- Схема мощного стабилизатора тока на 100
- Стабилизатор тока для светодиодов + схемы на транзисторе, с регулятором напряжения
- Причины использования стабилизаторов, как правильно выбрать стабилизатор напряжения
- схема регулируемая, импульсная, конструкция и назначение
Схема мощного стабилизатора тока на 100
В литературе не часто можно встретить описания стабилизаторов тока на 100…200 А, однако в некоторых процессах (гальваника, сварка и др.) они необходимы. На первый взгляд, для стабилизации таких токов необходимы и соответствующие мощные транзисторы.
Вашему вниманию предлагается стабилизатор тока на 150 А (с плавной регулировкой от нуля до максимума), выполненный на обычных, широко распространенных транзисторах серии КТ827. Примененное схемотехническое решение позволяет легко увеличить или уменьшить максимальный стабилизируемый ток.
Принципиальная схема
Принципиальная схема предлагаемого стабилизатора тока изображена на рис. 1. Как видно, нагрузка включена несколько необычно — в разрыв провода, соединяющего отрицательный вывод диодного моста VD5…VD8 с общим проводом устройства.
Рис. 1. Принципиальная схема мощного стабилизатора тока 150А на транзисторах.
Все мощные транзисторы VT1. ..VT16 включены по схеме с общим коллектором, но каждый из них нагружен на свой уравнивающий резистор (R4…R19), также соединенный с общим проводом.
Таким образом, через подключенную к розетке XS1 нагрузку стабилизатора протекает суммарный ток всех 16 транзисторов. Ток через каждый из транзисторов VT1…VT16 выбран около 9 А, что значительно меньше предельно допустимого значения для транзисторов КТ827А…КТ827В. При падении напряжения на транзисторе 10… 11 В рассеиваемая мощность достигает 100 Вт.
Разброс параметров транзисторов и сопротивлений резисторов R4…RI9 не имеет значения, так как каждый транзистор управляется своим операционным усилителем.
Выходы ОУ DA1.1…DA8.2 через транзисторы VT17…VT32 соединены с базами транзисторов VT1…VT16, а напряжения обратных связей поданы на инвертирующие входы с эмиттеров соответствующих транзисторов. ОУ поддерживают на инвертирующих входах (и, соответственно, на эмиттерах транзисторов VT1…VT16) такие же напряжения, какие имеются у них на неинвертирующих входах.
На неинвертирующие входы всех ОУ подано стабильное управляющее напряжение с резистивного делителя R2, R3, подключенного к выходу интегрального стабилизатора DA11. При изменении управляющего напряжения изменяется ток через каждый из резисторов R4…R19 и, соответственно, через общую нагрузку, подключенную к розетке XS1. Питаются ОУ от стабилизатора, выполненного на микросхемах DA9, DA10 и транзисторе VT33.
Детали и конструкция
Вместо составных транзисторов КТ827А в стабилизаторе тока можно применить транзисторы этой серии с индексами Б, В, Г или комбинации из двух транзисторов соответствующей мощности (например, КТ315 + КТ819 с любыми буквенными индексами).
Сдвоенные ОУ КР140УД20 заменимы на К157УД2 или на одинарные ОУ КР140УД6, К140УД7, К140УД14 и им подобные, стабилизатор 78L05 — на КР142ЕН5А, КР142ЕН5В или 78М05, транзисторы КТ315Е — на КТ3102, КТ603, диоды Д200 — на Д160. Вместо трансформатора ТПП232 (Т1) допустимо применение ТПП234, ТПП253 или любого другого с двумя вторичными обмотками на напряжение 16. ..20 В.
Резистор R1 может быть любого типа, R2 желательно применить высокостабильный, например, С2-29. Для регулирования тока нагрузки был использован переменный резистор СП5-35А (с высокой разрешающей способностью), но можно, конечно, применить и любой другой, обеспечивающий требуемую точность установки тока.
Конденсатор C3 набран из десяти конденсаторов К50-32А, С4, С6 — К50-35, остальные — любого типа. Использовать в качестве C3 один конденсатор большой емкости нельзя, так как он будет сильно перегреваться из-за того, что его выводы не рассчитаны на такие большие токи (недостаточное сечение провода).
Сдвоенные ОУ DA1…DA8, транзисторы VT17…VT32, интегральный стабилизатор напряжения DA11, резисторы R2, R3 и конденсаторы С4…С7 монтируют на печатной плате, изготовленной по чертежу, показанному на рисунке 2.
Рис. 2. Печатная плата для мощного стабилизатора тока.
Транзисторы VT1-VT16 закрепляют на теплоотводах, способных рассеять не менее 100 Вт каждый. Все 16 теплоотводов собраны в батарею, для их охлаждения применены четыре вентилятора, что позволило включать стабилизатор тока на долговременную постоянную нагрузку. Если нагрузка будет кратковременной или импульсной, можно обойтись и теплоотводами меньших размеров.
Резисторы R4…R19 изготавливают из высокоомного (манганинового или константанового) провода диаметром 1…2 мм и закрепляют на теплоотводах соответствующих им транзисторов Для охлаждения диодов VD5…VD8 используют стандартные теплоотводы, рассчитанные на установку диодов Д200 (обдув их вентилятором не требуется).
Микросхему DA9 и транзистор VT33 размещают на небольших пластинчатых теплоотводах. При монтаже стабилизатора тока нужно учитывать, что через некоторые цепи будет течь ток 150 А, поэтому их необходимо выполнить проводом соответствующего сечения.
Вторичная обмотка трансформатора Т2 должна обеспечивать напряжение около 14 В при токе нагрузки 150 А (хорошо подходит сварочный трансформатор). Падение напряжения на сопротивлении нагрузки стабилизатора должно быть не более 10 В (остальное напряжение падает на транзисторах VT1. VT16 и резисторах R4…R19).
При большем падении напряжения на нагрузке придется повысить напряжение вторичной обмотки трансформатора Т2, однако в этом случае необходимо проследить, чтобы мощность рассеяния каждого из транзисторов не превысила максимально допустимую.
Налаживание
Налаживание собранного из исправных деталей устройства сводится к установке максимального стабилизируемого тока подбором резистора R2. Это удобно сделать временно заменив последний включенным реостатом подстроечным резистором сопротивлением 1,5 — 2 кОм.
Установив его движок в положение максимального сопротивления а движок резистора R3 в верхнее (по схеме) положение и включив последовательно с нагрузкой амперметр на ток 150-200А (или просто подсоединив его к гнездам розетки XS1) включают стабилизатор в сеть и, уменьшая сопротивление подстроенного резистора, добиваются отклонения стрелки амперметра до соответствующей отметки шкалы. Затем измеряют сопротивление введенной части подстроенного резистора и заменяют его постоянным ближайшего номинала.
При максимальном токе 150А напряжение на эмиттерах транзисторов VT1 — VT16 должно быть около 1,88В. Поэтому налаживание можно проводить и по напряжению на эмиттере какого-либо из этих транзисторов, хотя точность установки тока при этом будет небольшой из-за разброса сопротивлений резисторов R4-R19.
Если необходимо увеличить или уменьшить отдаваемый в нагрузку максимальный ток можно соответственно увеличить или уменьшить число транзисторов и ОУ.
Таким образом, на основе описанного стабилизатора можно создать значительно более мощный источник тока. Подключая нагрузку к стабилизатору тока, следует помнить, что на «земляном» проводе будет плюсовой выход стабилизатора.
И. Коротков.
Стабилизатор тока для светодиодов + схемы на транзисторе, с регулятором напряжения
На чтение 10 мин Просмотров 3.3к. Опубликовано Обновлено
Содержание
- Как работает стабилизация по току
- Обзор популярных схем
- Импульсный стабилизатор для светодиодов
- Стабилизатор на КРЕН
- Стабилизатор тока на транзисторе
- Стабилизаторы на микросхемах
- Регулируемый стабилизатор постоянного тока
Яркость свечения светодиода зависит от протекающего через него тока. Для получения стабильной яркости надо, чтобы ток через LED не менялся со временем, а для повышения долговечности полупроводникового прибора ток в любой ситуации не должен превышать номинального значения. По этим резонам для питания светодиодов применяют стабилизаторы тока, которые можно изготовить своими руками.
Как работает стабилизация по току
Получение стабильного (не зависящего от изменений нагрузки в заданных пределах) тока основано на законе Ома. Если ток в цепи упал, драйвер увеличивает выходное напряжение до восстановления уровня тока до заданного значения. Если ток увеличился, регулятор, наоборот, снижает напряжение. Для отслеживания уровня тока часто применяется обратная связь (например, замер падения напряжения на образцовом резисторе (шунте)).
Другой способ получить стабильный ток – запитать нагрузку от стабилизатора напряжения. Если сопротивление нагрузки останется неизменным, то и ток через нее не изменится.
Второй способ проще в реализации, но его эффективность ниже. Сопротивление цепочки светодиодов в процессе эксплуатации может меняться (например, в зависимости от температуры), при этом и яркость тоже не останется неизменной. Хотя это все равно лучше, чем отсутствие драйвера совсем.
Мнение эксперта
Панков Алексей
Инженер-электрик.
Специальность: Проектирование и монтаж изделий электротехники.
Задать вопрос
Другая проблема применения стабилизаторов напряжения для получения неизменной яркости состоит в крутой ВАХ светоизлучающих диодов. Небольшое изменение напряжения дает значительный прирост или снижение тока.
Обзор популярных схем
Стабильный источник питания для LED (и другой нагрузки) можно собрать по разным схемам. Все зависит от требуемых характеристик и квалификации мастера.
Импульсный стабилизатор для светодиодов
Несложный, но мощный стабилизатор тока можно собрать на недорогой и доступной микросхеме 555 (NE555, КР1006ВИ1). Микросхема представляет собой таймер с двумя входами:
- по одному входу можно регулировать частоту импульсов;
- по второму – их длительность.
Таким способом можно организовать широтно-импульсную модуляцию (ШИМ) для регулирования и стабилизации яркости светодиодов. Метод ШИМ состоит в питании LED импульсами постоянного напряжения, постоянной частоты, но разной длительности. Чем больше длительность импульсов, тем выше средний ток через светоизлучающие диоды, а чем короче импульсы – тем ниже средний ток.
Схема стабилизатора тока построена так, что частота следования импульсов на выходе остается постоянной, а длительность можно регулировать потенциометром. Если регулировка не нужна, можно вместо потенциометра впаять постоянный резистор нужного номинала. Частота следования импульсов практически не зависит от напряжения питания, а их размах – зависит. И это является недостатком схемы, потому что для стабильного свечения требуется стабильное входное напряжение.
Устройство питается от постоянного напряжения от 13,5 до 27 вольт (ограничения заданы диапазоном входного напряжения LM7812). Для питания пониженным напряжением надо удалить из схемы входной стабилизатор. Для питания повышенным – изменить схему стабилизации.
Стабилизатор на КРЕН
Популярные линейные интегральные стабилизаторы КРЕН (зарубежные аналоги – LM78XX, где XX – напряжение стабилизации) можно использовать для стабилизации тока в стандартном включении – путем получения стабильного напряжения. Но изменив включение микросхемы можно заставить ее стабилизировать ток.
Для стабилизации тока используется свойство микросхемы повышать уровень напряжения на выходе (вывод Out) если повышается уровень на выводе GND. Если ток в цепи по какой-либо причине уменьшается, то изменяется распределение Uвходного между нагрузкой и регулирующим элементом микросхемы. Напряжение на нагрузке увеличивается, и интегральный стабилизатор повышает напряжение на выходе, удерживая при этом ток стабильным.
Микросхему надо выбирать так, чтобы ее Uвых хватило для открывания цепочки светодиодов. Для одного LED хватит и КРЕН5А (LM7805). Для большего количества светодиодов надо применять стабилизатор с большим выходным уровнем, соответственно увеличивая напряжение питания. Резистор R1 задает ток в цепи по закону
- I — ток стабилизации, А;
- Vстаб – выходное напряжение микросхемы;
- R1 – сопротивление резистора, Ом;
- i0 – ок покоя микросхемы, для большинства экземпляров около 8 мА.
Максимальный ток ограничивается возможностями микросхемы и не превышает 1 А, но для этого стабилизатор надо установить на радиаторе.
Окончательно выходной ток устанавливается подбором резистора R1 в процессе наладки.
Для нормальной работы микросхемы на входе надо установить оксидный конденсатор (на схеме не показан) так, чтобы длина проводников между КРЕН и конденсатором была не больше 7 см.
Окно онлайн-калькулятораДля расчета параметров стабилизатора можно использовать онлайн-калькуляторы. Найти их можно в интернете.
Стабилизатор тока на транзисторе
Стабилизатор для светодиодов можно построить на биполярном транзисторе, включенном по схеме эмиттерного повторителя. Напряжение на базе стабилизировано стабилитроном VD, резистор R1 ограничивает ток через стабилитрон.
Схема стабилизатора на биполярном транзистореЕсли напряжение на базе транзистора неизменно, то оно неизменно и на эмиттере, а значит, стабилен и ток через R2. Так как ток коллектора практически совпадает с током эмиттера, то и ток через светоизлучающие диоды будет относительно неизменен.
Другой вариант схемы стабилизатора на транзистореСтабилитрон должен иметь как можно более низкое напряжение стабилизации, в противном случае будет теряться большая часть выходного уровня источника питания. Но низковольтный стабилитрон найти не так легко, поэтому хороший вариант – заменить его двумя (или более) обычными диодами в прямом включении.
Диоды задают напряжение на базе полупроводникового прибора, но надо учитывать, что примерно 0,6 вольта упадет на эмиттерном переходе транзистора. Поэтому диодов должно быть не меньше двух.
Еще один вариант схемы – использование в качестве источника опорного напряжения «программируемый стабилитрон» TL431. При включении, указанном на схеме, на эмиттере транзистора всегда будет 2,5 вольта, и ток в цепи коллектора будет равен Iколлектора=2,5/R2+Iбазы. Ток базы невелик, поэтому можно считать, что ток коллектора достаточно стабилен и задается резистором R2.
Недостатком этой схемы является зависимость тока от входного напряжения. Улучшить параметры можно получить, запитав схему стабильным напряжением, добавив стабилизатор, собранный, например, на КРЕН.
Лучшие характеристики имеет стабилизатор на полевом транзисторе.
Схема драйвера на мощном MOSFETПреимущество такой схемы в том, что стабилизатор представляет собой двухполюсник и может быть легко подключен в любую существующую цепь. Ток задается резистором R1 и имеет сложную зависимость от сопротивления и характеристик полевого транзистора. Ток стабилизации придется подбирать экспериментально из-за большого разброса параметров полупроводниковых приборов – и это недостаток данной схемы.
Такой вариант – без резистора – является, пожалуй, оптимальной схемой драйвера светодиодных приборов системы освещения авто. В этой ситуации требует решения проблема стабильного напряжения (выбросы в бортсети намного уменьшают срок службы LED). Линейные стабилизаторы (LM7812) работают плохо. Для нормальной работы им нужно на входе не менее 14 вольт, а в бортовой сети такое напряжение бывает не всегда. Работа с пониженным же напряжением питания ведет к падению яркости свечения световых устройств. А в приведенной схеме эти недостатки минимизированы.
Стабилизаторы на микросхемах
Источник стабильного тока можно построить на операционном усилителе. Выходной каскад ОУ в большинстве случаев не рассчитан на подключение мощной нагрузки, поэтому к нему в качестве усилителя подключается мощный полевой или биполярный транзистор. Приведенная схема имеет особенность – нагрузка подключена к общему проводу. Во многих случаях это удобно.
Иной вариант схемы – когда нагрузка подключается к плюсу питания.
Другой вариант драйвера на ОУДля обеих вариантов характерен общий недостаток – ток в цепи нагрузки зависит от входного напряжения. В совокупности с другими минусами (необходимость организации цепей смещения ОУ или питание от двуполярного источника и т.п.) схемы получаются громоздкими и особого распространения не получили.
Регулируемый стабилизатор постоянного тока
Для регулировки тока можно постоянный резистор, задающий этот ток, заменить переменным. Например, в схеме с биполярным транзистором достаточно регулировать сопротивление в цепи эмиттера.
Недостаток такой регулировки – через потенциометр идет полный ток нагрузки. Место подвижного контакта будет со временем подгорать и переменный резистор выйдет из строя. Другое дело – схема на полевом транзисторе. В цепи стока ток практически отсутствует (реально он составляет десятки, максимум – сотни миллиампер). Поэтому на MOSFET можно построить регулируемый источник. Практическая реализация БП для LED приведена на рисунке. Схема дополнена защитой от сверхтока на биполярном транзисторе VT2.
Регулируемый источник тока на MOSFET IRF740Можно построить регулятор, позволяющий добиться стабилизации как тока, так и напряжения, при этом обе величины можно регулировать. В этом случае устройство будет универсальным, позволяющим использовать его для питания различных наборов светоизлучающих диодов. Классическим вариантом служит стабилизатор на микросхеме TL494, представляющей собой контроллер ШИМ. Она имеет два канала для обратной связи, что позволяет организовать два канала стабилизации (для тока и для напряжения). На вывод 1 микросхемы поступает напряжение с выхода стабилизатора. Микросхема сравнивает его с опорным и дает команду на увеличение или уменьшение длительности открытого состояния ключей.
Схема импульсного стабилизатора на TL494Для отслеживания тока последовательно с нагрузкой установлен шунт, напряжение с которого заводится на вывод 16, где оно также сравнивается с опорным уровнем. Накопительный дроссель намотан на двух склеенных желтых кольцах проводом толщиной 1 мм. Напряжение регулируется потенциометром R13, а ток – R5. Ключевые транзисторы надо установить на радиатор.
Конструкция дросселяСделать драйвер для светодиодного светильника несложно. Надо только выбрать схему в рамках своей квалификации, и LED прослужат намного дольше. Хотя среди рассмотренных вариантов сложных нет – если нужно сложное устройство с большим количеством регулировок, защит и т.п., проще купить готовую плату.
Причины использования стабилизаторов, как правильно выбрать стабилизатор напряжения
Распространенные причины низкого напряженияБольшинство устройств, связанных с нашей повседневной деятельностью, требуют бесперебойного и стабильного электропитания. Уменьшение напряжения может вызвать у нас большое разочарование.
Одной из самых серьезных проблем являются колебания напряжения.
Проще говоря, флуктуация напряжения — это постоянное изменение напряжения, когда широко используются устройства или устройства, требующие более высокой нагрузки. Экстремальные колебания напряжения могут нанести серьезный ущерб вашей жизни и имуществу. Важно выяснить основную причину колебаний напряжения в вашем доме или офисе.
Что такое стабилизатор напряжения?
Стабилизатор напряжения — это устройство для автоматического поддержания постоянного уровня напряжения.
Это электрическое устройство, которое используется для обеспечения стабильного выходного напряжения нагрузки на его выходных клеммах независимо от любых изменений на входе, т.е. входящего питания.
Основное назначение стабилизатора напряжения – защита тяжелых товаров, потребляющих большое количество электроэнергии (например, кондиционер, холодильник, телевизор и т. д.)
Как аналоговые, так и цифровые автоматические стабилизаторы напряжения используются в офисах или дома.
Стабилизаторы напряжения однофазные с выходом 220-230 вольт или трехфазные с выходом 380/400 вольт.
При недостаточном питании могут произойти три вещи: колебания напряжения, скачки напряжения и пики. Последствия этого снижения напряжения включают плохую работу приборов, тусклое освещение, периодическое отключение света и т. д. Из-за этого приборы не получают надлежащего количества энергии, в которой они нуждаются, они перегреваются и, таким образом, перестают работать должным образом.
Дисбаланс в проводах влияет на распределение электроэнергииНеравномерное распределение этих проводов в каждом доме может привести к снижению напряжения.
Подключаются от электроприбора к дому.
Один провод называется регулятором нейтрали.
Любая авария, происходящая с этими проводами, приводит к тому, что один провод перекрывается другим, и, таким образом, перегруженный провод начинает давать низкое напряжение.
Как правильно выбрать стабилизатор напряженияСтабилизатор напряжения — эффективное решение для дома по разумной цене.
При покупке стабилизатора напряжения люди сильно путаются.
Как покупатель, вы должны понимать полезность и назначение стабилизатора напряжения. Вы должны понимать общую номинальную мощность вашего устройства. Соответственно, купите хороший стабилизатор напряжения, исходя из потребляемой мощности и номинала кВА вашего прибора.
Стабилизаторы напряжения теперь стали основной потребностью каждого дома. Он защищает бытовые приборы от повреждений и продлевает им срок службы. Moglix предлагает инновационные технологии и надежную конструкцию для защиты всех подключенных устройств от колебаний напряжения. Мы предлагаем широкий ассортимент цифровых стабилизаторов для защиты ваших приборов от бесчисленных скачков напряжения и скачков напряжения. Вы можете проверить в Интернете лучшую цену от наших различных брендов, таких как Luminous, Microtek, V-Guard, Pulstron и т. д.
схема регулируемая, импульсная, конструкция и назначение
Яркость светодиодных источников зависит от протекающего тока, который в свою очередь зависит от напряжения питания. В условиях колебаний нагрузки светильники пульсируют. Для предотвращения этого используется специальный драйвер — стабилизатор тока. В случае поломок элемент можно изготовить самостоятельно.
Содержание
- Устройство и принцип действия
- Разновидности стабилизаторов тока
- Стабилизаторы резисторные
- Транзисторные устройства
- Стабилизаторы тока на полевом работнике
- Линейные устройства
- Феррорезионное устройство
- Особенности текущего зеркального схема
- . для светодиодов самостоятельно
- Драйвер на базе
- Стабилизатор для автомобильных фар
- Нюансы расчета тока стабилизатора
Устройство и принцип работы
Стабилизатор обеспечивает постоянство тока при его отклоненииСтабилизатор обеспечивает постоянство рабочего тока светодиодов при его отклонении от нормы. Предотвращает перегрев и перегорание светодиодов, поддерживает постоянный поток при перепадах напряжения или разрядке аккумулятора.
Простейшее устройство состоит из трансформатора, выпрямительного моста, соединенного с резисторами и конденсаторами. Действие стабилизатора основано на следующих принципах:
- подвод тока к трансформатору и изменение его предельной частоты на частоту сети — 50 Гц;
- Регулировка напряжения на повышение и понижение с последующим выравниванием частоты до 30 Гц.
Высоковольтные выпрямители также участвуют в процессе преобразования. Они определяют полярность. Стабилизация электрического тока осуществляется с помощью конденсаторов. Резисторы используются для уменьшения помех.
Разновидности стабилизаторов тока
Светодиод загорается при достижении порогового значения тока. У маломощных устройств этот показатель составляет 20 мА, у сверхъярких — от 350 мА. Разброс порогового напряжения объясняет наличие разных типов стабилизаторов.
Стабилизаторы резисторные
Стабилизатор КРЭНДля регулируемого стабилизатора токовых параметров маломощных светодиодов используется схема КРЭН. Он предусматривает наличие элементов КР142ЕН12 или LM317. Процесс выравнивания осуществляется при силе тока 1,5 А и входном напряжении 40 В. При нормальном тепловом режиме резисторы рассеивают мощность до 10 тс. Их собственная потребляемая мощность составляет около 8 мА.
Узел LM317 поддерживает постоянное значение напряжения на основном резисторе, регулируемое подстроечным резистором. Основной, или токораспределительный элемент, может стабилизировать проходящий через него ток. По этой причине стабилизаторы на КРЭН используются для зарядки аккумуляторов.
Значение 8 мА не изменяется даже при колебаниях тока и напряжения на входе.
Транзисторные устройства
Схема транзисторного регулятора напряженияТранзисторный регулятор предусматривает использование одного или двух элементов. Несмотря на простоту схемы, при колебаниях напряжения не всегда бывает стабильный ток нагрузки. При его увеличении на одном транзисторе напряжение резистора повышается до 0,5-0,6 В. после этого начинает работать второй транзистор. В момент его открытия первый элемент закрывается, а сила и величина проходящего через него тока уменьшаются.
Второй транзистор должен быть биполярным.
Две схемы на транзисторах разной проводимости, в которых стабилитроны заменены двумя обычными диодами VD1, VD2Для реализации с химией с заменой стабилитронов применяются:
- диоды VD1 и VD2;
- Резистор R1;
- Резистор R2.
Подача тока через светодиодный элемент задается резистором R2. Резистор R1 служит для достижения линейного участка ВАХ диодов по отношению к току базового транзистора. Для того чтобы транзистор оставался стабильным, напряжение питания не должно быть меньше суммарного напряжения диодов +2-2,5 В.
Для получения тока 30 мА через 3 последовательно соединенных диода с напряжением 3,1 В по прямой линии подают 12 В. Сопротивление резистора должно быть равно 20 Ом при мощности рассеяния 18 мВт.
Схема нормализует режим работы элементов, уменьшает пульсации тока.
Схема на советских транзисторах. Допустимое напряжение советских КТ940 или КТ969 до 300 В, что подходит, если источником света является мощный SMD элемент. Параметры тока задаются резистором. Напряжение стабилитрона 5,1 В, мощность 0,5 В.
Недостатком схемы является падение напряжения при увеличении силы тока. Его можно устранить, заменив биполярный транзистор низкоимпедансным МОП-транзистором. Мощный диод заменен на IRF7210 на 12 А или IRLML6402 на 3,7 А.
Стабилизаторы тока на полевик
Стабилизатор напряжения на полевых транзисторахПолевой элемент имеет короткозамкнутые исток и затвор, встроенный канал. При использовании полевого контроллера (ИРЛЗ 24) с 3 выводами на вход подается напряжение 50 В, на выход 15,7 В.
Потенциал земли используется для подачи напряжения. Параметры выходного тока зависят от начального тока стока и не привязаны к истоку.
Линейные устройства
Стабилизатор или делитель постоянного тока воспринимает нестабильное напряжение. На выходе линейное устройство выравнивает его. Он работает по принципу постоянного изменения параметров сопротивления для выравнивания питания на выходе.
К преимуществам эксплуатации можно отнести минимальное количество деталей, отсутствие помех. Недостатком является низкий КПД при разнице мощности питания на входе и выходе.
Устройство феррорезонансное
Стабилизатор переменного тока устаревшего образца, схема которого представлена конденсатором и двумя катушками — с ненасыщенным и насыщенным сердечником. На насыщенный (индуктивный) сердечник подается постоянное напряжение, не зависящее от параметров тока. Это облегчает выбор данных для второй катушки и емкостного диапазона стабилизации питания.
Устройство работает по принципу качелей, которые сложно сразу остановить или раскачать сильнее. Напряжение подается по инерции, поэтому может быть падение нагрузки или обрыв в цепи питания.
Особенности схемы токового зеркала
Классическая схема токового зеркалаТоковое зеркало, или рефлектор, построено на паре транзисторов согласованного типа, т.е. с одинаковыми параметрами. Для их производства используется один светодиодный полупроводниковый кристалл.
Схема токового зеркала по уравнению Эберса-Молля. Принцип работы заключается в том, что базы транзисторов объединены, а эмиттеры перекинуты на одну шину питания. В результате параметры переходного напряжения связи база-транзистор-эмиттер равны.
Преимуществами схемы являются равный диапазон стабильности и отсутствие падения напряжения на эмиттерном резисторе. Параметры проще установить, используя ток. Недостатком является эффект Эрли — привязка выходного напряжения к напряжению коллектора и его колебания.
Цепь токового зеркала Вильсона. Токовое зеркало может стабилизировать постоянное значение выходного тока и реализовано следующим образом:
- Транзисторы №1 и №1 включены по принципу стандартного токового зеркала.
- Транзистор № 3 фиксирует потенциал коллектора элемента № 1 на удвоенном значении параметра падения напряжения на диоде.
- Будет меньше напряжения питания, подавляющего эффект Эрли.
- Коллектор транзистора №1 используется для задания режима схемы.
- Выходной ток зависит от транзистора № 2.
- Транзистор № 3 преобразует выходной ток в нагрузку переменного тока.
Транзистор № 3 не может быть согласован с другими.
Компенсационный стабилизатор напряжения
Компенсационный стабилизатор напряженияВыпрямитель работает по принципу обратной связи по напряжению. Полное или частичное напряжение соответствует опоре. В результате регулятор выдает ошибку параметров напряжения, устраняя колебания яркости светодиодов. Устройство состоит из следующих элементов:
- Регулирующий элемент или транзистор, который вместе с сопротивлением нагрузки образует делитель напряжения. Эмиттерный индекс транзистора должен превышать ток нагрузки в 1,2 раза.
- Усилитель — управляет ОМ, выполнен на базе транзистора №2. Маломощный элемент согласован с мощным по составному принципу.
- Источник опорного напряжения — в схеме применен стабилизатор параметрического типа. Он уравнивает напряжения стабилитрона и резистора.
- Дополнительные источники.
- Конденсаторы — для сглаживания пульсаций, устранения паразитного возбуждения.
Стабилизаторы напряжения компенсационные работают по принципу увеличения входного напряжения при дальнейшем увеличении токов. Выключение первого транзистора увеличивает сопротивление и напряжение зоны коллектор-эмиттер. После приложения нагрузки она выравнивается до номинального значения.
Устройства на микросхемах
Микросхема 142ЕН5Для стабилизирующих устройств используется микросхема 142ЕН5 или LM317. Он позволяет выравнивать напряжение, получая сигнал обратной связи от датчика, подключенного к сети тока нагрузки.
В качестве датчика используется сопротивление, при котором регулятор может поддерживать постоянное напряжение и ток нагрузки. Сопротивление датчика будет меньше сопротивления нагрузки. Схема используется для зарядных устройств, по ней и спроектирована светодиодная лампа.
Стабилизаторы импульсные
Импульсное устройство отличается высоким КПД и создает высокое напряжение потребителей при минимальных параметрах входного напряжения. Для сборки используется микросхема MAX 771.
Один или два преобразователя будут регулировать силу тока. Делитель выпрямительного типа выравнивает магнитное поле, снижая допустимую частоту напряжения. Для подачи тока на обмотку светодиодный элемент подает сигнал на транзисторы. Стабилизация выхода осуществляется посредством вторичной обмотки.
Как самому сделать стабилизатор тока для светодиодов
Изготовление стабилизатора для светодиодов своими руками осуществляется несколькими способами. Новичку желательно работать с простыми схемами.
Драйвер на основе
Вам нужно будет выбрать трудновыжигаемую микросхему — LM317. Она будет выполнять роль стабилизатора. Второй элемент представляет собой переменный резистор сопротивлением 0,5 кОм с тремя выводами и ручкой.
Сборка осуществляется по следующему алгоритму:
- Припаяйте провода к средней и концевой клеммам резистора.
- Переведите мультиметр в режим сопротивления.
- Измерить параметры резистора — они должны быть равны 500 Ом.
- Проверьте соединения на непрерывность и соберите цепь.
На выходе будет модуль мощностью 1,5 А. Для увеличения тока до 10 А можно добавить полевого оператора.
Стабилизатор автомобильных фар
Стабилизатор L7812Для работы потребуется линейное устройство в виде микросхемы L7812, две клеммы, конденсатор 100н (1-2 шт.), текстолитовый материал и термоусадочная трубка. Изготовление производится шаг за шагом:
- Выбираем схему для L7805 из даташита.
- Отрежьте от печатной платы кусок нужного размера.
- Разметьте дорожки, сделав насечки отверткой.
- Припаяйте элементы так, чтобы вход был слева, а выход справа.
- Сделать корпус из термотрубки.
Стабилизирующее устройство выдерживает нагрузку до 1,5 А и монтируется на радиатор.
Кузов автомобиля используется как радиатор за счет соединения центрального выхода кузова с минусом.
Нюансы расчета стабилизатора тока
Стабилизатор рассчитывается исходя из напряжения стабилизации U и тока (среднего) I. Например, напряжение на входе делителя 25 В, на выходе нужно получить 9 В. В расчеты входят:
- Подбор по справочнику стабилитрона. Ориентируются на напряжение стабилизации: Д814В.
- Найдите средний ток I по таблице. Он равен 5 мА.
- Расчет напряжения питания как разности между стабильными напряжениями входа и выхода: UR1 = Uвх — Uвых, или 25-9 = 16 В.
- Полученное значение разделить по закону Ома на ток стабилизации по формуле по формуле R1 = UR1/Iст, или 16/0,005 = 3200 Ом, или 3,2 кОм. Номинал элемента будет 3,3 кОм.
- Расчет максимальной мощности по формуле ПР1=УР1*Iст, или 16х0,005=0,08.