёт с погрешностью в 0,5 процента. Для вычисления общего значения показателя, характеризующего потери давления на всём участке, нужно его удельный показатель умножить на длину. На этом этапе также следует учитывать поправочный коэффициент на шероховатость. Он зависит от величины абсолютной шероховатости того или иного материала воздуховода, а также скорости.

Вычисление показателя динамического давления на отрезке


Здесь определяют показатель, характеризующий динамическое давление на каждом участке исходя из значений:

  • скорости воздушного потока в системе;
  • плотности воздушной массы в стандартных условиях, которая составляет 1,2 кг/м3.

Определение значений местных сопротивлений на участках


Их можно рассчитать исходя из коэффициентов местного сопротивления. Полученные значения сводят в табличной форме, в которую включаются данные всех участков, причём не только прямые отрезки, но и по несколько фасонных частей. Название каждого элемента заносится в таблицу, там же указываются соответствующие значения и характеристики, по которым определяется коэффициент местного сопротивления. Эти показатели можно найти в соответствующих справочных материалах по подбору оборудования для вентиляционных установок.

При наличии большого количества элементов в системе или при отсутствии определённых значений коэффициентов используется программа, которая позволяет быстро осуществить громоздкие операции и оптимизировать расчёт в целом. Общая величина сопротивления определяется как сумма коэффициентов всех элементов отрезка.

Вычисление потерь давления на местных сопротивлениях


Рассчитав итоговую суммарную величину показателя, переходят к вычислению потерь давления на анализируемых участках. После расчёта всех отрезков основной линии полученные числа суммируют и определяют общее значение сопротивления вентиляционной системы.

Расчет воздуховодов приточных и вытяжных систем механической и естественной вентиляции

Аэродинамический
расчет воздуховодов обычно сводится
к определению размеров их поперечного
сечения,
а также потерь давления на отдельных
участках
и в системе в целом. Можно определять
расходы
воздуха при заданных размерах воздуховодов
и известном перепаде давления в системе.

При
аэродинамическом расчете воздуховодов
систем вентиляции обычно пренебрегают
сжимаемостью
перемещающегося воздуха и пользуются
значениями избыточных давлений, принимая
за условный
нуль атмосферное давление.

При
движении воздуха по воздуховоду в любом
поперечном
сечении потока различают три вида
давления:
статическое,
динамическое

и полное.

Статическое
давление

определяет потенциальную
энергию 1 м3
воздуха в рассматриваемом сечении (рст
равно давлению на стенки воздуховода).

Динамическое
давление

– это кинетическая энергия потока,
отнесенная к 1 м3
воздуха, определяется
по формуле:

(1)

где
– плотность
воздуха, кг/м3;
– скорость
движения воздуха в сечении, м/с.

Полное
давление

равно сумме статического и динамического
давлений.

(2)

Традиционно
при расчете сети воздуховодов применяется
термин “потери
давления”
(“потери
энергии потока”).

Потери
давления (полные) в системе вентиляции
складываются из потерь на трение и
потерь в местных
сопротивлениях (см.: Отопление и
вентиляция, ч. 2.1 “Вентиляция”
под ред. В.Н. Богословского, М., 1976).

Потери
давления на трение определяются по
формуле
Дарси:

(3)

где
– коэффициент
сопротивления трению, который
рассчитывается по универсальной формуле
А.Д. Альтшуля:

(4)

где
– критерий Рейнольдса; К – высота
выступов шероховатости (абсолютная
шероховатость).При
инженерных расчетах потери давления
на трение
,
Па (кг/м2),
в воздуховоде длиной /, м, определяются
по выражению

(5)

где
– потери
давления на 1 мм длины воздуховода,
Па/м [кг/(м2
* м)].

Для
определения Rсоставлены
таблицы и номограммы. Номограммы (рис.
1 и 2) построены для условий: форма сечения
воздуховода круг диаметром,
давление воздуха 98 кПа (1 ат), температура
20°С, шероховатость= 0,1 мм.

Для
расчета воздуховодов и каналов
прямоугольного сечения пользуются
таблицами и номограммами
для круглых воздуховодов, вводя при
этом
эквивалентный диаметр прямоугольного
воздуховода, при котором потери давления
на трение в
круглом
и прямоугольном
~
воздуховодахравны.

В
практике проектирования получили
распространение
три вида эквивалентных диаметров:

■ по скорости

при
равенстве скоростей

■ по
расходу

при
равенстве расходов

■ по
площади поперечного сечения

при равенстве
площадей сечения

При
расчете воздуховодов с шероховатостью
стенок,
отличающейся от предусмотренной в
таблицах или в номограммах (К = ОД мм),
дают поправку к
табличному значению удельных потерь
давления на
трение:

(6)

где
– табличное
значение удельных потерь давления
на трение;
– коэффициент
учета шероховатости стенок (табл. 8.6).

Потери
давления в местных сопротивлениях. В
местах поворота воздуховода, при делении
и слиянии
потоков в тройниках, при изменении
размеров
воздуховода (расширение – в диффузоре,
сужение – в конфузоре), при входе в
воздуховод или в
канал и выходе из него, а также в местах
установки
регулирующих устройств (дросселей,
шиберов, диафрагм) наблюдается падение
давления в потоке
перемещающегося воздуха. В указанных
местах происходит
перестройка полей скоростей воздуха в
воздуховоде и образование вихревых зон
у стенок, что сопровождается
потерей энергии потока. Выравнивание
потока происходит на некотором расстоянии
после прохождения
этих мест. Условно, для удобства проведения
аэродинамического расчета, потери
давления в местных
сопротивлениях считают сосредоточенными.

Потери
давления в местном сопротивлении
определяются
по формуле

(7)

где

коэффициент местного сопротивления
(обычно,
в отдельных случаях имеет место
отрицательное значение, при расчетах
следует
учитывать знак).

Коэффициентотносится
к наибольшей скорости
в суженном сечении участка или скорости
в сечении
участка с меньшим расходом (в тройнике).
В таблицах
коэффициентов местных сопротивлений
указано, к какой скорости относится.

Потери
давления в местных сопротивлениях
участка, z,
рассчитываются по формуле

(8)

где

– сумма
коэффициентов местных сопротивлений
на участке.

Общие
потери давления на участке воздуховода
длиной,
м, при наличии местных сопротивлений:

(9)

где
– потери
давления на 1 м длины воздуховода;

– потери
давления в местных сопротивлениях
участка.

Эквивалентный диаметр

Эквивалентный диаметр — это диаметр круглого воздуховода или трубы, которые при равном потоке дают такую ​​же потерю давления или сопротивление, что и эквивалентный прямоугольный воздуховод или труба. Круглая форма приводит к меньшим перепадам давления и меньшей мощности вентилятора для перемещения воздуха и, следовательно, к меньшему количеству оборудования.

Эквивалентный диаметр прямоугольной трубы или воздуховода можно рассчитать как (Huebscher)

d e = 1.30 (ab) 0,625 / (a ​​+ b) 0,25 (1)

где

d e = эквивалентный диаметр (мм, дюймы)

a = длина основной или вспомогательной стороны (мм, дюймы)

b = длина вспомогательной или основной стороны (мм, дюймы)

Пример — эквивалентный диаметр

Эквивалентный диаметр 300 мм x 500 Прямоугольный воздуховод мм можно рассчитать как

d e = 1.30 ((300 мм) (500 мм)) 0,625 / ((300 мм) + (500 мм)) 0,25

= 420 мм

Калькулятор воздуховодов с прямоугольным и эквивалентным круглым сечением

Калькулятор ниже основано на формуле (1). Формула является общей и может использоваться любая единица измерения.

Эквивалентные диаметры для некоторых распространенных мм Размеры прямоугольного воздуховода:

Для полного стола с большими размерами — поверните экран!

Круговой эквивалентный диаметр — d e (мм)
Сторона воздуховода

a —
(мм)
Сторона воздуховода — b ( мм)
100 150 200 250 300 400 500 600 800 1000 1200 1400
100 109 133 152 168 183 207 227 9010 900 9010 900 9010 900 210 229 261 287 310 9015 9
200 152 189 219 244 266 305 337 365 9015 210 246 273 299 343 381 414 470
30010
30010 30010 378 420 457 520 574
400 207 260 3050 9010 901 901 9010 3050 901 901 9010 609 674 731
500 227 287 337 381 420 488 547 598 6810 762901 598 6810 762901 600 310 365 414 457 531 598 656 755 840 914 840 9140980 9140980 9140980 9140980 901 414 470520 609 687 755 875 976 1066 1146 1219 9015 674 762 840 976 1093 1196 1289 1373 1451 1523
1200 620 10109 62010731 901 620 10109 1416 1511 1598 1680
1400 781 886 980 1110 9010 980 1146 1210 1822
1600 939 1041 1219 1373 1511 1635 171054 9015 9015 9015 9015 901 1096 1286 1451 1598 1732 1854 1968 2073
2000 9010 9010 9010 2073 2186

напечатать диаграмму эквивалентного диаметра!

Эквивалентные диаметры некоторых распространенных дюймов прямоугольных воздуховодов:

Для полного стола — поверните экран!

0
Круговой эквивалентный диаметр (дюймы)
Длина
— b —
(дюймы)
Длина — a (дюймы)
4 5 6 8 10 12 16
4 4.4 4,9 5,3 6,1
5 4,9 5,5 6 6,9 7,6
7,6
6 6 7,6 8,4 9,1
8 6,1 6,9 7,6 8,6 9,8 10,7 12.2
10 7,6 8,4 9,8 10,9 12 13,7
12 9,109 10,7 901 900,1 9010 10,7 901 900 16 12,2 13,7 15,1 17,5

распечатать диаграмму эквивалентного диаметра!

Овальный эквивалентный диаметр (эллипс)

Плоские овальные воздуховоды имеют меньшую высоту, чем круглые воздуховоды, и сохраняют большую часть преимуществ круглых воздуховодов.Фитинги для плоских овальных воздуховодов сложно изготовить или модифицировать на месте.

Эквивалентный диаметр овального воздуховода или трубы (эллипса) можно рассчитать как (Heyt & Diaz)

d e = 1,55 A 0,625 / P 0,25 (2)

где

A = площадь поперечного сечения овального воздуховода (м 2 , в 2 )

P = овальный воздуховод по периметру (м, дюймы)

Площадь поперечного сечения воздуховода овальный воздуховод может быть выражен как

A = π ab / 4

, где

a = главный размер плоского овального воздуховода (м, дюйм)

b = малый размер плоского овальный воздуховод (м, дюйм)

Периметр овального воздуховода (эллипса) может быть приблизительно равен

P ≈ 2 π (1/2 ((a / 2) 2 + (b / 2) ) 2 )) 1/2 (2b)

Продольные воздуховоды

Эквивалентные диаметры продолговатых воздуховодов или труб могут быть выражены как

d e = 1.55 (π b 2 /4 + a b — b 2 ) 0,625 / (π b + 2 a — 2 b) 0,25 (3)

Гидравлический диаметр

Примечание! — эквивалентный диаметр не совпадает с гидравлическим диаметром. Гидравлический диаметр выражает соотношение между площадью сечения канала или трубки и периметром смачиваемого канала или трубки. Гидравлический диаметр используется для определения того, является ли поток ламинарным или турбулентным, и для расчета потери давления.

База данных по фитингам воздуховодов

ПОКУПКА


Примечание. Многопользовательское лицензирование для этого продукта недоступно.

База данных фитингов воздуховодов ASHRAE с облачным доступом по годовой подписке включает таблицы коэффициентов потерь для более чем 200 круглых, прямоугольных и плоских овальных фитингов.

Эта база данных, содержащая графические изображения каждого фитинга, полезна инженерам-проектировщикам, имеющим дело с различными фитингами для воздуховодов.Для любого данного фитинга введите расход и информацию о фитинге и получите данные о коэффициенте потерь и связанных потерях давления. Продукт включает в себя табличные данные для функций приточного, вытяжного и общего (приточного / возвратного) воздуховодов. Фитинги можно сохранить в файл проекта, в котором легко перемещаться, сохранять и передавать.

Интерфейс базы данных имеет полностью доступные свойства ввода, вывода, вычислений и табличных данных; и легко просматриваемые расчеты, которые обновляются в реальном времени.

Покупатели получают годовую подписку на облачный доступ к базе данных ASHRAE Duct Fitting Database вер. 6.00.05.

Загрузите приложение для своего iPhone, iPod или iPad

База данных по фитингам воздуховодов ASHRAE (DFDB) для iPhone, iPod touch и iPad позволяет выполнять расчеты потерь давления для фитингов воздуховодов ASHRAE в единицах измерения I-P и SI. Используйте это мобильное приложение в полевых условиях для быстрого расчета потерь давления в воздуховоде. Входы можно настраивать на ощупь, установка выполняется автоматически.Купите этот продукт в iTunes за 9,99 долларов США. Подробнее

Стандарт


Стандарт 120-2017 — Метод испытания определения гидравлического сопротивления воздуховодов и фитингов HVAC
Стандарт ASHRAE 120 устанавливает единые методы лабораторных испытаний воздуховодов и фитингов HVAC для определения их сопротивления воздушному потоку.


Также в наличии

Калькулятор размеров воздуховодов — это быстрый справочный инструмент для приблизительного определения размеров воздуховодов и эквивалентных размеров воздуховодов из листового металла по сравнению с гибкими воздуховодами.Он включает размеры для металлических воздуховодов и гибких воздуховодов при сжатии по прямой линии на 4%, 15% и 30%. Калькулятор размеров воздуховодов является результатом сотрудничества между ASHRAE TC 5.2, Duct Design и Институтом распределения воздуха. Узнать больше

Онлайн-калькулятор статического давления

для систем отопления, вентиляции и кондиционирования воздуха, воздуховодов и трубопроводов — Blackhawk Supply

Когда дело доходит до идеальной комфортной температуры в вашем доме или офисе, важно знать, как рассчитать статическое давление (SP) в системах воздуховодов.

  • Статическое давление — одна из самых важных частей прочной системы отопления, вентиляции и кондиционирования воздуха. Термин «статическое давление» используется в отношении сопротивления воздушному потоку в компонентах системы охлаждения и нагрева. Используйте наш калькулятор статического давления для оценки статического давления в вашей системе вентиляции воздуха.
  • Существует также «гидростатическое давление», давление, оказываемое жидкостью в состоянии покоя в трубопроводных системах. См. Раздел «Калькулятор гидростатического давления» ниже.

Зная, как рассчитать статическое давление в системах воздуховодов, вы можете определить, что правильный толчок воздуха противодействует сопротивлению воздушного потока.При расчете статического давления мы ищем, чтобы давление воздуха превышало сопротивление. В противном случае система не сможет обеспечить циркуляцию воздуха по каналам.

Как предотвратить отсутствие циркуляции в системе отопления и охлаждения? С точным расчетом статического давления в воздуховоде.

Онлайн-калькулятор статического давления (Калькулятор статического давления в воздуховоде)

С помощью этого онлайн-калькулятора статического давления мы упрощаем процесс расчета статического давления в системе воздуховодов.

Воспользуйтесь приведенным ниже калькулятором, чтобы быстро вычислить статическое давление воздуха и убедиться, что давление воздуха правильное.

Что такое статическое давление в воздуховодах?

Мы объяснили вкратце, что такое статическое давление, но давайте углубимся немного глубже, чтобы помочь вам понять важность, прежде чем научиться рассчитывать измерения статического давления HVAC.

Итак, мы знаем, что статическое давление важно для создания воздушного потока, но этот термин специально используется в отношении давления, измеряемого в дюймах водяного столба, когда воздух проходит через что-то, например, через воздуховоды.

Владельцам жилья не обязательно знать, как рассчитать статическое давление в системе отопления, вентиляции и кондиционирования воздуха. 3)

  • g = ускорение свободного падения, которое = 9.2
  • h = высота столба жидкости (м)
  • Единицы в калькуляторе давления:

    Атм = атмосфера,

    C = Цельсия,

    Cm = сантиметр,

    F =

    Фаренгейта

    Ft = фут,

    г = грамм,

    дюйм = дюйм,

    кг = килограмм,

    км = километр,

    фунт = фунт,

    м = метр,

    мбар = миллибар,

    мм = миллиметр,

    M = Мега,

    N = Ньютон,

    Па =

    Паскалей

    Этот расчет можно легко преобразовать в различные единицы измерения, и хотя знание того, как измерить статическое давление в трубе, является важным инструментом, онлайн-калькулятор может упростить определение гидростатического давления.

    Заключение

    Если вы хотите найти идеальный баланс толчка и сопротивления в вашей системе HVAC для создания идеальной температуры в вашем помещении, изучение того, как рассчитать статическое давление в системе воздуховодов или трубопроводов, может помочь гарантировать бесперебойную работу вашей системы. Чтобы произвести собственные расчеты, воспользуйтесь калькуляторами статического и гидростатического давления.

    Если вы не знаете, какие заслонки, приводы заслонок или любые другие материалы для систем отопления, вентиляции и кондиционирования воздуха подходят для вашей системы вентиляции или трубопроводов, не стесняйтесь обращаться в Blackhawk Supply.

    Потери на трение в воздуховоде в рабочем состоянии

    150180150180

    Вытяжки:

    Как выглядят эти вытяжки?
    Нет Обычный конец воздуховода Конец воздуховода с фланцем
    Bellmouth Entry Отверстие с острыми краями Стандартный кожух шлифовального станка (конический)
    Стандартный кожух шлифовального станка (без конуса) Ловушка или отстойная камера
    Абразивоструйная камера Абразивоструйный подъемник Сепаратор абразива
    Лифты (корпуса) Фланцевая труба с закрытым коленом Труба гладкая с закрытым коленом

    Покажите мне, как выглядит коническая вытяжка
    Конические вытяжки Угол конуса (градусы): 15304560 Тип кожуха: ПРЯМОУГОЛЬНЫЙ ИЛИ КВАДРАТНЫЙ

    Покажите мне, как выглядит составной кожух
    Составные вытяжки
    Размеры паза: Номер паза: Угол конуса (градусы):
    Высота (дюйм.): 15304560
    Длина (дюймы): Тип кожуха: ПРЯМОУГОЛЬНЫЙ ИЛИ КВАДРАТНЫЙ

    Другое
    Коэффициент потерь для другого типа воздуховода:

    Вводы ответвлений (поправки на изменение скорости):

    Покажите мне конфигурацию входа в ветвь
    Сегмент воздуховода берет начало в филиале
    Расход входящего ответвления №1 (ACFM):
    Давление скорости на входе №1 (дюймы водяного столба):
    Расход входного ответвления №2 (ACFM):
    Давление скорости входного ответвления №2 (дюймы водяного столба):
    Примечание: Сумма потоков в ответвлениях №1 и №2 должна равняться скорости потока во вводе ACFM выше.
    Примечание: нельзя смешивать воздуховоды круглого и прямоугольного сечения в одном расчете.
    Круглые воздуховоды:
    Покажите мне, как выглядят эти круглые локти
    Номер: Тип: Штампованные: 5 шт., 4 шт., 3 шт. 0.50.751.001.502.002.50 Размах колена (градусы):530
    Номер: Тип: Штампованные: 5 шт., 4 шт., 3 шт. 0.50.751.001.502.002.50 Угол поворота колена (градусы):530
    Номер: Тип: Штампованные: 5 шт., 4 шт., 3 шт. 0.50.751.001.502.002.50 Размах колена (градусы):530

    Воздуховоды прямоугольного сечения (можно выбрать до трех различных типов колен):
    Покажите мне, как выглядят эти прямоугольные локти
    Номер: Соотношение сторон (Ш / Г): 0.250.51.02.03.04.0 П / Д: 0.00.51.01.52.03.0
    Номер: Соотношение сторон (Ш / Г): 0.250.51.02.03.04.0 R / D: 0.00.51.01.52.03.0
    Номер: Соотношение сторон (Ш / Г): 0.250.51.02.03.04.0 R / D: 0.00.51.01.52.03.0
    Магистральный воздуховод
    (ветвь 1 на этом чертеже)

    Филиал Вход Угол входа ответвления (градусы): 1015202530354045506090
    (ответвление 2 на этом чертеже)

    Покажите мне, как выглядят эти расширения и сжатия
    Расширение в воздуховоде Угол конуса (градусы): 3.55101520253090
    Соотношение диаметров (выходной диаметр / входной диаметр): 1.25: 11.5: 11.75: 12: 12.5: 1
    Расширение превышает 5 диаметров от изгиба или вентилятора ?: ДА НЕТ

    Расширение на конце воздуховода Отношение длины конуса к диаметру входного отверстия: 1.0: 11.5: 12.0: 13.0: 14.0: 15.0: 17.5: 1
    Соотношение диаметров (диаметр на выходе / диаметр на входе): 1.2: 11.3: 11.4: 11.5: 11.6: 11.7: 1
    Расширение превышает 5 диаметров от колена или вентилятора ?: ДА НЕТ

    Конический контакт Угол усадки конуса (градусы): 510152025304560 Более 60
    Диаметр выпускной трубы (дюймы):

    Вертикальный выпуск, без потерь

    Онлайн-расчет воздуховодов ОВК

    Вы когда-нибудь хотели быстро проанализировать или устранить неполадки в какой-либо части вашей технологической вентиляции или системы HVAC, но у вас не было специального компьютерного приложения или технического руководства для этого? Что ж, новое бесплатное онлайн-приложение может быть полезным, позволяя вам эффективно анализировать эти проблемы без огромных усилий и участия экспертов.

    Это новое приложение, «Расчет потерь на трение в воздуховоде и скоростного давления», выполняет простой анализ падения давления в однотрубных трубопроводах в системах вентиляции. Этот простой и легкий в использовании инструмент позволяет пользователю быстро проверять существующие системы или тестировать их модификации, используя только веб-браузер.

    Чтобы использовать это приложение, пользователь просто вводит конфигурацию воздуховода в форме, доступной через веб-страницу. Пользователю предлагается ввести следующие необходимые данные:

    1.Воздуховод и условия потока (размер, расход, свойства и т. Д.)
    2. Конфигурация входа в воздуховод (кожухи и концы воздуховодов)
    3. Отводы (круглые и прямоугольные)
    4. Фильтр (ы) / воздухоочиститель (и) / разное оборудование
    5. Конфигурация выхода воздуховода (ответвления, сужения и расширения)

    Затем одним щелчком мыши приложение вычисляет падение давления и скоростное давление в дюймах водяного столба для этого участка системы. Этот расчет падения давления включает потери в прямом участке воздуховода, а также дополнительные потери, связанные с коленами, оборудованием и конфигурациями входа и выхода системы.Пользователи могут выполнять этот анализ как для прямоугольных, так и для круглых воздуховодов, и в ближайшее время будет добавлена ​​поддержка плоских овальных воздуховодов. Приложение подходит для большинства типичных конфигураций воздуховодов, фитингов и колпаков, а также позволяет вручную вводить потери давления для такого оборудования, как фильтры. Интерактивный характер этого веб-приложения также позволяет пользователю получать доступ к изображениям различных фитингов, колен и колпаков, проанализированных в процессе расчета, чтобы можно было сделать правильный выбор для анализа.

    Хотя это приложение может одновременно работать только с одним воздуховодом одного размера, его можно применить к более сложным системам, разделив их на секции и проанализировав каждую секцию по отдельности.

    Также могут быть размещены газы, отличные от воздуха. Любой газ, работающий в условиях, приближенных к идеальным, может быть адекватно проанализирован при условии ввода надлежащих свойств газа (молекулярная масса, вязкость и удельная теплоемкость). Эта способность работать с безвоздушными системами делает это применение особенно полезным в процессах с низким давлением потока, таких как скрубберы и другие системы вентиляции промышленных газов.

    Также доступны интерактивные ссылки «Как сделать» и «Технические справочники», позволяющие пользователю глубже изучить, как выполняются эти вычисления, и получить дополнительные объяснения того, как использовать программу.

    В дополнение к этим расчетам воздуховодов предоставляется ссылка на страницу с расчетами «Закона вентилятора». Используя информацию, полученную в результате анализа потерь на трение и страницы «Законы о болельщиках», пользователь может получить доступ к листу данных о болельщиках, который можно распечатать или направить в электронном виде поставщикам для предложения.

    Детальное проектирование систем ОВК и технологической вентиляции по-прежнему требует навыков опытного профессионала. Кроме того, это приложение не соответствует функциональности и возможностям проверенных в отрасли программ проектирования воздуховодов, которые могут легко приспособиться к многопоточным системам. Но для обычного пользователя, инженера-технолога с соблюдением крайних сроков или даже для специалиста по проектированию систем вентиляции «Расчет потерь на трение в воздуховоде и скоростного давления» может быть полезным ресурсом для выполнения быстрых и простых расчетов, когда это необходимо.

    Приложения «Онлайн-расчет потерь на трение в воздуховоде и скоростного давления», «Законы о вентиляторах» и «Технические данные вентилятора» написаны на JavaScript, поэтому к ним можно получить доступ только с помощью браузера. Их можно найти на сайте www.freecalc.com, нажав кнопку «Вентиляторы и HVAC».


    Джон Косик — инженер-технолог компании Beacon Engineers Inc., Сиэтл.

    Для получения дополнительной информации: Джон Косик, Beacon Engineers, 18940 Northeast 150th St., Woodinville, WA 98072. Тел: 425-742-9653. Факс: 425-883-2171. Электронная почта: [email protected].

    Стоимость установки воздуховодов — Калькулятор затрат на 2021 год (настраиваемый)

    Обновлено: апрель 2021 г.

    Подробная информация о товаре Кол-во Низкий Высокий
    Стоимость воздуховодов ОВК
    Без скидки на: гибкий воздуховод диаметром 8 дюймов, фитинги и регистр. Оболочка воздуховода из полиэстера с изоляцией R8.Ограниченная гарантия сроком на 1 год. Количество включает типичный излишек отходов, материалы для ремонта и местную доставку.
    27 погонных футов 53,21 $ $ 62,10
    Монтаж воздуховодов ОВК Работа, базовый
    Основные работы по установке воздуховодов при благоприятных условиях площадки. Установите металлический воздуховод диаметром 10 дюймов, с 1 заслонкой и 1 регистром на каждые 20 футов. Соберите, закрепите, поддержите и соедините секции воздуховода. Воздушное уплотнение и ленточные соединения. Башмаки, регистры и другие фитинги в комплект не входят.Включает в себя планирование, приобретение оборудования и материалов, подготовку и защиту территории, настройку и очистку.
    27 погонных футов 53,21 $ 62,10 $
    Рабочие принадлежности для монтажа воздуховодов ОВК
    Стоимость сопутствующих материалов и расходных материалов, обычно требуемых для установки воздуховодов, включая фитинги, крепеж и монтажное оборудование.
    27 погонных футов 53,21 долл. США 62,10 долл. США
    Минимальный неиспользованный труд
    Остаток минимальной платы за труд в размере 2 часов, которую можно использовать для других задач.
    Итого — стоимость установки воздуховодов
    Средняя стоимость на одну ножку для линейного перемещения0

    Изменяйте коэффициенты затрат, комбинируйте товары homewyse и добавляйте товары, которые вы создаете — в приложении ценообразования с возможностью повторного использования, настроенном для вашего бизнеса . Начните с популярных шаблонов ниже или создайте свой собственный (бесплатно; требуется регистрация учетной записи):

    Для базового проекта с почтовым индексом 47474 и длиной 25 погонных футов стоимость установки воздуховодов начинается с 11 долларов.85 — 14,19 долларов за погонный фут. Фактические затраты будут зависеть от размера работы, условий и опций.

    Чтобы оценить затраты для вашего проекта:

    1. Установите почтовый индекс проекта Введите почтовый индекс для места, где нанимается рабочая сила и закупаются материалы.

    2. Укажите размер проекта и параметры Введите количество «погонных футов», необходимое для проекта.

    3. Пересчитать Нажмите кнопку «Обновить».



    Удельные затраты: как выгодно Цена

    В отличие от веб-сайтов, на которых цены на разнородные вакансии смешиваются, Homewyse создает индивидуальные оценки из себестоимости единицы .Метод Удельная стоимость основан на деталях конкретного задания и текущих затратах. Подрядные, торговые, проектные и обслуживающие предприятия полагаются на метод Себестоимость единицы для обеспечения прозрачности, точности и справедливой прибыли.


    Главная — DuctWorks

    Мы предоставляем услуги по проектированию воздуховодов, а также изделия для отопления и охлаждения домовладельцев, которые сделают это самостоятельно. Наши услуги по проектированию начинаются с $ 275 и включают Бесплатное пошаговое видео по установке воздуховодов с каждым дизайнерским пакетом.Часть платы за дизайн может быть потрачена на покупку всей системы воздуховодов.

    Чтобы получить расценки на свой дизайн, отправьте свои планы по факсу на номер 231-269-3821 или заполните нашу форму «Свяжитесь с нами».

    Мы помогаем домовладельцам и строителям «сделай сам» сэкономить деньги , предлагая начальную и постоянную помощь в процессе установки отопления и охлаждения. Наши услуги включают тщательные и профессиональные услуги по проектированию воздуховодов и список материалов для вашего проекта, а также консультации по телефону и электронной почте.

    Мы храним большинство труднодоступных фитингов для воздуховодов для вашего проекта, например прямоугольные и овальные стенные трубы для воздуховодов. Позвоните или напишите нам, чтобы узнать обо всех этих труднодоступных деталях и получить расценки на ваш следующий проектный пакет воздуховода. Если вы не можете найти то, что ищете, позвоните нам или заполните форму «Свяжитесь с нами», и мы найдем это для вас!
    Мы занимаемся компоновкой и проектированием систем отопления и охлаждения жилых помещений, а также поставляем продукцию для систем отопления, вентиляции и кондиционирования воздуха. Мы обслуживаем домовладельцев «Сделай сам», помогая им установить свою собственную систему, экономя им тысячи долларов и гарантируя, что устанавливаемая система имеет правильный размер и правильно спроектирована для оптимальной эффективности и комфорта.Мы сочетаем более чем 25-летний опыт работы в сфере отопления и охлаждения / строительства с утвержденными версиями программного обеспечения процедур ACCA (Подрядчики по кондиционированию воздуха Америки) для расчета нагрузки в жилых домах (Руководство J) и расчета размеров воздуховодов в жилых помещениях (Руководство D). Мы используем одобренное ACCA программное обеспечение для расчета теплопотерь / притока тепла в доме для определения размеров оборудования и одобренное ACCA программное обеспечение для расчета размеров воздуховодов. Обладая этой информацией, мы нарисуем полную компоновку системы воздуховодов в масштабе, создадим список материалов / расценки для оценки стоимости работ и / или для составления списка деталей для начала вашего проекта.Наши услуги включают в себя предоставление полной компоновки системы воздуховодов для систем приточной вентиляции, расчет нагрузки для правильного определения размеров системы отопления и кондиционирования, полный список материалов и пошаговое видео с инструкциями по установке воздуховодов. Мы также будем здесь, чтобы ответить на все ваши вопросы, предоставить вам ресурсы и провести вас через ваш проект от начала до конца.

    DuctWorks в сети DIY

    DuctWorks появился в эпизоде ​​Weekend Handyman, показанном в сети DIY.В этом эпизоде ​​речь шла о ряде проектов по отоплению и охлаждению, сделанных своими руками, включая установку приточного регистра и вентиляционного отверстия в недостроенном подвале.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *