- Расчёт воздуховодов систем вентиляции — Мир Климата и Холода
- Расчёт воздуховодов онлайн
- Расчёт сечения воздуховодов
- Алгоритм расчета сечения воздуховодов
- Таблица сечений воздуховодов
- Пример расчёта воздуховода
- Эквивалентный диаметр воздуховода
- Что такое эквивалентный диаметр воздуховода
- Расчет эквивалентного диаметра воздуховодов
- Пример расчета эквивалентного диаметра воздуховодов и некоторые выводы
- Расчет площади воздуховодов различной формы и фасонных изделий
- Расчет площади воздуховодов и вентиляционных систем а так же фасонных изделий
- как рассчитать длину каналов и дистанцию до других конструкций
- Калькулятор подбора круглых воздуховодов онлайн по диаметру. Как рассчитать сечение и диаметр воздуховода
- Расчет потери давления в воздуховодах в системе вентиляции и кондиционирования
- Расчет вентиляции
- Воздуховоды — диаметр и площадь поперечного сечения
- Размеры, расчет и проектирование воздуховодов для обеспечения эффективности
- Калькулятор размеров воздуховодов — Размеры воздуховодов
- квадратных футов в квадратные метры (квадратные футы в квадратные метры)
- Измерение скорости воздуха с помощью Fluke 975 AirMeter ™
- Размеры, воздуховод, воздуховоды, воздуховоды, поток, размер, трение, потери, давление, скорость, VAV
- Расчет CFM | РаботаACI
Расчёт воздуховодов систем вентиляции — Мир Климата и Холода
Расчёт воздуховодов вентиляции является одним из этапов расчета вентиляции и заключается в определении размеров воздуховода в зависимости от расхода воздуха, который должен проходить через рассматриваемый воздуховод. Кроме того, возникают задачи по определению площади поверхности воздуховода. Рассмотрим их более подробно.
Расчёт воздуховодов онлайн
Для расчета воздуховодов рекомендуем воспользоваться онлайн-калькулятором, расположенным выше. Исходными данными для расчета являются расход воздуха и максимальная допустимая скорость воздуха в воздуховоде.
Преимуществом нашего калькулятора является то, что в результате расчета вы узнаете не только рекомендуемое сечение круглых и/или прямоугольных воздуховодов, но и фактическую скорость воздуха в них, эквивалентный диаметр и потери давления на 1 метр длины.
О расчете площади воздуховодов читайте в отдельной статье.
Расчёт сечения воздуховодов
Задача расчёта сечения воздуховодов вентиляции может звучать по-разному:
- расчёт воздуховодов вентиляции
- расчёт воздуха в воздуховоде
- расчёт сечения воздуховодов
- формула расчёта воздуховодов
- расчёт диаметра воздуховода
Следует понимать, что все вышеперечисленные расчёты — по сути, одна и та же задача, которая сводится к определению площади сечения воздуховода, по которому протекает расход воздуха G [м3/час].
Алгоритм расчета сечения воздуховодов
Расчет сечения воздуховодов подразумевает определение размеров воздуховодов в зависимости от расхода пропускаемого воздуха. Он выполняется в 4 этапа:
- Пересчет расхода воздуха в м
3/с - Выбор скорости воздуха в воздуховоде
- Определение площади сечения воздуховода
- Определение диаметра круглого или ширины и высоты прямоугольного воздуховода.
На первом этапе расчёта воздуховода расход воздуха G, выраженный, как правило, в м3/час, переводится в м3/с. Для этого его необходимо разделить на 3600:
- G [м3/c] = G [м3/час] / 3600
На втором этапе следует задать скорость движения воздуха в воздуховоде. Скорость следует именно задать, а не рассчитать. То есть выбрать ту скорость движения воздуха, которая представляется оптимальной.
Высокая скорость воздуха в воздуховоде позволяет использовать воздуховоды малого сечения. Однако при этом поток воздуха будет шуметь, а аэродинамическое сопротивление воздуховода сильно возрастёт.
Малая скорость воздуха в воздуховоде обеспечивает тихий режим работы системы вентиляции и малое аэродинамическое сопротивление, но делает воздуховоды очень громоздкими.
Для систем общеобменной вентиляции оптимальной скоростью воздуха в воздуховоде считается 4 м/с. Для больших воздуховодов (600×600 мм и более) скорость воздуха может быть повышена до 6 м/с. В системах дымоудаления скорость воздуха может достигать и превышать 10 м/с.
Итак, на втором этапе расчета воздуховодов задаётся скорость движения воздуха v [м/с].
На третьем этапе определяется требуемая площадь сечения воздуховода путем деления расхода воздуха на его скорость:
- S [м2] = G [м3/c] / v [м/с]
На четвёртом, заключительном, этапе под полученную площадь сечения воздуховода подбирается его диаметр или длины сторон прямоугольного сечения.
Таблица сечений воздуховодов
В помощь проектировщикам разработано несколько таблиц сечений воздуховодов, которые позволяют быстро подобрать сечение в зависимости от полученной площади.
Пример расчёта воздуховода
В качестве примера рассчитаем сечение воздуховода с расходом воздуха 1000 м3/час:
- G = 1000/3600 = 0,28 м3/c
- v = 4 м/с
- S = 0,28 / 4 = 0,07 м2
- В случае круглого воздуховода его диаметр составил бы D = корень (4·S/ π) ≈ 0,3 м = 300мм. Ближайший стандартный диаметр воздуховода — 315 мм.
В случае прямоугольного воздуховода необходимо подобрать такие А и В, чтобы их произведение было равно примерно 0,07. При этом рекомендуется, чтобы А и В не отличались друг от друга более чем в три раза, то есть воздуховод 700×100 — не лучший вариант. Более хорошие варианты: 300×250, 350×200.
Эквивалентный диаметр воздуховода
При сравнении круглых и прямоугольных воздуховодов разного сечения с точки зрения аэродинамики прибегают к понятию эквивалентного диаметра воздуховода. С его помощью можно определить, какой из двух вариантов сечений является предпочтительным.
Что такое эквивалентный диаметр воздуховода
Эквивалентный диаметр прямоугольного воздуховода — это диаметр воображаемого круглого воздуховода, в котором потеря давления на трение была бы равна потере давления на трение в исходном прямоугольном воздуховоде при одинаковой длине обоих воздуховодов.
В книгах и учебниках В. Н. Богословского такой диаметр называется «Эквивалентный по скорости диаметр», в литературе П. Н. Каменева — «Равновеликий диаметр по потерям на трение».
Расчет эквивалентного диаметра воздуховодов
Эквивалентный диаметр прямоугольного воздуховода вычисляется по формуле:
- Dэкв_пр = 2·А·В / (А+В), где А и В — ширина и высота прямоугольного воздуховода.
Например, эквивалентный диаметр воздуховода 500×300 равен 2·500·300 / (500+300) = 375 мм. Это означает, что круглый воздуховод диаметром 375 мм будет иметь такое же аэродинамическое сопротивление, что и прямоугольный воздуховод 500×300 мм.
Эквивалентный диаметр квадратного воздуховода равен стороне квадрата:
- Dэкв_кв = 2·А·А / (А+А) = А.
И этот факт весьма интересен, ведь обычно чем больше площадь сечения воздуховода, тем ниже его сопротивление. Однако круглая форма сечения воздуховода имеет наилучшие аэродинамические показатели. Именно поэтому сопротивление квадратного и круглого воздуховодов равны, хотя площадь сечния квадратного воздуховода на 27% больше площади сечения круглого воздуховода.
В общем случае формула для эквивалентного диаметра воздуховода
- Dэкв = 4·S / П, где S и П — соответственно, площадь и периметр воздуховода.
Используя эту формулу можно подтвердить правильность вышеприведённых формул для прямоугольного и квадратного воздуховодов, а также убедиться в том, что эквивалентный диаметр круглого воздуховода равен диаметру этого воздуховода:
- Dкругл = 4·π·R2 / 2·π·R = 2R = D.
Кроме того, для расчета может помочь таблица эквивалентного диаметра воздуховодов
Пример расчета эквивалентного диаметра воздуховодов и некоторые выводы
В качестве примера определим эквивалентный диаметр воздуховода 600×300:
Dэкв_600_300 = 2·600·300 / (600+300) = 400 мм.
Интересно отметить, что площадь сечения круглого воздуховодам диаметром 400 мм составляет 0,126 м2, а площадь сечения воздуховода 600×300 составляет 0,18 м2, что на 42% больше. Расход стали на 1 метр круглого воздуховода сечением 400 мм составляет 1,25 м2, а на 1 метр воздуховода сечением 600×300 — 1,8 м2, что на 44% больше.
Таким образом, любой аналогичный круглому прямоугольный воздуховод значительно проигрывает ему как в компактности, так и в металлоемкости.
Рассмотрим ещё один пример — определим эквивалентный диаметр воздуховода 500×100 мм:
Dэкв_500_100 = 2·500·100 / (500+100) = 167 мм.
Здесь разница в площади сечения и в металлоемкости достигает 2,5 раз. Таким образом, формула эквивалентного диаметра для прямоугольного воздуховода объясняет тот факт, что чем больше «расплющен» воздуховод (чем больше разница между значениями А и В), тем менее эффективен этот воздуховод с аэродинамической точки зрения.
Это одна из причин, по которой в вентиляционной технике не рекомендуется применять воздуховоды, в сечении которых одна сторона превышает другую более чем в три раза.
Расчет площади воздуховодов различной формы и фасонных изделий
Содержание статьи
Производительность системы вентиляции напрямую зависит от правильности ее проектирования. Важнейшую роль в этом играет верный расчет площади воздуховодов. От него зависит:
- Беспрепятственное движение воздушного потока в нужных объемах, его скорость;
- Герметичность системы;
- Уровень шума;
- Расход электроэнергии.
Воздуховод
Для того чтобы узнать все нужные значения, можно обратиться в соответствующую компанию или же воспользоваться специальными программами (их можно легко отыскать в интернете). Однако, при необходимости, найти все необходимые параметры возможно и самостоятельно. Для этого существуют формулы.
Использование их довольно просто. Вам также достаточно вписать параметры вместо соответствующих букв и найти результат. Формулы помогут вам отыскать точные значения, с учетом всех индивидуальных факторов. Обычно они применяются при инженерных работах по проектированию системы вентиляции.
Вернуться к содержанию ↑Как найти верные значения
Для того чтобы произвести расчет площади сечения нам потребуется информация:
- О минимально необходимом воздушном потоке;
- О предельно возможной скорости воздушного потока.
Для чего нужен правильный расчет площади:
- Если скорость потока будет выше положенного предела, то это станет причиной падения давления. Эти факторы, в свою очередь, повысят расход электроэнергии;
- Аэродинамический шум и вибрации, если все выполнено верно, будут в пределах нормы;
- Обеспечение нужного уровня герметичности.
Воздуховод в разборе
Это также позволит повысить эффективность системы, поможет сделать ее долговечной и практичной. Нахождение оптимальных параметров сети – принципиально важный момент в проектировании. Только в этом случае система вентиляции прослужит долго, отлично справляясь со всеми своими функциями. Особенно это актуально для больших помещений общественного и производственного значения.
Чем большим будет сечение, тем ниже будет скорость воздушного потока. Это также уменьшит аэродинамический шум и расход электроэнергии. Но есть и минусы: стоимость таких воздуховодов будет выше, и конструкции не всегда можно установить в пространство над навесным потолком. Однако это возможно с прямоугольными изделиями, высота которых меньше. В то же время изделия круглой формы проще устанавливаются и обладают важными эксплуатационными преимуществами.
Что именно выбрать, зависит от ваших требований, приоритета экономии электроэнергии, самих особенностей помещения. Если вы желаете сэкономить электроэнергию, сделать шум минимальным и у вас есть возможность установить крупную сеть, выбирайте систему прямоугольной формы. Если же приоритетом является простота установки или в помещении сложно установить конструкции прямоугольного типа, вы можете выбрать изделия круглого сечения.
Расчет площади выполняется по следующей формуле:
Sc = L * 2, 778/V
Sc здесь – площадь сечения;
L – расход воздушного потока в метрах в кубе/час;
V – скорость воздушного потока в воздуховоде в метрах в секунду;
2,778 – необходимый коэффициент.
Трубы для воздуховода
После того, как расчет площади выполнен, вы получите результат в квадратных сантиметрах.
Фактическую площадь воздуховодов помогут определить следующие формулы:
Для круглых: S = Пи * D в квадрате /400
Для прямоугольных: S = A * B /100
S здесь – фактическая площадь сечения;
D – диаметр конструкции;
A и B – высота и ширина конструкций.
Как определить потери давления
Расчет сопротивления сети позволяет принять во внимание потери давления. Поток воздуха, во время движения, испытывает определенное сопротивление. Для его преодоления важно соответствующее давление. Давление это измеряется в Па.
Для того чтобы узнать нужный параметр, потребуется следующая формула:
P = R * L + Ei * V2 * Y/2
R здесь – удельные сокращения давления на трение в сети;
L – протяженность воздуховодов;
Ei – коэффициент местных потерь в сети в сумме;
V – скорость воздуха на рассматриваемом участке сети;
Y – плотность воздуха.
R можно узнать в соответствующем справочнике. Ei зависит от местного сопротивления.
Как узнать оптимальную мощность нагревателя воздуха
Для того чтобы узнать оптимальную мощность нагревателя воздуха, требуются показатели нужной температуры воздуха и самой минимальной температуры снаружи помещения.
Составные элементы воздуховода
Минимальная температура в системе вентиляции – 18 градусов. Температура снаружи помещения зависит от климатических условий. Для квартир оптимальная мощность нагревателя обычно составляет от 1 до 5 кВт, для офисных помещений – 5-50 кВт.
Точный расчет мощности нагревателя в сети позволит выполнить следующая формула:
P = T * L * Cv /1000
P здесь – мощность нагревателя в кВт;
T – разность температуры воздуха внутри и снаружи помещения. Это значение можно найти в СНиП;
L – производительность системы вентиляции;
Cv – теплоемкость, равная 0,336 Вт*ч/метры квадратные/градус по Цельсию.
Дополнительная информация
Для того чтобы узнать нужные параметры фасонных изделий и самой конструкции, не обязательно самостоятельно выполнять расчет частей сети вентиляции. Для нахождения всех значений существуют специальные программы. Вам достаточно ввести требуемые числа, и вы получите результат за доли секунды.
Рассчитываются значения креплений, фасонных частей, воздуховодов обычно инженерами, занимающимися проектированием систем вентиляции. Но и они применяют таблицы, в которых имеются все требуемые коэффициенты, формулы, значения.
Также существует специальная таблица эквивалентных диаметров воздуховодов. Это таблица диаметров воздуходувов круглой формы, в которых снижение давления на трение равна снижению давления в конструкциях прямоугольной формы. Эквивалентный диаметр конструкции воздуходува требуется тогда, когда необходимо произвести расчет прямоугольных воздуходувов, и при этом применяется таблица для изделий круглой формы.
Стальные трубы для воздуховода
Известно три способа узнать эквивалентное значение:
- Ориентируясь на скорость;
- По поперечному сечению;
- По расходу.
Все эти значения связаны с шириной и другими значениями воздуховодов. Для каждого из параметров применяется своя методика пользования таблицами. Итоговый результат – значение потери давления на трение. Вне зависимости от того, какую методику вы применили, результат получается одинаковым.
В интернете вы легко сможете найти таблицы, программы, справочники, необходимые для подсчета площади и иных параметров самих конструкций, креплений. Самое простое – воспользоваться специальными программами. В этом случае от вас требуется только ввод нужных значений. При этом результаты вы получите довольно точные.
Вернуться к содержанию ↑Пример создания воздуховодов
Автор | Поделитесь | Оцените | Виктор Самолин |
---|
Расчет площади воздуховодов и вентиляционных систем а так же фасонных изделий
Эффективность функционирования вентиляционных систем зависит от правильного подбора отдельных элементов и оборудования. Расчет площади воздуховода производится с целью обеспечения требуемой кратности смены воздуха в каждом помещении в зависимости от его назначения. Принудительная и естественная вентиляция требует отдельных алгоритмов проектных работ, но имеет общие направления. Во время определения сопротивления воздушному потоку учитывается геометрия и материал изготовления воздуховодов, их общая длина, кинематическая схема, наличие ответвлений. Дополнительно выполняется расчет потерь тепловой энергии для обеспечения благоприятного микроклимата и снижения затрат на содержание здания в зимний период времени.
Расчет площади сечения выполняется на основе данных по аэродинамическому расчету воздуховодов. С учетом полученных значений производится:
- Подбор оптимальных размеров поперечных сечений воздуховодов с учетом нормативных допустимых скоростей движения воздушного потока.
- Определение максимальных потерь давления в системе вентиляции в зависимости от геометрии, скорости движения и особенностей схемы воздуховода.
Последовательность расчета вентиляционных систем
1.Определение расчетных показателей отдельных участков общей системы. Участки ограничиваются тройниками или технологическими заслонками, расход воздуха по длине всего участка стабильный. Если от участка есть ответвления, то их расход по воздуху суммируется, а для участка определяется общий. Полученные значения отображаются на аксонометрической схеме.
2.Выбор магистрального направления системы вентиляции или отопления. Магистральный участок имеет самый большой расход воздуха среди всех выделенных во время расчетов. Он должен быть наиболее протяженным из всех последовательно расположенных отдельных участков и отводов. Согласно нормативным документам нумерация участков начинается с наименее нагруженного и продолжается по возрастанию воздушного потока.
Примерная схема системы вентиляции с обозначениями ответвлений и участков
3.Параметры сечений расчетных участков системы вентиляции подбираются с учетом рекомендованных стандартами скоростей в воздуховодах и жалюзийных решетках. Согласно государственным стандартам скорость воздуха в магистральных трубопроводах ≤ 8 м/с, в ответвлениях ≤ 5 м/с, в решетках жалюзи ≤ 3 м/с.
С учетом имеющихся предварительных условий выполняются расчеты по вентиляционной системе.
Общие потери давления в воздуховодах:
Расчет прямоугольных воздуховодов по потере давления:
R – удельные потери на трение о поверхность воздуховода;
L – длина воздуховода;
n – поправочный коэффициент в зависимости от показателей шероховатости воздуховодов.
Удельные потери давления для круглых сечений определяются по формуле:
λ – коэффициент величины гидравлического сопротивления трения;
d – диаметр сечения воздуховода;
Рд – фактическое давление.
Для расчета коэффициента сопротивления трения для круглого сечения трубы применяется формула:
Во время расчетов допускается использование таблиц, в которых на основании вышеизложенных формул определены практические потери на трение, показатели динамического давления и расход воздуха для различных скоростей потока для воздуховодов круглой формы.
Нужно иметь в виду, что показатели фактического расхода воздуха в прямоугольном и круглом воздуховодах с одинаковой площадью сечений неодинаковы даже при полном равенстве скоростей движения воздушного потока. Если температура воздуха превышает +20°С, то нужно пользоваться поправочными коэффициентами на трение и местное сопротивление.
Расчет системы вентиляции состоит из расчета основной магистрали и всех ответвлений, подключенных к ней. При этом нужно добиваться положения, чтобы скорость движения воздуха постоянно возрастала по мере приближения к всасывающему или нагнетающему вентилятору. Если схема воздуховода не позволяет учесть потери ответвлений, а их значения не превышают 10% общего потока, то разрешается использовать диаграмму для гашения избыточного давления. Коэффициент сопротивления воздушным потокам диафрагмы рассчитывается по формуле:
Приведенные выше расчеты воздуховодов пригодны для использования следующих типов вентиляции:
- Вытяжной. Используется для удаления из производственных, торговых, спортивных и жилых помещений отработанного воздуха. Дополнительно может иметь специальные фильтры для очистки выбрасываемого наружу воздуха от пыли или вредных химических соединений, могут монтироваться внутри или снаружи помещений.
- Приточной. В помещения подается подготовленный (нагретый или очищенный) воздух, может иметь специальные приспособления для понижения уровня шума, автоматизации управления и т. д.
- Приточно/вытяжной. Комплекс оборудования и устройств для подачи/удаления воздуха из помещений различного назначения, может иметь установки рекуперации тепла, что значительно сокращает затраты на поддержание в помещениях благоприятного микроклимата.
Движение воздушных потоков по воздуховодам может быть горизонтальным, вертикальным или угловым. С учетом архитектурных особенностей помещений, их количества и размеров воздуховоды могут монтироваться в несколько ярусов в одном помещении.
Расчет площади сечения трубопровода
После того как определена скорость движения воздуха по воздуховодам с учетом требуемой кратности обмена, можно рассчитывать параметры сечения воздуховодов по формуле S=R\3600v, где S – площадь сечения воздуховода, R – расход воздуха в м3/час, v – скорость движения воздушного потока, 3600 – временной поправочный коэффициент. Площадь сечения позволяет определить диаметр круглого воздуховода по формуле:
Если в помещении смонтирован воздуховод квадратного сечения, то его рассчитывают по формуле de = 1.30 x ((a x b)0.625 / (a + b)0.25).
de – эквивалентный диаметр для круглого воздуховода в миллиметрах;
a и b длина сторон квадрата или прямоугольника в миллиметрах. Для упрощения расчетов пользуйтесь переводной таблицей № 1.
Таблица № 1
Для вычисления эквивалентного диаметра овальных воздуховодов используется формула d = 1.55 S0.625/P0.2
S – площадь сечения воздуховода овального воздуховода;
P – периметр трубы.
Площадь сечения овальной трубы вычисляется по формуле S = π×a×b/4
S – площадь сечения овального воздуховода;
π = 3,14;
a = большой диаметр овального воздуховода;
b = меньший диаметр овального воздуховода.
Подбор овального или квадратного воздуховодов по скорости движения воздушного потокаДля облегчения подбора оптимального параметра проектировщики рассчитали готовые таблицы. С их помощью можно выбрать оптимальные размеры воздуховодов любого сечения в зависимости от кратности обмена воздуха в помещениях. Кратность обмена подбирается с учетом объема помещения и требований СанПин.
Расчет параметров воздуховодов и систем естественной вентиляцииВ отличие от принудительной подачи/удаления воздуха для естественной вентиляции важны показания разницы давления снаружи и внутри помещений. Расчет сопротивления и выбор направления надо делать таким способом, чтобы гарантировать минимальную потерю давления потока.
При расчетах выполняется увязка существующих гравитационных давлений с фактическими потерями давления в вертикальных и горизонтальных воздуховодах.
Классификаций исходных данных во время проведения расчетов сечения воздуховодовВо время расчетов нужно принимать во внимание требования действующего СНиПа 2.04.05-91 и СНиПа 41-01-2003. Расчет систем вентиляции по диаметру воздуховодов и используемому оборудованию должен обеспечивать:
- Нормируемые показатели по чистоте воздуха, кратности обмена и показателям микроклимата в помещениях. Выполняется расчет мощности монтируемого оборудования. При этом уровень шума и вибрации не может превышать установленных пределов для зданий и помещений с учетом их назначения.
- Системы должны быть ремонтнопригодными, во время проведения плановых регламентных работ технологический цикл функционирования предприятий не должен нарушаться.
- В помещениях с агрессивной средой предусматриваются только специальные воздуховоды и оборудование, исключающее искрообразование. Горячие поверхности должны дополнительно изолироваться.
Нормативы расчетных условий для определения сечения воздуховодов
Расчет площади воздуховодов должен обеспечивать:
- Надлежащие условия по чистоте и температурному режиму в помещениях. Для помещений с избытком теплоты обеспечивать его удаление, а в помещениях с недостатком теплоты минимизировать потери теплого воздуха. При этом следует придерживаться экономической целесообразности выполнения названных условий.
- Скорость движения воздуха в помещениях не должна ухудшать комфортность пребывания в помещениях людей. При этом принимается во внимание обязательная очистка воздуха в рабочих зонах. В струе входящего в помещение воздуха скорость движения Nх определяется по формуле Nх = Кn × n. Максимальная температура входящего воздуха определяется по формуле tx = tn + D t1, а минимальная по формуле tcx = tn + D t2. Где: nn, tn – нормируемая скорость воздушного потока в м/с и температура воздуха на рабочем месте в градусах Цельсия, К =6 (коэффициент перехода скорости воздуха на выходе из воздуховода и в помещении), D t1, D t2 – максимально допустимое отклонение температуры.
- Предельную концентрацию вредных для здоровья химических соединений и взвешенных частиц согласно ГОСТ 12.1.005-88. Дополнительно нужно учитывать последние постановления Госнадзора.
- Параметры наружного воздуха. Регулируются в зависимости от технологических особенностей производственного процесса, конкретного назначения сооружения и зданий. Показатели концентрации взрывоопасных соединений и веществ должны отвечать требованиями противопожарных государственных органов.
Монтаж вентиляционных систем с принудительной подачей/удалением воздуха нужно делать только в тех случаях, когда характеристики естественной вентиляции не могут обеспечивать требуемых параметров по чистоте и температурному режиму в помещениях или здания имеют отдельные зоны с полным отсутствием естественного притока воздуха. Для некоторых помещений площадь воздуховодов подбирается с таким условием, чтобы в помещениях постоянно поддерживался подпор и исключалась подача наружного воздуха. Это касается приямков, подвалов и иных помещений, в которых есть вероятность скапливания вредных веществ. Дополнительно воздушное охлаждение должно присутствовать на рабочих местах, которые имеют тепловое облучение более 140 Вт/м2.
Требования к системам вентиляцииЕсли расчетные данные по системам вентиляции понижают температуру в помещениях до +12°С, то в обязательном порядке нужно предусматривать одновременное отопление. К системам присоединяются отопительные агрегаты соответствующей мощности с целью доведения температурных значений до нормированных государственными стандартами. Если вентиляция монтируется в производственных зданиях или общественных помещениях, в которых постоянно пребывают люди, то нужно предусматривать не менее двух приточных и двух вытяжных постоянно действующих агрегатов. Размер площади воздуховодов должен обеспечивать расчетную величину воздушных потоков. Для соединенных или смежных помещений допускается иметь две системы вытяжки и одну систему притока или наоборот.
Если помещения должны вентилироваться в круглосуточном режиме, то к смонтированным воздуховодам обязательно нужно подключать резервное (аварийное) оборудование. Дополнительные ответвления должны учитываться, по ним делается отдельный расчет площади. Резервный вентилятор можно не устанавливать лишь в случаях если:
- После выхода из строя системы вентиляции есть возможность быстро остановить рабочий процесс или вывести людей из помещения.
- Технические параметры аварийной вентиляции полностью обеспечивают требования по чистоте и температуре воздуха в помещениях.
Общие требования к воздуховодамРасчет окончательных параметров воздуховодов должен предусматривать возможность:
- Монтажа противопожарных клапанов вертикальном или горизонтальном положении.
- Установки на межэтажных площадках воздушных затворов. Конструктивные особенности устройств должны гарантировать выполнение нормативных требований по аварийному перекрытию отдельных ответвлений вентиляционной системы и предотвращению распространения дыма или огня по всему зданию. При этом длина участка, на котором присоединяются затворы, не должна быть менее двух метров.
- К каждому поэтажному коллектору может присоединяться не более пяти воздуховодов. Узел соединения создает дополнительное сопротивление воздушному потоку, эту особенность нужно учитывать во время расчета размеров.
- Установку систем автоматической противопожарной сигнализации. Если привод сигнализации монтируется внутри воздуховода, то при определении его оптимального диаметра следует принимать во внимание уменьшение эффективного диаметра и появление дополнительного сопротивления воздушному потоку из-за завихрений. Такие же требования выдвигаются при установке обратных клапанов, предупреждающих протекание вредных химических соединений из одного производственного помещения в другое.
Воздуховоды из негорючих материалов должны устанавливаться для систем вентиляции с отсосом пожароопасных продуктов или с температурой более +80°С. Главные транзитные участки вентиляции должны быть металлическими. Кроме того, металлические воздуховоды монтируются на чердачных помещениях, в технических комнатах, в подвалах и подпольях.
Общие потери воздуха для фасонных изделий определяются по формуле:
Где р – удельные потери давления на квадратный метр развернутого сечения воздуховода, ∑Ai – обща развернутая площадь. В пределах одной схемы монтажа системы вентиляции потери можно принимать по таблице.
Во время расчетов размеров воздуховодов в любом случае понадобится инженерная помощь, сотрудники нашей компании имеют достаточно знаний для решения всех технических вопросов.
как рассчитать длину каналов и дистанцию до других конструкций
В жилом доме должны поддерживаться все условия для нормальной жизнедеятельности человека. Это бесспорная истина, не так ли? Чтобы обеспечить комфортное пребывание в любой комнате, прокладывают сложные инженерные коммуникации.
Не обойтись и без системы вентиляции. При ее создании необходимо соблюдать нормативы расстояний крепления воздуховодов, разработанные и утвержденные государственными ведомствами. Это требование актуально не только для юридических лиц, но и для частных застройщиков.
Мы расскажем о том, как грамотно спланировать и проложить трассы воздуховодов. Подскажем, каким способом их лучше закрепить. Из представленной нами статьи вы узнаете, на каком расстоянии от прочих коммуникаций можно устанавливать вентиляционные каналы.
Содержание статьи:
Система вентиляции в частном доме
Проектирование и монтаж системы вентиляции в одноквартирном жилом доме выполняют с учетом требований к эксплуатационным характеристикам, прописанным в СНиП 31-02-2001 и СП 55. 13330.2016.
Вентиляция в частном доме может быть, как с естественным, так и с механическим побуждением воздухообмена, с удалением и притоком воздушных масс через воздуховоды. Главное, чтобы в помещениях поддерживалась чистота воздуха.
Отработанные воздушные массы с неприятным запахом или содержащие вредные вещества, например, продукты сгорания топлива, выводятся непосредственно наружу. То есть они не должны каким-либо образом проникать в другие помещения.
Для обеспечения воздухообмена в большом частном доме требуется вентиляционная система, включающая в себя систему воздуховодов, обеспечивающих вывод загрязненных воздушных масс и приток свежего воздуха
Обязательно обеспечивают удаление и приток воздуха в кухне, санузле, котельной. Регламентируется минимальная производительность вентиляционной системы с полным или частичным воздухообменом в заданный промежуток времени.
При организации вентиляционной системы, отвечающей установленным требованиям и способной обеспечить комфортный микроклимат, важно правильно определить конфигурацию воздуховодных магистралей, позаботиться о герметизации вентиляционных отверстий, мест пропуска труб через стены и перекрытия с целью предотвратить возникновение мостиков холода и не допустить проникновения в дом грызунов и насекомых.
Правила монтажа воздуховодов
Воздуховоды – это металлические или пластиковые трубы, выводящие и подающие воздух в помещения. Могут иметь как круглое, так и прямоугольное сечение.
Крепление воздуховода к потолку – ответственный этап, требующий внимательности со стороны монтажника, а также правильного выбора крепежных изделий с учетом размеров, формы сечения и других параметров
Работы по включают в себя один из самых ответственных этапов – крепление воздуховодов к несущим строительным конструкциям. Фиксация может осуществляться при помощи различных крепежных элементов – хомутов, консолей, профилей, кронштейнов, скоб, перфоленты. Выбор типа крепления зависит от размера воздушного канала и формы его сечения.
Готовая система воздуховодов должна быть надежна и устойчива к внешним и внутренним нагрузкам, а также ремонтопригодна.
Важно, чтобы она отвечала требованиям безопасности, чтобы оборудование не несло угрозу человеку и не влияло на сохранность самого дома, создаваемый потоками воздуха шум и вибрации не превышали предельно допустимый уровень, а вес воздуховодов не передавался на вентиляторы.
Способы крепления воздуховодов
Воздуховод можно прикрепить непосредственно к потолку, стене либо к несущим элементам, закрепленным на них, например, к тавру или двутавру. Такие балки широко применяются в строительстве.
Ориентация воздуховода преимущественно вертикальная или горизонтальная, в отдельных случаях, если на то есть техническая необходимость, воздуховоды устанавливают под небольшим наклонном.
В качестве основных крепежей используются:
- кронштейны;
- траверсы;
- хомуты;
- перфорированная лента.
Для крепления прямоугольных воздуховодов используется L- или Z-образные кронштейны и шпильки. Кронштейны крепятся к телу воздуховода с помощью саморезов, образующих отверстия в металле.
Монтаж воздуховодов осуществляется с помощью кронштейнов, траверс, перфолент. При выборе крепежей принимают во внимание массу и габариты воздуховодов
Шпильки представляют собой резьбовые оцинкованные стержни. Для крепления шпильки на потолке используют металлический забивной анкер с распорной частью.
Предварительно высверливают отверстие и забивают анкер долотом. Процесс аналогичен установке пластикового дюбеля в стену. При завинчивании шпильки в анкор его распорная часть раскрывается подобной лепесткам цветка, образуя конструкцию, которая надежно держится в потолке.
Вместо анкеров можно использовать и другие крепежи, но они не обеспечат такую же надежность. При большой нагрузке произойдет ослабление соединения шпильки с потолком. В результате воздуховод может переместиться и деформироваться.
Если воздуховод массивный, лучше выбрать усиленный Z-образный кронштейн. Благодаря дополнительному уголку, который будет поддерживать воздуховод, конструкция приобретет необходимую жесткость и на шпильку будет оказываться меньшая нагрузка. Чтобы при колебаниях воздуховода не возникал шум, крепежи дополняются резиновыми уплотнителями.
Если одна из сторон прямоугольного воздуховода превышает 60 см, используются не кронштейны, а траверсы, также в комплекте со шпильками. Траверса представляет собой горизонтальную балку, которая может как подвешиваться, так и опираться на вертикальную опору.
Воздуховоды с прямоугольным сечением надежно крепятся к потолку с помощью стальных оцинкованных траверсов и шпилек. Между местами креплений соблюдается нормативное расстояние
При использовании траверсы саморезы не требуются и воздуховод сохраняет свою целостность. Размещенный на опоре, он не сдвигается в боковых направлениях благодаря шпилькам, удерживающим его в стабильном положении. Чтобы воздуховод плотно прилегал к траверсе, устанавливают резиновый уплотнитель, гасящий шумы и вибрации.
Воздуховоды круглого сечения крепятся к несущей поверхности с помощью шпилек и хомутов соответствующего диаметра. При этом хомут должен плотно охватывать воздуховод.
Он может надеваться и поверх теплоизоляции. Крепеж выпускается в широком диапазоне размеров, соответствующих стандартным размерам воздуховодов. За счет простоты применения экономиться время монтажа.
Благодаря предустановке точек перегиба достигают идеальной совместимости кронштейна и воздуховода, наличие эластичного элемента снижает шумы и вибрации, саморезы находятся на значительном расстоянии друг от друга, минимизируя риск деформаций воздуховода
Необязательно монтировать воздуховод непосредственно к потолку. Можно поступить и по-другому. Если на участке, по которому проходит вентиляционная магистраль, имеется металлическая балка (тавр, двутавр, угол), на нее одевают струбцину и уже к струбцине закрепляют шпильку.
В частных домах часто используются круглые воздуховоды небольшого диаметра. Если диаметр не превышает 20 см, в качестве крепежа может использоваться перфолента. Материалом изготовления для нее служит оцинкованная сталь, соответствующая требованиям, прописанным в ГОСТ 14918-80. Толщина ленты варьируется от 0,5 мм до 1,0 мм. Имеются монтажные отверстия для фиксации воздуховодов с помощью саморезов.
Из ленты формируют петлю и надевают как хомут на трубу. Другой способ – в месте состыковки труб закрепить перфоленту за крепежный болт. Также ее можно использовать вместе с хомутами.
Перфолента служит для монтажа к потолку или балкам как круглых, так и прямоугольных воздуховодов с небольшим сечением (периметром), имеющиеся отверстия облегчают монтаж
Преимущества такого способа: перфолента стоит дешевле метизов, выполнить монтаж с ее помощью проще. Но есть и существенные недостатки. Так как перфолента не способна обеспечить необходимую жесткость, усиливаются вибрации, боковые перемещения.
Возникают сложности при выравнивании перфоленты по высоте, из-за чего воздуховод во время эксплуатации начинает шуметь, возрастает риск разгерметизации магистрали.
Дистанция между креплениями
В СП 60.13330 и СП 73.13330.2012 указывается, как рассчитывать крепление воздуховодов квадратного и круглого сечения. Также учитываются рекомендации производителей оборудования, прописанные в инструкциях. Чтобы получить правильный результат необходимо знать длину воздуховодов и допустимую дистанцию между креплениями.
Крепления для горизонтальных неутепленных металлических бесфланцевых воздуховодов устанавливаются на расстоянии не больше 4 метров друг от друга. Это требование в равной степени относится к опорам, подвескам, хомутам.
Правило распространяется на прямоугольные и круглые воздуховоды, у которых диаметр или наибольшая сторона не превышают 40 см. Для воздуховодов с прямоугольным сечением или диаметром более 40 см расстояние между креплениями сокращается до 3 метров.
Горизонтальные металлические неизолированные воздуховоды на фланцевом соединении с диаметром или большей стороной до 2 метров монтируются с шагом не более 6 метров между крепежами. Крепление к фланцам не разрешается. Максимальное расстояние между креплениями вертикальных металлических воздуховодов составляет 4,5 метра.
При проектировании даже простейшей кухонной вытяжки оставляют зазоры между поверхностью воздуховода и стенами, потолком, другими коммуникациями и предметами интерьера
Для соединения магистральных участков воздуховодов в качестве фасонных элементов могут применяться , изготовленные из полимерной пленки. В отдельных случаем они служат в качестве основных элементов для построения вентиляционной магистрали.
Для их крепления гибких полимерных воздуховодов используют кольца из стальной проволоки. Диаметр проволоки должен быть в пределах 3-4 мм, а диаметр самого кольца – на 10 процентов больше диаметра воздуховода. Шаг между кольцами – не больше 2 метров.
При таком типе монтажа вдоль воздуховода натягивают несущий трос, к которому и крепятся кольца. Сам трос крепится к строительным конструкциям с шагом от 20 до 30 метров. Гибкий воздуховод необходимо натянуть, чтобы между кольцами не образовались провисы, снижающие давление в системе.
Расстояние до других конструкций
Нормативами определяется не только расстояние между крепежами, но и расстояние от воздуховодов до окружающих строительных конструкций. Круглые воздуховоды размещают на расстоянии не менее 10 см от потолка, и не менее 5 см от потолка.
Как минимум 25 см должна быть дистанция между круглым воздуховодом и элементами систем водо- и газоснабжения. Воздуховоды относительно друг друга также располагают на расстоянии от 25 см.
Дистанция между прямоугольными воздуховодами и строительными конструкциями зависит от ширины воздуховода.
В приведенном ниже списке первое значение – ширина воздуховода, второе – расстояние до потолка:
- до 40 см – от 10 см;
- 40-80 см – от 20 см;
- 80-150 см – от 40 см.
Не зависимо от формы сечения воздуховоды должны находится на расстоянии не меньше 30 см от электрических проводов.
Нормативы расстояний актуальны как для неутепленных, так и для утепленных воздуховодов и не зависят от используемых теплоизоляционных материалов
Места соединений воздуховодов между собой должны располагаться на расстоянии не менее 1 метра от места прохода сквозь стену или потолок.
Крепление осуществляется таким образом, чтобы ось магистрали воздуховода располагалась параллельно плоскости стены или потолка. С целью отвода конденсата воздуховод можно расположить под уклоном 0,015 в направлении к конденсатосборнику.
Строительство сложной, многокомпонентной вентиляционной системы требует специальных знаний и навыков, ошибки при монтаже приведут к недостаточному воздухообмену и изменению микроклимата в худшую сторону
Крепежи выполняют важную функцию – удержание воздуховодов в проектном положении. Во многом от них зависит срок службы вентиляционной системы. Поэтому они должны обладать высокой механической прочностью, чтобы обеспечить необходимую жесткость конструкции.
Изготовленные из оцинкованной или нержавеющей стали они не подвержены коррозии, устойчивы к воздействию агрессивной среды, перепадам температур и позволяют в короткие сроки выполнить монтаж вентиляционной системы без сверления и сварочных работ.
Сколько креплений требуется
Тип крепежей и их количество определяют еще на стадии проектирования с учетом массы, размеров, расположения , материалов изготовления, типа вентиляционной системы и т.д. Если вы планируете заниматься этими вопросами самостоятельно, вам предстоит выполнить расчеты и использовать справочные данные.
Нормы расхода креплений исчисляются исходя из площади поверхности воздуховодов. Перед тем как приступить к расчету площади поверхности, необходимо определить длину воздуховода. Ее измеряют между двумя точками, в которых пересекаются осевые линии магистралей.
Если воздуховод имеет круглое сечение, его диаметр умножают на полученную ранее длину. Площадь поверхности прямоугольного воздуховода равна произведению его высоты ширины и длины.
Все расчеты производятся на предварительном этапе, полученные данные используют при монтаже, соблюдать исчисленные расстояния, не допуская погрешностей помогает разметка
Далее можно воспользоваться справочными данными, например, нормативными показателями расхода материалов (НПРМ, сборник 20) утвержденными Министерством строительства РФ. Не сегодняшний день этот документ имеет статус недействующего, но указанные в нем данные в большинстве своем остаются актуальными и используются строителями.
Расход креплений в справочнике указан в кг на 100 кв. м. площади поверхности. Например, для круглых фальцевых воздуховодов класса Н, изготовленных из листовой стали, толщиной 0,5 мм и имеющих диаметр до 20 см потребуется 60,6 кг креплений на 100 кв. м.
Правильно спроектированная и смонтированная система воздуховодов не только безупречно функционирует, но и органично дополняет интерьер современного дома
При прямые звенья воздуховодов вместе с отводами, тройниками и другими фасонными элементами собираются в блоки длиной до 30 метров. Далее в соответствии с нормативами устанавливаются крепления. Подготовленные блоки воздуховодов устанавливают в предназначенных для них места.
С нормативным требованиями по организации вентиляции в частном доме ознакомит , прочитать которую стоит всем владельцам загородной собственности.
Выводы и полезное видео по теме
Крепление воздуховодов к потолочным плитам:
Изготовление хомутов для круглых воздуховодов своими руками:
Как выглядит вентиляционная магистраль в сборе:
Монтаж системы вентиляции в частном доме не требует привлечения подъемных кранов и другой спецтехники, но уже при разработке проекта необходимо учесть особенности планировки дома, расположение строительных конструкций на пути вентиляционной магистрали.
Приблизительно, «на глаз» невозможно определить длину звеньев воздуховодов и расстояние между креплениями. Для этого нужно знать нормативы и на их основе выполнить расчеты, исходя из конкретных условий. В результате правильно выполненной работы ваш дом будет оснащен эффективной и долговечной системой вентиляции для комфортной жизни.
Хотите рассказать о том, как собирали вентиляционную систему в вашем доме/квартире/офисе? Владеете полезной информацией по теме статьи, которую стоит сообщить посетителям сайта? Пишите комментарии, пожалуйста, в находящейся ниже блок форме, размещайте фото и задавайте вопросы.
Калькулятор подбора круглых воздуховодов онлайн по диаметру. Как рассчитать сечение и диаметр воздуховода
Параметры показателей микроклимата определяются положениями ГОСТ 12.1.2.1002-00, 30494-96, СанПин 2.2.4.548, 2.1.2.1002-00. На основании существующих государственных нормативных актов разработан Свод правил СП 60.13330.2012. Скорость воздуха в должна обеспечивать выполнение существующих норм.
Что учитывается при определении скорости движения воздуха
Для правильного выполнения расчетов проектировщики должны выполнять несколько регламентируемых условий, каждое из них имеет одинаково важное значение. Какие параметры зависят от скорости движения воздушного потока?
Уровень шума в помещении
В зависимости от конкретного использования помещений санитарные нормы устанавливают следующие показатели максимального звукового давления.
Таблица 1. Максимальные значения уровня шума.
Превышение параметров допускается только в кратковременном режиме во время пуска/остановки вентиляционной системы или дополнительного оборудования.
Уровень вибрации в помещении
Во время работы вентиляторов продуцируется вибрация. Показатели вибрации зависят от материала изготовления воздуховодов, способов и качества виброгасящих прокладок и скорости движения воздушного потока по воздуховодам. Общие показатели вибрации не могут превышать установленные государственными организациями предельные значения.
Таблица 2. Максимальные показатели допустимой вибрации.
При расчетах подбирается оптимальная скорость воздуха, не усиливающая вибрационные процессы и связанные с ними звуковые колебания. Система вентиляции должна поддерживать в помещениях определенный микроклимат.
Значения по скорости движения потока, влажности и температуре содержатся в таблице.
Таблица 3. Параметры микроклимата.
Еще один показатель, принимаемый во внимание во время расчета скорости потока – кратность обмена воздуха в системах вентиляции. С учетом их использования санитарные нормы устанавливают следующие требования по воздухообмену.
Таблица 4. Кратность воздухообмена в различных помещениях.
Бытовые | |
Бытовые помещения | Кратность воздухообмена |
Жилая комната (в квартире или в общежитии) | 3м 3 /ч на 1м 2 жилых помещений |
Кухня квартиры или общежития | 6-8 |
Ванная комната | 7-9 |
Душевая | 7-9 |
Туалет | 8-10 |
Прачечная (бытовая) | 7 |
Гардеробная комната | 1,5 |
Кладовая | 1 |
Гараж | 4-8 |
Погреб | 4-6 |
Промышленные | |
Промышленные помещения и помещения большого объема | Кратность воздухообмена |
Театр, кинозал, конференц-зал | 20-40 м 3 на человека |
Офисное помещение | 5-7 |
Банк | 2-4 |
Ресторан | 8-10 |
Бар, Кафе, пивной зал, бильярдная | 9-11 |
Кухонное помещение в кафе, ресторане | 10-15 |
Универсальный магазин | 1,5-3 |
Аптека (торговый зал) | 3 |
Гараж и авторемонтная мастерская | 6-8 |
Туалет (общественный) | 10-12 (или 100 м 3 на один унитаз) |
Танцевальный зал, дискотека | 8-10 |
Комната для курения | 10 |
Серверная | 5-10 |
Спортивный зал | не менее 80 м 3 на 1 занимающегося и не менее 20 м 3 на 1 зрителя |
Парикмахерская (до 5 рабочих мест) | 2 |
Парикмахерская (более 5 рабочих мест) | 3 |
Склад | 1-2 |
Прачечная | 10-13 |
Бассейн | 10-20 |
Промышленный красильный цел | 25-40 |
Механическая мастерская | 3-5 |
Школьный класс | 3-8 |
Алгоритм расчетов Скорость воздуха в воздуховоде определяется с учетом всех вышеперечисленных условий, технические данные указываются заказчиком в задании на проектирование и монтаж вентиляционных систем. Главный критерий при расчетах скорости потока – кратность обмена. Все дальнейшие согласования делаются за счет изменения формы и сечения воздуховодов. Расход в зависимости от скорости и диаметра воздуховода можно взять из таблицы.
Таблица 5. Расход воздуха в зависимости от скорости потока и диаметра воздуховода.
Самостоятельный расчет
К примеру, в помещении объемом 20 м 3 согласно требованиям санитарных норм для эффективной вентиляции нужно обеспечить трехкратную смену воздуха. Это значит, что за один час сквозь воздуховод должно пройти не менее L = 20 м 3 ×3= 60 м 3 . Формула расчета скорости потока V= L / 3600× S, где:
V – скорость потока воздуха в м/с;
L – расход воздуха в м 3 /ч;
S – площадь сечения воздуховодов в м 2 .
Возьмем круглый воздуховод Ø 400 мм, площадь сечения равняется:
В нашем примере S = (3.14×0,4 2 м)/4=0,1256 м 2 . Соответственно, для обеспечения нужной кратности обмена воздуха (60 м 3 /ч) в круглом воздуховоде Ø 400 мм (S = 0,1256 м 3) скорость воздушного потока равняется: V= 60/(3600×0,1256) ≈ 0,13 м/с.
С помощью этой же формулы при заранее известной скорости можно рассчитать объем воздуха, перемещающийся по воздуховодам в единицу времени.
L = 3600×S (м 3)×V(м/с). Объем (расход) получается в квадратных метрах.
Как уже описывалось ранее, от скорости воздуха зависят и показатели шумности вентиляционных систем. Для минимизации негативного влияния этого явления инженеры сделали расчеты максимально допустимых скоростей воздуха для различных помещений.
По такому же алгоритму определяется скорость воздуха в воздуховоде при расчете подачи тепла, устанавливаются поля допусков для минимизации потерь на содержание зданий в зимний период времени, подбираются вентиляторы по мощности. Данные по воздушному потоку требуются и для уменьшения потерь давления, а это позволяет повышать коэффициент полезного действия вентиляционных систем и сокращает потребление электрической энергии.
Расчет выполняется по каждому отдельному участку, с учетом полученных данных подбираются параметры главных магистралей по диаметру и геометрии. Они должны успевать пропускать откачанный воздух из всех отдельных помещений. Диаметр воздуховодов выбирается таким образом, чтобы минимизировать шумность и потери на сопротивление. Для расчетов кинематической схемы важны все три показатели вентиляционной системы: максимальный объем нагнетаемого/удаляемого воздуха, скорость передвижения воздушных масс и диаметр воздуховодов. Работы по расчету вентиляционных систем относятся к категории сложных с инженерной точки зрения, выполнять их могут только профессиональные специалисты со специальным образованием.
Для обеспечения постоянных значений скорости воздуха в каналах с различным сечением используются формулы:
После расчета за окончательные данные принимаются ближайшие значения стандартных трубопроводов. За счет этого уменьшается время монтажа оборудования и упрощается процесс его периодического обслуживания и ремонта. Еще один плюс – уменьшение сметной стоимости вентиляционной системы.
Для воздушного обогрева жилых и производственных помещений скорости регулируются с учетом температуры теплоносителя на входе и выходе, для равномерного рассеивания потока теплого воздуха продумывается схема монтажа и размеры вентиляционных решеток. Современные системы воздушного обогрева предусматривают возможность автоматической регулировки скорости и направления потоков. Температура воздуха не может превышать +50°С на выходе, расстояние до рабочего места не менее 1,5 м. Скорость подачи воздушных масс нормируется действующими государственными стандартами и отраслевыми актами.
Во время расчетов по требованию заказчиков может учитываться возможность монтажа дополнительных ответвлений, с этой целью предусматривается запас производительности оборудования и пропускной способности каналов. Скорости потока рассчитываются таким образом, чтобы после увеличения мощности вентиляционных систем они не создавали дополнительную звуковую нагрузку на присутствующих в помещении людей.
Выбор диаметров выполняется от минимально приемлемого, чем меньше габариты – тем универсальное система вентиляции, тем дешевле обходится ее изготовление и монтаж. Системы местных отсосов рассчитываются отдельно, могут работать как в автономном режиме, так и подключаться к существующим вентиляционным системам.
Государственные нормативные документы устанавливают рекомендованные скорости движения в зависимости от расположения и назначения воздуховодов. При расчетах нужно придерживаться этих параметров.
Тип и место установки воздуховода и решетки | Вентиляция | |
Естественная | Механическая | |
Воздухоприемные жалюзи | 0,5-1,0 | 2,0-4,0 |
Каналы приточных шахт | 1,0-2,0 | 2,0-6,0 |
Горизонтальные сборные каналы | 0,5-1,0 | 2,0-5,0 |
Вертикальные каналы | 0,5-1,0 | 2,0-5,0 |
Приточные решетки у пола | 0,2-0,5 | 0,2-0,5 |
Приточные решетки у потолка | 0,5-1,0 | 1,0-3,0 |
Вытяжные решетки | 0,5-1,0 | 1,5-3,0 |
Вытяжные шахты | 1,0-1,5 | 3,0-6,0 |
Внутри помещений воздух не может двигаться со скоростью более 0,3 м/с, допускается кратковременное превышение параметра не более чем 30%. Если в помещении имеется две системы, то скорость воздуха в каждой из них должна обеспечивать не менее 50% расчетного объема подачи или удаления воздуха.
Пожарные организации выдвигают свои требования по скорости перемещения воздушных масс в воздуховодах в зависимости от категории помещения и особенностей технологического процесса. Нормативы направлены на уменьшение скорости распространения дыма или огня по воздуховодам. В случае необходимости на вентиляционных системах должны устанавливаться клапаны и отсекатели. Срабатывание устройств происходит после сигнала датчика или выполняется вручную ответственным лицом. В одну систему вентиляции можно подключать только определенные группы помещений.
В холодный период времени в отапливаемых зданиях температура воздуха в результате функционирования вентиляционной системы не может понижаться ниже нормируемых. Нормируемая температура обеспечивается до начала рабочей смены. В теплый период времени эти требования не актуальны. Движение воздушных масс не должно ухудшать предусмотренные СанПин 2. 1.2.2645 нормативы. Для достижения нужных результатов во время проектирования систем изменяется диаметр воздуховодов, мощность и количество вентиляторов и скорости потока.
Принимаемые расчетные данные по параметрам движения в воздуховодах должны обеспечивать:
- Выполнение параметров микроклимата в помещениях, поддержку качества воздуха в регламентируемых пределах. При этом принимаются меры по снижению непродуктивных тепловых потерь. Данные берутся как из существующих нормативных документов, так и из технического задания заказчиков.
- Скорость движения воздушных масс в рабочих зонах не должна вызывать сквозняки, обеспечивать приемлемую комфортность пребывания в помещении. Механическая вентиляция предусматривается только в тех случаях, когда добиться желаемых результатов за счет естественной невозможно. Кроме этого, механическая вентиляция обязательно монтируется в цехах с вредными условиями труда.
Во время расчетов показателей движения воздуха в системах с естественной вентиляцией берется среднегодовое значение разности плотности внутреннего и наружного воздуха. Минимальные фактические данные по производительности должны обеспечивать допустимые нормативные значения кратности обмена воздуха.
Комментариев:
- Факторы, оказывающие влияние на размеры воздухопроводов
- Расчет габаритов воздухопровода
- Подбор габаритов под реальные условия
Для передачи приточного или вытяжного воздуха от вентиляционных установок в гражданских или производственных зданиях применяются воздухопроводы различной конфигурации, формы и размера. Зачастую их приходится прокладывать по существующим помещениям в самых неожиданных и загроможденных оборудованием местах. Для таких случаев правильно рассчитанное сечение воздуховода и его диаметр играют важнейшую роль.
Факторы, оказывающие влияние на размеры воздухопроводов
На проектируемых или вновь строящихся объектах удачно проложить трубопроводы вентиляционных систем не составляет большой проблемы – достаточно согласовать месторасположение систем относительно рабочих мест, оборудования и других инженерных сетей. В действующих промышленных зданиях это сделать гораздо сложнее в силу ограниченного пространства.
Этот и еще несколько факторов оказывают влияние на расчет диаметра воздуховода:
- Один из главных факторов – это расход приточного или вытяжного воздуха за единицу времени (м 3 /ч), который должен пропустить данный канал.
- Пропускная способность также зависит от скорости воздуха (м/с). Она не может быть слишком маленькой, тогда по расчету размер воздухопровода выйдет очень большим, что экономически нецелесообразно. Слишком высокая скорость может вызвать вибрации, повышенный уровень шума и мощности вентиляционной установки. Для разных участков приточной системы рекомендуется принимать различную скорость, ее значение лежит в пределах от 1.5 до 8 м/с.
- Имеет значение материал воздуховода. Обычно это оцинкованная сталь, но применяются и другие материалы: различные виды пластмасс, нержавеющая или черная сталь. У последней самая высокая шероховатость поверхности, сопротивление потоку будет выше, и размер канала придется принять больше. Значение диаметра следует подбирать согласно нормативной документации.
В Таблице 1 представлена нормаль размеров воздуховодов и толщина металла для их изготовления.
Таблица 1
Примечание: Таблица 1 отражает нормаль не полностью, а только самые распространенные размеры каналов.
Воздуховоды производят не только круглой, но и прямоугольной и овальной формы. Их размеры принимаются через значение эквивалентного диаметра. Также новые методы изготовления каналов позволяют использовать металл меньшей толщины, при этом повышать в них скорость без риска вызвать вибрации и шум. Это касается спирально-навивных воздухопроводов, они имеют высокую плотность и жесткость.
Вернуться к оглавлению
Расчет габаритов воздухопровода
Сначала необходимо определиться с количеством приточного или вытяжного воздуха, которое требуется доставить по каналу в помещение. Когда эта величина известна, площадь сечения (м 2) рассчитывают по формуле:
В этой формуле:
- ϑ – скорость воздуха в канале, м/с;
- L – расход воздуха, м 3 /ч;
- S – площадь поперечного сечения канала, м 2 ;
Для того чтобы связать единицы времени (секунды и часы), в расчете присутствует число 3600.
Диаметр воздуховода круглого сечения в метрах можно высчитать исходя из площади его сечения по формуле:
S = π D 2 / 4, D 2 = 4S / π, где D – величина диаметра канала, м.
Порядок расчета размера воздухопровода следующий:
- Зная расход воздуха на данном участке, определяют скорость его движения в зависимости от назначения канала. В качестве примера можно принять L = 10 000 м 3 /ч и скорость 8 м/с, так как ветка системы – магистральная.
- Вычисляют площадь сечения: 10 000 / 3600 х 8 = 0.347 м 2 , диаметр будет – 0,665 м.
- По нормали принимают ближайший из двух размеров, обычно берут тот, который больше. Рядом с 665 мм есть диаметры 630 мм и 710 мм, следует взять 710 мм.
- В обратном порядке производят расчет действительной скорости воздушной смеси в воздухопроводе для дальнейшего определения мощности вентилятора. В данном случае сечение будет: (3.14 х 0.71 2 / 4) = 0.4 м 2 , а реальная скорость – 10 000 / 3600 х 0.4 = 6.95 м/с.
- В том случае если необходимо проложить канал прямоугольной формы, его габариты подбирают по рассчитанной площади сечения, эквивалентного круглому. То есть высчитывают ширину и высоту трубопровода так, чтобы площадь равнялась 0.347 м 2 в данном случае. Это может быть вариант 700 мм х 500 мм или 650 мм х 550 мм. Такие воздухопроводы монтируют в стесненных условиях, когда место для прокладки ограничено технологическим оборудованием или другими инженерными сетями.
Когда известны параметры воздуховодов (их длина, сечение, коэффициент трения воздуха о поверхность), можно рассчитать потери давления в системе при проектируемом расходе воздуха.
Общие потери давления (в кг/кв.м.) рассчитываются по формуле:P = R*l + z,
где R — потери давления на трение в расчете на 1 погонный метр воздуховода, l z — потери давления на местные сопротивления (при переменном сечении).
1. Потери на трение:
В круглом воздуховоде потери давления на трение Pтр считаются так:
Pтр = (x*l/d) * (v*v*y)/2g,
где x — коэффициент сопротивления трения, l — длина воздуховода в метрах, d — диаметр воздуховода в метрах, v y g — ускорение свободного падения (9,8 м/с2).
Замечание: Если воздуховод имеет не круглое, а прямоугольное сечение, в формулу надо подставлять эквивалентный диаметр, который для воздуховода со сторонами А и В равен: dэкв = 2АВ/(А + В)
2. Потери на местные сопротивления:
Потери давления на местные сопротивления считаются по формуле:
z = Q* (v*v*y)/2g,
где Q — сумма коэффициентов местных сопротивлений на участке воздуховода, для которого производят расчет, v — скорость течения воздуха в м/с, y — плотность воздуха в кг/куб.м., g — ускорение свободного падения (9,8 м/с2). Значения Q содержатся в табличном виде.
Метод допустимых скоростей
При расчете сети воздуховодов по методу допустимых скоростей за исходные данные принимают оптимальную скорость воздуха (см. таблицу). Затем считают нужное сечение воздуховода и потери давления в нем.
Порядок действий при аэродинамическом расчете воздуховодов по методу допустимых скоростей:
- Начертить схему воздухораспределительной системы. Для каждого участка воздуховода указать длину и количество воздуха, проходящего за 1 час.
- Расчет начинаем с самых дальних от вентилятора и самых нагруженных участков.
- Зная оптимальную скорость воздуха для данного помещения и объем воздуха, проходящего через воздуховод за 1 час, определим подходящий диаметр (или сечение) воздуховода.
- Вычисляем потери давления на трение Pтр.
- По табличным данным определяем сумму местных сопротивлений Q и рассчитываем потери давления на местные сопротивления z.
- Располагаемое давление для следующих ветвлений воздухораспределительной сети определяется как сумма потерь давления на участках, расположенных до данного ветвления.
В процессе расчета нужно последовательно увязать все ветви сети, приравняв сопротивление каждой ветви к сопротивлению самой нагруженной ветви. Это делают с помощью диафрагм. Их устанавливают на слабо нагруженные участки воздуховодов, повышая сопротивление.
Таблица максимальной скорости воздуха в зависимости от требований к воздуховоду
Назначение | Основное требование | ||||
---|---|---|---|---|---|
Бесшумность | Мин. потери напора | ||||
Магистральные каналы | Главные каналы | Ответвления | |||
Приток | Вытяжка | Приток | Вытяжка | ||
Жилые помещения | 3 | 5 | 4 | 3 | 3 |
Гостиницы | 5 | 7.5 | 6.5 | 6 | 5 |
Учреждения | 6 | 8 | 6.5 | 6 | 5 |
Рестораны | 7 | 9 | 7 | 7 | 6 |
Магазины | 8 | 9 | 7 | 7 | 6 |
Примечание: скорость воздушного потока в таблице дана в метрах в секунду.
Метод постоянной потери напора
Данный метод предполагает постоянную потерю напора на 1 погонный метр воздуховода. На основе этого определяются размеры сети воздуховодов. Метод постоянной потери напора достаточно прост и применяется на стадии технико-экономического обоснования систем вентиляции.
- В зависимости от назначения помещения по таблице допустимых скоростей воздуха выбирают скорость на магистральном участке воздуховода.
- По определенной в п.1 скорости и на основании проектного расхода воздуха находят начальную потерю напора (на 1 м длины воздуховода). Для этого служит нижеприведенная диаграмма.
- Определяют самую нагруженную ветвь, и ее длину принимают за эквивалентную длину воздухораспределительной системы. Чаще всего это расстояние до самого дальнего диффузора.
- Умножают эквивалентную длину системы на потерю напора из п.2. К полученному значению прибавляют потерю напора на диффузорах.
- Теперь по приведенной ниже диаграмме определяют диаметр начального воздуховода, идущего от вентилятора, а затем диаметры остальных участков сети по соответствующим расходам воздуха. При этом принимают постоянной начальную потерю напора.
Диаграмма определения потерь напора и диаметра воздуховодов
Использование прямоугольных воздуховодов
В диаграмме потерь напора указаны диаметры круглых воздуховодов. Если вместо них используются воздуховоды прямоугольного сечения, то необходимо найти их эквивалентные диаметры с помощью приведенной ниже таблицы.
Замечания:
- Если позволяет пространство, лучше выбирать круглые или квадратные воздуховоды.
- Если места недостаточно (например, при реконструкции), выбирают прямоугольные воздуховоды. Как правило, ширина воздуховода в 2 раза больше высоты). В таблице по горизонтальной указана высота воздуховода в мм, по вертикальной — его ширина, а в ячейках таблицы содержатся эквивалентные диаметры воздуховодов в мм.
Таблица эквивалентных диаметров воздуховодов
Размеры | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 |
---|---|---|---|---|---|---|---|---|
250 | 210 | 245 | 275 | |||||
300 | 230 | 265 | 300 | 330 | ||||
350 | 245 | 285 | 325 | 355 | 380 | |||
400 | 260 | 305 | 345 | 370 | 410 | 440 | ||
450 | 275 | 320 | 365 | 400 | 435 | 465 | 490 | |
500 | 290 | 340 | 380 | 425 | 455 | 490 | 520 | 545 |
550 | 300 | 350 | 400 | 440 | 475 | 515 | 545 | 575 |
600 | 310 | 365 | 415 | 460 | 495 | 535 | 565 | 600 |
650 | 320 | 380 | 430 | 475 | 515 | 555 | 590 | 625 |
700 | 390 | 445 | 490 | 535 | 575 | 610 | 645 | |
750 | 400 | 455 | 505 | 550 | 590 | 630 | 665 | |
800 | 415 | 470 | 520 | 565 | 610 | 650 | 685 | |
850 | 480 | 535 | 580 | 625 | 670 | 710 | ||
900 | 495 | 550 | 600 | 645 | 685 | 725 | ||
950 | 505 | 560 | 615 | 660 | 705 | 745 | ||
1000 | 520 | 575 | 625 | 675 | 720 | 760 | ||
1200 | 620 | 680 | 730 | 780 | 830 | |||
1400 | 725 | 780 | 835 | 880 | ||||
1600 | 830 | 885 | 940 | |||||
1800 | 870 | 935 | 990 |
Расчет потери давления в воздуховодах в системе вентиляции и кондиционирования
Когда известны параметры воздуховодов (их длина, сечение, коэффициент трения воздуха о поверхность), можно рассчитать потери давления в системе при проектируемом расходе воздуха.
Общие потери давления (в кг/кв.м.) рассчитываются по формуле:
P = R*l + z,
где R — потери давления на трение в расчете на 1 погонный метр воздуховода, l — длина воздуховода в метрах, z — потери давления на местные сопротивления (при переменном сечении).
1. Потери на трение:
В круглом воздуховоде потери давления на трение P тр считаются так:
Pтр = (x*l/d) * (v*v*y)/2g,
где x — коэффициент сопротивления трения, l — длина воздуховода в метрах, d — диаметр воздуховода в метрах, v — скорость течения воздуха в м/с, y — плотность воздуха в кг/куб.м., g — ускорение свободного падения (9,8 м/с2).
- Замечание: Если воздуховод имеет не круглое, а прямоугольное сечение, в формулу надо подставлять эквивалентный диаметр, который для воздуховода со сторонами А и В равен: dэкв = 2АВ/(А + В)
2. Потери на местные сопротивления:
Потери давления на местные сопротивления считаются по формуле:
z = Q* (v*v*y)/2g,
где Q — сумма коэффициентов местных сопротивлений на участке воздуховода, для которого производят расчет, v — скорость течения воздуха в м/с, y — плотность воздуха в кг/куб. м., g — ускорение свободного падения (9,8 м/с2). Значения Q содержатся в табличном виде.
Метод допустимых скоростей
При расчете сети воздуховодов по методу допустимых скоростей за исходные данные принимают оптимальную скорость воздуха (см. таблицу). Затем считают нужное сечение воздуховода и потери давления в нем.
Порядок действий при аэродинамическом расчете воздуховодов по методу допустимых скоростей:
- Начертить схему воздухораспределительной системы. Для каждого участка воздуховода указать длину и количество воздуха, проходящего за 1 час.
- Расчет начинаем с самых дальних от вентилятора и самых нагруженных участков.
- Зная оптимальную скорость воздуха для данного помещения и объем воздуха, проходящего через воздуховод за 1 час, определим подходящий диаметр (или сечение) воздуховода.
- Вычисляем потери давления на трение P тр.
- По табличным данным определяем сумму местных сопротивлений Q и рассчитываем потери давления на местные сопротивления z.
- Располагаемое давление для следующих ветвлений воздухораспределительной сети определяется как сумма потерь давления на участках, расположенных до данного ветвления.
В процессе расчета нужно последовательно увязать все ветви сети, приравняв сопротивление каждой ветви к сопротивлению самой нагруженной ветви. Это делают с помощью диафрагм. Их устанавливают на слабо нагруженные участки воздуховодов, повышая сопротивление.
Таблица максимальной скорости воздуха в зависимости от требований к воздуховоду
Назначение | Основное требование | ||||
Бесшумность | Мин. потери напора | ||||
Магистральные каналы | Главные каналы | Ответвления | |||
Приток | Вытяжка | Приток | Вытяжка | ||
Жилые помещения | 3 | 5 | 4 | 3 | 3 |
Гостиницы | 5 | 7. 5 | 6.5 | 6 | 5 |
Учреждения | 6 | 8 | 6.5 | 6 | 5 |
Рестораны | 7 | 9 | 7 | 7 | 6 |
Магазины | 8 | 9 | 7 | 7 | 6 |
Примечание: скорость воздушного потока в таблице дана в метрах в секунду
Метод постоянной потери напора
Данный метод предполагает постоянную потерю напора на 1 погонный метр воздуховода. На основе этого определяются размеры сети воздуховодов. Метод постоянной потери напора достаточно прост и применяется на стадии технико-экономического обоснования систем вентиляции:
- В зависимости от назначения помещения по таблице допустимых скоростей воздуха выбирают скорость на магистральном участке воздуховода.
- По определенной в п.1 скорости и на основании проектного расхода воздуха находят начальную потерю напора (на 1 м длины воздуховода). Для этого служит нижеприведенная диаграмма.
- Определяют самую нагруженную ветвь, и ее длину принимают за эквивалентную длину воздухораспределительной системы. Чаще всего это расстояние до самого дальнего диффузора.
- Умножают эквивалентную длину системы на потерю напора из п.2. К полученному значению прибавляют потерю напора на диффузорах.
Теперь по приведенной ниже диаграмме определяют диаметр начального воздуховода, идущего от вентилятора, а затем диаметры остальных участков сети по соответствующим расходам воздуха. При этом принимают постоянной начальную потерю напора.
Диаграмма определения потерь напора и диаметра воздуховодов
Мощность калорифераКалорифер используется в приточной системе вентиляции для подогрева наружного воздуха в холодное время года. Мощность калорифера рассчитывается исходя из производительности системы вентиляции, требуемой температурой воздуха на выходе системы и минимальной температурой наружного воздуха. Два последних параметра определяются СНиП. Температура воздуха, поступающего в жилое помещение, должна быть не ниже +18°С. Минимальная температура наружного воздуха зависит от климатической зоной и для Москвы равна -26°С (рассчитывается как средняя температура самой холодной пятидневки самого холодного месяца в 13 часов). Таким образом, при включении калорифера на полную мощность он должен нагревать поток воздуха на 44°С. Поскольку сильные морозы в Москве непродолжительны, в приточных системах можно устанавливать калориферы, имеющие мощность меньше расчетной. При этом приточная система должна иметь регулятор производительности для уменьшения скорости вентилятора в холодное время года.При расчете мощности калорифера необходимо учитывать следующие ограничения: Возможность использования однофазного (220 В) или трехфазного (380 В) напряжения питания. При мощности калорифера свыше 5 кВт необходимо 3-х фазное подключение, но в любом случае 3-х фазное питание предпочтительней, так как рабочий ток в этом случае меньше. Максимально допустимый ток потребления. Ток, потребляемый калорифером, можно найти по формуле: I = P / U, где I — максимальный потребляемый ток, А; Р — мощность калорифера, Вт; U — напряжение питание:
ΔT = 2,98 * P / L, где ΔT — разность температур воздуха на входе и выходе системы приточной вентиляции,°С;Р — мощность калорифера, Вт; L — производительность вентиляции, м3/ч. Типичные значения расчетной мощности калорифера — от 1 до 5 кВтдля квартир, от 5 до 50 кВт для офисов. Если использовать электрический калорифер с расчетной мощностью не представляется возможным, следует установить калорифер, использующий в качестве источника тепла воду из системы центрального или автономного отопления (водяной калорифер). Рабочеее давление, скорость движения воздуха в воздуховодах, уровень шумаПосле расчета производительности по воздуху и мощности калорифера приступают к проектированию воздухораспределительной сети, которая состоит из воздуховодов, фасонных изделий (переходников, разветвителей, поворотов) и распределителей воздуха (решеток или диффузоров). Расчет воздухораспределительной сети начинают с составления схемы воздуховодов. Далее по этой схеме рассчитывают три взаимосвязанных параметра — рабочее давление, создаваемое вентилятором, скорость потока воздуха и уровень шума. Требуемое рабочее давление определяется техническими характеристиками вентилятора и рассчитывается исходя из диаметра и типа воздуховодов, числа поворотов и переходов с одного диаметра на другой, типа распределителей воздуха. Чем длиннее трасса и чем больше на ней поворотов и переходов, тем больше должно быть давление, создаваемое вентилятором. От диаметра воздуховодов зависит скорость потока воздуха. Обычно эту скорость ограничивают значением от 2,5 до 4 м/с. При больших скоростях возрастают потери давления и увеличивается уровень шума. В тоже время, использовать «тихие» воздуховоды большого диаметра не всегда возможно, поскольку их трудно разместить в межпотолочном пространстве. Поэтому при проектировании вентиляции часто приходится искать компромисс между уровнем шума, требуемой производительностью вентилятора и диаметром воздуховодов. Для бытовых систем приточной вентиляции обычно используются гибкие воздуховоды сечением 160—250 мм и распределительные решетки размером 200×200 мм — 200×300 мм. Для точного расчета схемы вентиляции и воздухораспределительной сети, а также для разработки проекта вентиляции Вы можете обратиться в наш Проектный отдел | |
Воздуховоды — диаметр и площадь поперечного сечения
Круглые вентиляционные каналы и площади поперечного сечения — британские единицы
Диаметр воздуховода | Площадь | |||||||
---|---|---|---|---|---|---|---|---|
(дюйм) | (мм) | (футы 2 ) | (м 2 ) | |||||
8 | 203 | 0,3491 | 0,032 | |||||
10 | 254 | 0. 5454 | 0,051 | |||||
12 | 305 | 0,7854 | 0,073 | |||||
14 | 356 | 1.069 | 0,099 | |||||
16 | 406 | 1,396 | 0,130 | 18 | 457 | 1,767 | 0,164 | |
20 | 508 | 2,182 | 0,203 | |||||
22 | 559 | 2.640 | 0,245 | |||||
24 | 609 | 3,142 | 0,292 | |||||
26 | 660 | 3,687 | 0,342 | |||||
28 | 711 | 4,276 | 0,397 | 30 | 762 | 4,900 | 0,455 | |
32 | 813 | 5,585 | 0,519 | |||||
34 | 864 | 6.305 | 0,586 | |||||
36 | 914 | 7,069 | 0,657 |
Круглые вентиляционные каналы и площади поперечного сечения — метрические единицы
Диаметр воздуховода | Площадь | ||
---|---|---|---|
(м 2 ) | (мм 2 ) | (дюйм 2 ) | |
63 | 0. 003 | 3019 | 4,7 |
80 | 0,005 | 4902 | 7,6 |
100 | 0,008 | 7698 | 11,9 |
125 | 0,012 | 12076 | |
160 | 0,020 | 19856 | 30,8 |
200 | 0,031 | 31103 | 48,2 |
250 | 0.049 | 48695 | 75,5 |
315 | 0,077 | 77437 | 120 |
400 | 0,125 | 125036 | 194 |
500 | 0,196 | 19553 | |
630 | 0,311 | 310736 | 482 |
800 | 0,501 | 501399 | 777 |
1000 | 0.784 | 783828 | 1215 |
1250 | 1,225 | 1225222 | 1899 |
Загрузите и распечатайте диаграмму поперечного сечения воздуховодов круглого сечения.
Размеры, расчет и проектирование воздуховодов для обеспечения эффективности
Как спроектировать систему воздуховодов. В этой статье мы узнаем, как рассчитать и спроектировать систему воздуховодов для повышения эффективности. Мы включим полностью проработанный пример, а также использование моделирования CFD для оптимизации производительности и эффективности с помощью SimScale. Прокрутите вниз, чтобы посмотреть БЕСПЛАТНЫЙ видеоурок на YouTube!
🏆🏆🏆 Создайте бесплатную учетную запись SimScale для тестирования облачной платформы моделирования CFD здесь: https://www.simscale.com/ Имея более 100 000 пользователей по всему миру, SimScale — это революционная облачная платформа CAE, которая мгновенно доступ к технологиям моделирования CFD и FEA для быстрого и простого виртуального тестирования, сравнения и оптимизации конструкций в нескольких отраслях, включая HVAC , AEC и электроника .
Методы проектирования воздуховодов
Существует множество различных методов, используемых для проектирования систем вентиляции, наиболее распространенными из которых являются:
- Метод снижения скорости: (жилые или небольшие коммерческие установки)
- Метод равного трения: (от среднего до большого размера коммерческие установки)
- Восстановление статического электричества: очень большие установки (концертные залы, аэропорты и промышленные объекты)
Мы собираемся сосредоточиться на методе равного трения в этом примере, поскольку это наиболее распространенный метод, используемый для коммерческих систем HVAC и его достаточно просто следовать.
Пример проектирования
План зданияИтак, сразу перейдем к проектированию системы. Мы возьмем небольшое инженерное бюро в качестве примера, и мы хотим сделать чертеж-компоновку здания, который мы будем использовать для проектирования и расчетов. Это действительно простое здание, в нем всего 4 офиса, коридор и механическое помещение, в котором будут размещаться вентилятор, фильтры и воздухонагреватель или охладитель.
Нагрузка на отопление и охлаждение в зданииПервое, что нам нужно сделать, это рассчитать нагрузку на отопление и охлаждение для каждой комнаты.В этой статье я не буду рассказывать, как это сделать, нам придется рассказать об этом в отдельном руководстве, так как это отдельная предметная область.
После того, как они у вас есть, просто сложите их вместе, чтобы найти самую большую нагрузку, поскольку нам нужно определить размер системы, чтобы она могла работать при пиковом спросе. Охлаждающая нагрузка обычно самая высокая, как в данном случае.
Теперь нам нужно преобразовать охлаждающую нагрузку в объемный расход, но для этого нам сначала нужно преобразовать это в массовый расход, поэтому мы используем формулу:
mdot = Q / (cp x Δt)
Рассчитать массовый расход воздуха скорость от охлаждающей нагрузкиГде mdot означает массовый расход (кг / с), Q — охлаждающая нагрузка помещения (кВт), cp — удельная теплоемкость воздуха (кДж / кг.K), а Δt — разница температур между расчетной температурой воздуха и расчетной температурой обратки. Просто отметим, что мы будем использовать стандартную скорость 1,026 кДж / кг.k., а дельта T должна быть меньше 10 * C, поэтому мы будем использовать 8 * c.
Нам известны все значения этого параметра, поэтому мы можем рассчитать массовый расход (сколько килограммов в секунду воздуха необходимо для поступления в комнату). Если мы посмотрим на расчет для помещения 1, то увидим, что он требует 0,26 кг / с. Поэтому мы просто повторяем этот расчет для остальной части комнаты, чтобы найти все массовые расходы.
Расчет массового расхода воздуха для каждой комнатыТеперь мы можем преобразовать их в объемный расход. Для этого нам нужен определенный объем или плотность воздуха. Мы укажем 21 * c и примем атмосферное давление 101,325 кПа. Мы можем найти это в наших таблицах свойств воздуха, но мне нравится просто использовать онлайн-калькулятор http://bit.ly/2tyT8yp, поскольку он работает быстрее. Таким образом, мы просто добавляем эти числа, и получаем плотность воздуха 1,2 кг / м3.
Вы видите, что плотность измеряется в кг / м3, но нам нужен удельный объем, который составляет м3 / кг, поэтому для преобразования мы просто возьмем обратное, что означает вычисление 1.-1), чтобы получить ответ 0,83 м3 / кг.
Теперь, когда у нас есть возможность рассчитать объемный расход по формуле:
vdot = mdot, умноженное на v.
Рассчитайте объемный расход воздуха, исходя из массового расхода, где vdot равно объемному расходу, mdot равно массовому расходу скорость комнаты и v равна удельному объему, который мы только что рассчитали.
Таким образом, если мы опустим эти значения для помещения 1, мы получим объемный расход 0,2158 м3 / с, то есть сколько воздуха необходимо для входа в комнату для удовлетворения охлаждающей нагрузки.Так что просто повторите этот расчет для всех комнат.
Теперь мы нарисуем наш маршрут воздуховода на плане этажа, чтобы мы могли начать его размер.
Схема воздуховодовПрежде чем мы продолжим, нам нужно рассмотреть некоторые вещи, которые будут играть большую роль в общей эффективности системы.
Соображения по конструкции
Первым из них является форма воздуховода. Воздуховоды бывают круглой, прямоугольной и плоскоовальной формы.Круглые воздуховоды — безусловно, самый энергоэффективный тип, и это то, что мы будем использовать в нашем рабочем примере позже. Если мы сравним круглый воздуховод с прямоугольным, мы увидим, что:
Сравнение круглого и прямоугольного воздуховода Круглый воздуховод с площадью поперечного сечения 0,6 м2 имеет периметр 2,75 м
Прямоугольный воздуховод с равной площадью поперечного сечения имеет периметр 3,87 м
Таким образом, прямоугольный воздуховод требует больше металла для своей конструкции, что увеличивает вес и стоимость конструкции. Более крупный периметр также означает, что больше воздуха будет контактировать с материалом, и это увеличивает трение в системе. Трение в системе означает, что вентилятор должен работать больше, что приводит к более высоким эксплуатационным расходам. По возможности всегда используйте круглый воздуховод, хотя во многих случаях необходимо использовать прямоугольный воздуховод, так как пространство ограничено.
Второе, что следует учитывать, — это материал, из которого изготовлены воздуховоды, и шероховатость этого материала, поскольку он вызывает трение. Например, если у нас есть два воздуховода с одинаковыми размерами, объемным расходом и скоростью, единственная разница заключается в материале.Один изготовлен из стандартной оцинкованной стали, другой из стекловолокна, перепад давления на расстоянии 10 м для этого примера составляет около 11 Па для оцинкованной стали и 16 Па для стекловолокна.
Энергоэффективная арматура для воздуховодовТретье, что мы должны учитывать, — это динамические потери, вызванные арматурой. Мы хотим использовать максимально гладкую арматуру для повышения энергоэффективности. Например, используйте изгибы с длинным радиусом, а не под прямым углом, поскольку резкое изменение направления тратит огромное количество энергии.
Моделирование воздуховодов CFD Мы можем быстро и легко сравнить характеристики воздуховодов различных конструкций с помощью CFD или вычислительной гидродинамики. Эти симуляции были произведены с использованием революционной облачной инженерной платформы CFD и FEA компанией SimScale, которая любезно спонсировала эту статью.
Вы можете получить доступ к этому программному обеспечению бесплатно, щелкнув здесь, и они предлагают несколько различных типов учетных записей в зависимости от ваших потребностей моделирования.
SimScale не ограничивается только проектированием воздуховодов, он также используется для центров обработки данных, приложений AEC, проектирования электроники, а также термического и структурного анализа.
Просто взгляните на их сайт, и вы можете найти тысячи симуляторов для всего, от зданий, систем отопления, вентиляции и кондиционирования, теплообменников, насосов и клапанов до гоночных автомобилей и самолетов, которые можно скопировать и использовать в качестве шаблонов для вашего собственного дизайна. анализ.
Они также предлагают бесплатные вебинары, курсы и руководства, которые помогут вам настроить и запустить собственное моделирование. Если, как и я, у вас есть некоторый опыт создания симуляций CFD, то вы знаете, что этот тип программного обеспечения обычно очень дорогое, и вам также понадобится мощный компьютер для его запуска.
Однако с SimScale все можно сделать из веб-браузера. Поскольку платформа основана на облаке, их серверы выполняют всю работу, и мы можем получить доступ к нашим проектным симуляциям из любого места, что значительно упрощает нашу жизнь как инженеров.
Итак, если вы инженер, дизайнер, архитектор или просто кто-то заинтересован в испытании технологии моделирования, я настоятельно рекомендую вам проверить это программное обеспечение, получить бесплатную учетную запись, перейдя по этой ссылке.
CFD конструкция воздуховодов стандартная и оптимизированнаяТеперь, если мы посмотрим на сравнение двух конструкций, мы увидим стандартный дизайн слева и более эффективный дизайн справа, который был оптимизирован с помощью simscale. Обе конструкции используют скорость воздуха 5 м / с, цвета представляют скорость: синий означает низкую скорость, а красный — области высокой скорости.
Стандартная конструкция воздуховодовИз цветовой шкалы скорости и линий тока видно, что в схеме слева входящий воздух прямо ударяет по резким поворотам, присутствующим в системе, что вызывает увеличение статического давления. Резкие повороты вызывают появление большого количества рециркуляционных зон внутри воздуховодов, что препятствует плавному движению воздуха.
Тройник на дальнем конце главного воздуховода заставляет воздух внезапно делиться и менять направление. Здесь наблюдается большой обратный поток, который снова увеличивает статическое давление и уменьшает количество подаваемого воздуха.
Высокая скорость в основном воздуховоде, вызванная резкими поворотами и резкими изгибами, снижает поток в 3 ветви на осталось.
Оптимизированная конструкция воздуховодов с энергоэффективностьюЕсли теперь мы сосредоточимся на оптимизированной конструкции справа, мы увидим, что используемые фитинги имеют гораздо более гладкий профиль без внезапных препятствий, рециркуляции или обратного потока, что значительно улучшает скорость воздушного потока в системе. В дальнем конце основного воздуховода воздух делится на две ветви через пологую изогнутую тройниковую секцию. Это позволяет воздуху плавно менять направление и, таким образом, не происходит резкого увеличения статического давления, а скорость потока воздуха в комнаты резко увеличивается.
Теперь три ответвления главного воздуховода получают равный воздушный поток, что значительно улучшает конструкцию. Это связано с тем, что дополнительная ветвь теперь питает три меньшие ветви, позволяя некоторой части воздуха плавно отрываться от основного потока и поступать в эти меньшие ветви.
С учетом этих соображений мы можем вернуться к конструкции воздуховода.
Этикетки для воздуховодов и фитинговТеперь нам нужно пометить каждую секцию воздуховодов, а также фитинги буквой. Обратите внимание, что мы разрабатываем здесь только очень простую систему, поэтому я включил только воздуховоды и базовую арматуру, я не включил такие вещи, как решетки, входные отверстия, гибкие соединения, противопожарные клапаны и т. Д.
Теперь мы хотим сделать стол с строки, помеченные как в примере. Для каждого воздуховода и фитинга нужен отдельный ряд. Если воздушный поток разделяется, например, в тройнике, тогда нам нужно включить линию для каждого направления, мы увидим это позже в статье.
Просто добавьте буквы в отдельные строки и укажите, какой тип фитинга или воздуховода соответствует.
Схема воздуховода для воздуховодовМы можем начать вводить некоторые данные, сначала мы можем включить объемный расход для каждого из ответвлений, это просто, поскольку это просто объемный расход для помещения, которое он обслуживает. Вы можете видеть на диаграмме, которую я заполнил.
Схема воздуховодов Расходы в главном воздуховодеЗатем мы можем начать определять размеры главных воздуховодов. Для этого убедитесь, что вы начали с самого дальнего главного воздуховода.Затем мы просто складываем объемные расходы для всех ответвлений ниже по потоку. Для главного воздуховода G мы просто суммируем ветви L и I. Для D это просто сумма L I и F, а для воздуховода A это сумма L, I, F и C. Поэтому просто введите их в таблицу.
Из чернового чертежа мы измеряем длину каждой секции воздуховода и заносим ее в таблицу.
Размеры воздуховодов — Как определить размеры воздуховодов
Для определения размеров воздуховодов вам понадобится таблица размеров воздуховодов. Вы можете получить их у производителей воздуховодов или в отраслевых организациях, таких как CIBSE и ASHRAE.Если у вас его нет, вы можете найти их по следующим ссылкам. Ссылка 1 и Ссылка 2
Эти диаграммы содержат много информации. Мы можем использовать их, чтобы найти падение давления на метр, скорость воздуха, объемный расход, а также размер воздуховода. Компоновка диаграммы немного отличается в зависимости от производителя, но в этом примере вертикальные линии показывают падение давления на метр в воздуховоде. Горизонтальные линии показывают объемный расход. Диагональные линии, направленные вниз, соответствуют скорости, а диагональные линии вверх — диаметру воздуховода.
Мы начинаем подбирать размеры с первого главного воздуховода, который является участком А. Чтобы ограничить шум в этом разделе, мы укажем, что он может иметь максимальную скорость только 5 м / с. Мы знаем, что для этого воздуховода также требуется объемный расход 0,79 м3 / с, поэтому мы можем использовать скорость и объемный расход, чтобы найти недостающие данные.
Пример выбора размера воздуховодаВозьмем диаграмму и прокрутим ее снизу слева, пока не достигнем объемного расхода 0,79 м3 / с. Затем мы определяем, где линия скорости составляет 5 м / с, и проводим линию поперек, пока не достигнем ее.Затем, чтобы найти перепад давления, мы проводим вертикальную линию вниз от этого пересечения. В данном случае мы видим, что он составляет 0,65 Па на метр. Так что добавьте эту цифру в диаграмму. Поскольку мы используем метод равного падения давления, мы можем использовать это падение давления для всех длин воздуховодов, поэтому заполните и их. Затем мы снова прокручиваем вверх и выравниваем пересечение с направленными вверх диагональными линиями, чтобы увидеть, что для этого требуется воздуховод диаметром 0,45 м, поэтому мы также добавляем его в таблицу.
Нам известны объемный расход и падение давления, поэтому теперь мы можем рассчитать значения для секции C, а затем для остальных каналов.
Для остальных воздуховодов мы используем тот же метод.
Подбор размеров воздуховода, метод равного давленияНа схеме мы начинаем с рисования линии от 0,65 Па / м на всем протяжении вверх, а затем проводим линию поперек нашего требуемого объемного расхода, в данном случае для секции C нам нужно 0,21 м3 / с . На этом пересечении мы проводим линию, чтобы найти скорость, и мы видим, что она попадает в пределы линий 3 и 4 м / с, поэтому нам нужно оценить значение, в этом случае оно составляет около 3,6 м / с, поэтому мы добавляем что к диаграмме.Затем мы рисуем еще одну линию на другой диагональной сетке, чтобы найти диаметр нашего воздуховода, который в данном случае составляет около 0,27 м, и мы тоже добавим его в таблицу.
Повторяйте этот последний процесс для всех оставшихся воздуховодов и ответвлений, пока таблица не будет заполнена.
Теперь найдите общие потери в воздуховоде для каждого воздуховода и ответвления. Это очень легко сделать, просто умножив длину воздуховода на падение давления на метр. В нашем примере мы обнаружили, что оно составляет 0,65 Па / м. Сделайте то же самое для всех воздуховодов и ответвлений на столе.
Подбор размеров фитингов для воздуховодов
Первый фитинг, который мы рассмотрим, — это изгиб 90 * между воздуховодами J и L
Для этого мы ищем наш коэффициент потерь для изгиба от производителя или отраслевого органа, вы можете найти, что нажав на эту ссылку.
Коэффициент потери давления в фитинге колена воздуховодаВ этом примере мы видим, что коэффициент равен 0,11
Затем нам нужно рассчитать динамические потери, вызванные изгибом, изменяющим направление потока. Для этого мы используем формулу Co, умноженную на rho, умноженную на v в квадрате, разделенную на 2, где co — наш коэффициент, rho — плотность воздуха, а v — скорость.
Формула потери давления на изгибе воздуховодаМы уже знаем все эти значения, поэтому, если мы опустим цифры, мы получим ответ 0,718 Па. Так что просто добавьте это в таблицу. (Посмотрите видео внизу страницы, чтобы узнать, как это вычислить).
Падение давления на тройнике в воздуховодеСледующий фитинг, который мы рассмотрим, — это тройник, который соединяет основной воздуховод с ответвлениями. Мы будем использовать пример тройника с буквой H между G и J в системе. Теперь для этого нам нужно учесть, что воздух движется в двух направлениях: прямо и также сворачивает в ответвление, поэтому нам нужно выполнить расчет для обоих направлений.
Если мы посмотрим на воздух, движущийся по прямой, то сначала мы найдем соотношение скоростей, используя формулу скорости на выходе, деленной на скорость на входе. В этом примере выход воздуха составляет 3,3 м / с, а входящий воздух составляет 4 м / с, что дает us 0,83
Затем мы выполняем еще один расчет, чтобы найти отношение площадей, для этого используется формула: диаметр вне квадрата, деленный на диаметр в квадрате. В этом примере выходной диаметр составляет 0,24 м, а внутренний диаметр — 0,33 м, поэтому, если мы возведем их в квадрат, а затем разделим, мы получим 0. 53
Теперь мы ищем фитинги, которые мы используем, от производителя или отраслевого органа, снова ссылка здесь для этого.
Размер тройника для воздуховодаВ руководствах мы находим две таблицы, одна из которых зависит от направления потока. Мы используем прямое направление, поэтому мы определяем ее местоположение и затем просматриваем каждое соотношение, чтобы найти коэффициент потерь. Здесь вы можете увидеть, что оба рассчитанных нами значения попадают между значениями, указанными в таблице, поэтому нам нужно выполнить билинейную интерполяцию. Чтобы сэкономить время, мы просто воспользуемся онлайн-калькулятором, чтобы найти это, ссылка здесь (посмотрите видео, чтобы узнать, как выполнить билинейную интерполяцию).
Мы заполняем наши значения и находим ответ 0,143
Расчет потерь давления в тройникеТеперь мы рассчитываем динамические потери для прямого пути через тройник, используя формулу co, умноженную на rho, умноженную на v в квадрате, деленную на 2. Если мы опускаем наши значения и получаем ответ в 0,934 паскаля, так что добавьте это в таблицу.
Затем мы можем рассчитать динамические потери для воздуха, который превращается в изгиб. Для этого мы используем те же формулы, что и раньше. Выходная скорость рассчитывается по скорости, чтобы найти наше соотношение скоростей.Затем мы находим отношение площадей, используя формулу: диаметр вне квадрата, деленный на диаметр в квадрате. Мы берем наши значения из нашей таблицы и используем 3,5 м / с, разделенные на 4 м / с, чтобы получить 0,875 для отношения скоростей, и мы используем 0,26 м в квадрате, деленные на 0,33 м в квадрате, чтобы получить 0,62 для отношения площадей.
Изгиб фитинга тройника с потерямиЗатем мы используем таблицу изгиба для тройника, опять же между значениями, указанными в таблице, поэтому нам нужно найти числа, используя билинейную интерполяцию. Мы опускаем значения, чтобы получить ответ 0.3645 паскалей. Так что просто добавьте это в таблицу.
Теперь повторите этот расчет для других тройников и фитингов, пока таблица не заполнится.
Нахождение индексного участка — размер воздуховода
Затем нам нужно найти индексный участок, который является участком с наибольшим падением давления. Обычно это самый длинный пробег, но также может быть пробег с наибольшим количеством приспособлений.
Мы легко находим, складывая все потери давления от начала до выхода каждой ветви.
Например, чтобы добраться от A до C, мы теряем 5.04 Па
A (1,3 Па) + B (1,79 Па) + C (1,95 Па)
От A до F мы теряем 8,8 Па
A (1,3 Па) + B (1,7 Па) + D (1,3 Па) + E ( 2,55 Па) + F (1,95)
От A до I мы теряем 10,56
A (1,3 Па) + B (1,7 Па) + D (1,3 Па) + E (1,34 Па) + G (2,6 Па) + H ( 0,36 Па) + I (1,95 Па)
От A до L мы теряем 12,5 Па
A (1,3 Па) + B (1,7 Па) + D (1,3 Па) + E (1,34 Па) + G (2,6 Па) + H (0,93 Па) + J (0,65 Па) + K (0,72 Па) + L (1,95 Па)
Следовательно, используемый нами вентилятор должен преодолевать пробег с наибольшими потерями, а именно A — L с 12.5pa, это индексный прогон.
Заслонки воздуховодов — балансировка системы
Чтобы сбалансировать систему, нам нужно добавить заслонки к каждой из ветвей, чтобы обеспечить равный перепад давления во всех помещениях, чтобы достичь проектных расходов в каждой комнате.
Мы можем рассчитать, какой перепад давления должен обеспечивать каждый демпфер, просто вычитая потери в ходе прогона из индекса.
От A до C составляет 12,5 Па — 5,04 Па = 7,46 Па
От A до F составляет 12,5 Па — 8,8 Па = 3,7 Па
От A до I составляет 12.5 Па — 10,56 Па = 1,94 Па
И это наша система воздуховодов. Мы сделаем еще одно руководство, посвященное дополнительным способам повышения эффективности системы воздуховодов.
Калькулятор размеров воздуховодов — Размеры воздуховодов
Размер воздуховодов
СистемыHVAC работают намного эффективнее, если размер используемых вами воздуховодов подходит для вашего дома. Установите воздуховоды слишком маленького размера, и вашей системе придется усерднее работать, чтобы поддерживать тепло и охлаждение вашего дома. Если размер вашего воздуховода слишком велик, скорость будет нарушена, а это означает, что вы не сможете почувствовать ее через вентиляционные отверстия.
Для определения размеров воздуховодовиспользуется сложная формула, которая включает размеры вашего дома в квадратных футах, размер вашего блока, необходимую скорость воздушного потока, а также потери на трение и статическое давление вашей системы HVAC. Вот почему профессионалы HVAC имеют в своем распоряжении схемы и инструменты, позволяющие упростить весь процесс.
Что нужно знать для расчета размеров воздуховодов для дома:
- Площадь вашего дома.
- квадратных метров каждой отдельной комнаты в вашем доме.
- Расчет кубических футов в минуту (поясняется ниже)
- Коэффициент потерь на трение при выборе размеров воздуховода
Самостоятельная настройка размеров воздуховодов может оказаться утомительной и сложной задачей. Иногда лучше доверить это специалисту по HVAC, чтобы получить идеальный рабочий размер воздуховода HVAC для вашего дома.
Определение размера квадратного метра вашего дома
Размер вашего дома определяет размер ваших нагревательных и охлаждающих устройств, но он также определяет, насколько большими должны быть размеры ваших воздуховодов. Чтобы точно определить размер воздуховода, вам необходимо точно измерить квадратные метры не только вашего дома в целом, но и размера каждой комнаты.
Проведите рулеткой по длине и ширине каждой стены, разделив комнаты необычной формы на отдельные прямоугольные части, чтобы при необходимости рассчитать размеры. Запишите каждое измерение в таблицу, чтобы отслеживать их, потому что они вам понадобятся позже!
Кубические футы в минуту Расчет размера
- Кубических футов в минуту = (Тонны единиц HVAC x 400) / общий квадратный метр дома.
- Рассчитать для каждой отдельной комнаты.
Далее нам нужно поговорить о кубических футах в минуту или CFM. Это измерение указывает скорость или расход воздуха, необходимые для точного обогрева или охлаждения комнаты. Поскольку размер вашего воздуховода может увеличивать или уменьшать это измерение, вам нужно будет найти необходимый CFM для каждой комнаты, прежде чем вы сможете получить правильный размер воздуховода для каждого помещения.
Чтобы рассчитать кубический фут в минуту, вам необходимо знать размер вашего нагревательного или охлаждающего агрегата в тоннах.Умножьте это число на 400, что представляет собой среднюю производительность блока HVAC. Затем разделите на общую площадь вашего дома. Это даст вам множитель для CFM всех ваших комнат. Итак, если вы начинаете с кухни, а площадь кухни составляет 300 квадратных футов, чтобы найти CFM комнаты, вам нужно умножить 300 на (размер единицы x 400) / общий квадратный метр вашего дома. Сделайте это для каждой комнаты в вашем доме.
Размер воздуховода Коэффициент потерь на трение
Еще одна важная единица измерения — коэффициент потерь на трение в воздуховодах.Это поможет вашему подрядчику определить статическое давление для вашего устройства по всей длине воздуховодов — еще одно измерение размера, которое влияет на общий поток воздуха из вашей системы.
Коэффициент потерь на трение зависит от множества различных размеров воздуховодов, таких как длина каждого воздуховода; количество катушек, фильтров, решеток, регистров и заслонок в вашей системе; и количество витков в воздуховоде. Ваш подрядчик будет использовать калькулятор размера воздуховода, чтобы объединить эти измерения и характеристики в измерения статического давления вашей системы.Затем они умножают ее на 100 и делят на общую длину воздуховодов вашей системы.
Однако это, очевидно, очень сложное измерение — и оно становится еще более сложным в зависимости от размера и формы ваших воздуховодов. По этой причине обычно лучше доверить расчет коэффициента потерь на трение профессиональному подрядчику. Но вы можете найти общее число с помощью онлайн-калькулятора потерь на трение.
Использование калькулятора размеров воздуховодов HVAC
Ваш общий размер воздуховода определяется суммированием размера, CFM и потерь на трение в вашем доме, а это означает, что расчет оказывается довольно сложным.Из-за этого профессионалы и любители HVAC обычно не рассчитывают окончательный размер воздуховодов HVAC самостоятельно. Вместо этого они используют программное обеспечение или программные калькуляторы, которые могут сделать за них эти окончательные выводы.
Поскольку специалист по HVAC имеет доступ к более сложным инструментам, можно с уверенностью сказать, что его расчеты будут немного точнее, чем у домашнего мастера.
Тем не менее, при проектировании системы воздуховодов HVAC всегда следует консультироваться по крайней мере со знающим профессионалом.Размер вашей системы воздуховодов может существенно повлиять на комфорт вашего дома, а также на сумму, которую вы тратите каждый месяц на обогрев или охлаждение дома. Установки HVAC представляют собой самую большую часть энергопотребления вашего дома, поэтому получение правильных цифр является обязательным условием, чтобы сэкономить как можно больше денег на счетах за коммунальные услуги.
квадратных футов в квадратные метры (квадратные футы в квадратные метры)
Как преобразовать квадратные футы в квадратные метры
Чтобы преобразовать квадратный фут в квадратный метр, умножьте площадь на коэффициент преобразования. Один квадратный фут равен 0,092903 квадратных метра, поэтому используйте эту простую формулу для преобразования:
квадратных метров = квадратных футов × 0,092903
Площадь в квадратных метрах равна квадратным футам, умноженным на 0,092903.
Например, вот как преобразовать 5 квадратных футов в квадратные метры, используя формулу выше.5 кв. Футов = (5 × 0,092903) = 0,464515 кв. М
Квадратные футы и квадратные метры — это единицы измерения площади.Продолжайте читать, чтобы узнать больше о каждой единице измерения.
Один квадратный фут равен площади квадрата со сторонами в 1 фут. [1] Один квадратный фут примерно эквивалентен 144 квадратным дюймам.
Квадратный фут — это единица измерения площади в американской системе единиц. Квадратный фут иногда также называют квадратным футом.Квадратные футы могут быть сокращены до кв. Футов , а иногда также сокращаются до кв. Футов . Например, 1 квадратный фут можно записать как 1 квадратный фут или 1 фут².
Воспользуйтесь нашим калькулятором площади в квадратных футах, чтобы рассчитать площадь помещения.
Один квадратный метр равен площади квадрата со стороной 1 метр. [2]
Квадратный метр или квадратный метр — производная единица измерения площади в системе СИ в метрической системе.Квадратный метр иногда также называют квадратным м. Квадратные метры могут быть сокращены до кв. М , а иногда также сокращаются до м² . Например, 1 квадратный метр можно записать как 1 кв. М или 1 м².
Воспользуйтесь нашим калькулятором квадратных метров, чтобы рассчитать площадь помещения.
Измерение скорости воздуха с помощью Fluke 975 AirMeter ™
Скорость воздуха является ключевым параметром при оценке производительности системы воздушного потока. В рамках базовых испытаний, регулировки и балансировки систем распределения воздуха HVAC большинство технических специалистов HVAC теперь используют анемометр для измерения скорости воздуха в решетках-регистрах-диффузорах, в воздуховоде или на открытых пространствах.
Анемометры обычно очень точные инструменты, особенно при малых скоростях, но они должны компенсировать температуру воздуха, абсолютное давление и абсолютное давление окружающей среды. Инструмент Fluke 975 AirMeter оснащен дополнительным датчиком скорости, который использует термоанемометр для измерения скорости воздуха.Датчик температуры в наконечнике зонда компенсирует температуру воздуха, датчик в измерителе показывает абсолютное давление, а абсолютное давление окружающей среды определяется при инициализации измерителя. Для пользователей, которые предпочитают рассчитывать собственные коэффициенты компенсации, измеритель также будет отображать скорость или объем воздуха при стандартных условиях.
В этой инструкции по применению описывается, как выполнять точные измерения объема воздуха в воздуховоде, измерения воздуха в решетках-регистрах-диффузорах и в других местах.
Объемы воздуха в воздуховоде
Конечная цель любой системы воздуховодов — перемещать требуемый объем воздуха, сохраняя при этом все другие факторы в допустимых пределах, и доставлять его в количествах и формах, которые служат намеченной цели: нагрев, охлаждение , вентиляция, вытяжка, смешивание, увлажнение, осушение или иное кондиционирование воздуха в помещении. Скорость внутри воздуховода определяется не только применением, но и конструкцией воздуховода. Ключевые конструктивные факторы включают: уровень имеющегося статического давления, которое может преодолеть вентилятор из-за потерь на трение и перепадов давления устройств в воздушном потоке; стоимость воздуховодов; доступное пространство для воздуховодов; и приемлемые уровни шума.
Для определения объема воздуха, подаваемого на все оконечные устройства, расположенные ниже по потоку, технические специалисты используют траверсу воздуховода. Траверсы воздуховодов могут определять объем воздуха в любом воздуховоде путем умножения показаний средней скорости на внутреннюю площадь воздуховода. Траверсы в основных воздуховодах измеряют общий объем воздуха в системе, который имеет решающее значение для производительности, эффективности и даже ожидаемого срока службы системы HVAC. Разница в объемах воздуха между траверсой главного приточного воздуховода и траверсой главного возвратного воздуховода приводит к объему наружного воздуха.Траверса биений — это наиболее точный способ определения объема воздуха, подаваемого оконечным устройством (решетка-регистр-диффузор). Траверса в вытяжных каналах показывает объем вытяжного воздуха.
Траверс воздуховода состоит из ряда измерений скорости воздуха, равномерно разнесенных по площади поперечного сечения прямого воздуховода. Желательно, чтобы траверса располагалась на прямом участке канала с десятью диаметрами прямого канала вверх по потоку и тремя диаметрами прямого канала после плоскости траверсы, хотя минимальные пять диаметров канала вверх по потоку и один диаметр канала ниже по потоку могут дать адекватные результаты.
Количество измерений в плоскости траверсы зависит от размера и геометрии воздуховода. Большинство пересечений воздуховодов дают по крайней мере 18-25 показаний скорости, причем количество показаний увеличивается с размером воздуховода. Принятые в отрасли точки измерения поперек траверсы определяются правилом Лог-Чебышева для прямоугольного воздуховода и правилом логарифмической линейности для круглого воздуховода. Обычно техники просверливают от пяти до семи отверстий на одной стороне прямоугольных каналов и от двух до трех отверстий в круглых каналах, чтобы зонд телескопического анемометра мог получить доступ к точкам пересечения.Чтобы анемометр использовался в направлении калибровки, совместите метку на наконечнике датчика скорости с направлением удара. При выдвижении зонда выровняйте секцию трубки с ручкой, чтобы сохранить правильное направление внутри воздуховода.
Перед выполнением измерений сдвиньте защитную оболочку к ручке зонда, чтобы обнажить датчики на наконечнике зонда. Для расчета объемного расхода Fluke 975 AirMeter * запросит прямоугольный или круглый воздуховод, а затем предложит прямоугольные размеры стороны или круглый диаметр. Снимайте необходимое количество показаний скорости по одному, нажимая кнопку «захват». Если показание скорости было снято преждевременно, Fluke 975 позволяет вам сделать это повторно. Когда все показания скорости завершены, AirMeter усредняет показания и умножает их на площадь поперечного сечения воздуховода, чтобы получить объем воздуха как при стандартных условиях, так и с поправкой на абсолютное давление и температуру.
Показания скорости (FPM) усредняются и умножаются на внутреннюю площадь воздуховода (квадратных футов), которая обеспечивает объем воздуха (CFM).
Q = V * A
Q = Объем воздуха, CFM (кубические футы в минуту) или M³ / s (кубические метры в секунду)
V = Скорость, FPM (футы в минуту) или м / с (метры на второй)
A = Площадь воздуховода, внутренний размер воздуховода в квадратных футах или квадратных метрах
* Для определения скорости воздуха, превышающей 600 футов в минуту (FPM) в воздуховоде, технический специалист по ОВК может также использовать статику Пито. трубка с наклонным манометром. Анемометры являются предпочтительным выбором ниже 600 футов в минуту и вполне приемлемы и при более высоких скоростях.В системах воздуховодов низкого давления, где звук является проблемой, например, в жилых домах и медицинских учреждениях, скорость обычно находится в диапазоне 400-900 футов в минуту, в то время как в системах воздуховодов высокого давления скорость может достигать 3500 футов в минуту.
Измерения воздуха в решетках-регистрах-диффузорах (GRD)
GRD для приточного воздуха выбираются и размещаются для подачи заданного объема воздуха с такой скоростью и схемами, которые обеспечивают приемлемый комфорт и вентиляцию в зоне пребывания. Зона обитания считается на расстоянии одного фута от стен и ниже уровня головы.Скорость от источника GRD обычно не превышает 800 футов в минуту, а скорость в обратную решетку не должна превышать 400 футов в минуту в приложениях, где шум был бы нежелательным. Скорость должна быть достаточной для смешивания приточного воздуха с воздухом в помещении за пределами зоны присутствия людей, создавая при этом комфортные воздушные потоки и температуру в зоне пребывания.
Бросок — это расстояние, которое воздух проходит от GRD до достижения конечной скорости. Бросок обычно составляет 75–110% расстояния от GRD до следующей пересекающейся поверхности (стены) или точки конечной скорости соседних GRD.Конечная скорость — это просто скорость в точке в пределах броска, выбранная для прекращения измерения броска по причинам инженерного проектирования. Конечная скорость обычно составляет 50-75 футов в минуту в жилых и офисных помещениях, но инженер может указать, что она может достигать 125-150 футов в минуту в коммерческих приложениях. Как правило, скорость воздуха в зоне пребывания на уровне 50 футов в минуту не вызывает возражений. Застойные зоны создаются при падении скорости до 15 футов в минуту. Чтобы определить структуру космического воздуха, используйте датчик скорости, чтобы «следить» за выбросом GRD.
Для определения объема воздуха, подаваемого GRD, лучше всего выполнить пересечение воздуховода с датчиком скорости на выходе из воздуховода, ведущего к GRD. В качестве альтернативы используйте траверсу с датчиком скорости на поверхности GRD вместе с инженерными данными производителя GRD для определения объема воздуха.
В отличие от участка воздуховода, площадь GRD не может быть измерена в полевых условиях из-за того, что воздух меняет направление и ускоряется через контрактную вену (контрактная вена — это эффект, который возникает, когда воздух проходит через любое отверстие » прилипает к краям проема, эффективно уменьшая его размер).Даже тщательные полевые измерения свободной площади GRD для определения объемов воздуха приведут к серьезным ошибкам в расчетах объема воздуха. Производитель GRD опубликует «эффективную площадь» (A k = эффективная площадь в квадратных футах), которую можно определить только с помощью лабораторных испытаний, которые измеряют фактический объем воздуха и скорость лица GRD (V avg = средняя скорость лица в футах. в минуту). Эту эффективную площадь можно использовать в полевых условиях для расчета объема воздуха.
Для данного GRD производитель обычно публикует эффективную площадь вместе с диапазоном забойных скоростей с результирующим объемным расходом в кубических футах в минуту (CFM) и падением давления для каждой забойной скорости.Эти значения определены для прямого канала, подключенного к GRD, по которому нет турбулентного воздуха, равномерно распределенного по каналу.
Для расчета объема воздуха с помощью GRD необходимо снять достаточное количество показаний скорости забоя, чтобы получить среднюю скорость. Настройте сетку контрольных точек на лицевой стороне GRD, которая по окончании даст хороший средний результат. Шаг сетки обычно составляет от трех до пяти дюймов, не более шести дюймов, и минимум шесть стабильных показаний скорости на направление выброса. Расположите датчик датчика скорости заподлицо с подающим GRD или на расстоянии одного дюйма (± 1/32 дюйма) от возвратной решетки и отцентрируйте датчик в отверстии.Выберите объемный расход воздуха Fluke 975 AirMeter, прямоугольный воздуховод и введите размер 12 на 12 дюймов. Это приведет к вычислению CFM, равному среднему вычислению FPM. Затем рассчитанный CFM умножается на коэффициент A k производителя GRD для получения фактического CFM.
CFM (кубических футов в минуту) = A k x V avg
A k = эффективная площадь в квадратных футах
V avg = средняя скорость лица в футах в минуту
Прочие показания скорости
Вентиляционный воздух часто подается через колпак наружного воздуха монтируемого крышного агрегата.Внутри капота находится группа сеток от насекомых, по которым можно перемещаться так же, как через возвратные решетки. Введите функцию объемного расхода воздуха Fluke 975 AirMeter, выберите прямоугольный воздуховод, введите размеры группы экранов от жуков, снимите показания скорости примерно через каждые шесть дюймов и позвольте AirMeter рассчитать CFM вентиляционного воздуха.
Когда баланс между всасыванием наружного воздуха и вытяжным воздухом неправильный, существует вероятность повреждения крыши или здания, и люди, входящие в здание, могут столкнуться с неприятным ветром при открытии дверей. Повышение давления в здании должно быть ограничено 0,02-0,1 дюйма водяного столба (вод. Ст.), И лучше всего, если оно будет ниже 0,05 дюйма вод. Ст. Датчик скорости можно использовать на входе в здание, чтобы помочь оценить давление в здании. Скорость воздуха 1300 футов в минуту через открытую дверь приравнивается к до более чем 0,1 дюйма туалета давление в здании и ветер со скоростью 15 миль в час.
VP = (V / 4005) ²
(где VP = давление скорости и V = скорость)
Размеры, воздуховод, воздуховоды, воздуховоды, поток, размер, трение, потери, давление, скорость, VAV
Характеристики и функции программы |
Эта программа расчета в Excel позволяет измерять и проведем расчет потерь давления на воздуховоды и системы распределения воздуха.
AeroDuct можно распространять с расчетом в английской системе (например, унции, фунты, дюймы и футы) и общие единицы в метрической системе (например, граммы, килограммы, метры, и сантиметры). .
Применяется ко всем типам воздуховодов и особенно учитывается по условиям эксплуатации и специфическим характеристикам на воздуховоды, такие как:
- Температура перемещаемого воздуха
- Уровень высоты или находится установка
- Характер различных типов используемых материалов (стальные воздуховоды, медь,
ПВХ, встроенные стены и т. Д.)
- Геометрические формы воздуховодов (круглые, четырехугольные, продолговатые)
- Различные типы коэффициентов потери давления
- Le contrôle des vitesses успокаивают проход в воздухе.
- Контроль скорости воздуха.
В программу включены дополнительные модули расчетов, такие как как:
- Редактор К-фактора локальной потери давления
- Калькулятор эквивалента К-фактора.
- Калькулятор для оценки моторизованной мощности вентилятора в соответствии с
к расчетной нагрузке.
Программа расчета оснащена настраиваемой панелью команд, предоставляющей доступ различным процедурам, окнам расчета и макросам.
Рабочие файлы создаются отдельно, что позволяет сократить объем данных. место хранения.
Отображение таблицы расчета потери давления |
Рабочий файл может состоять из различных листов вычислений. Вы можете из тот же файл, чтобы вставить новый лист вычислений или дублировать вычисление незавершенный лист для исследования аналогичного воздуховода и для изготовления дополнительных модификации после этого.
Если вы забыли некоторые элементы воздуховода, вы можете добавить строки расчета где угодно, не ухудшая этапов расчетов.
Вы также можете выбрать единицу давления по вашему выбору в кабинете:
- Па (Паскаль)
- фунт на квадратный фут (фунт-сила / кв. Фут) = 47,88026 Па
- Торр / мм рт. Ст. (133,3226 Па)
- дюйм водяного столба (248,6 Па)
- кПа (= 1000 Па)
- фунтов на квадратный дюйм (фунт на квадратный дюйм (фунт-сила / кв.3 (1200 кг / м3) — (эквивалент
до: 20 ° C (68 ° F) — 40%)
Основной воздушный поток корректируется автоматически в функции:
- Высота участка.
- Расчетной скорости утечки воздуха в воздуховодах.
- Температуры воздушного потока в воздуховоде по сравнению с базовой температурой
учитывается при расчете установки или расхода воздуха
Справка.
Реальная скорость воздушного потока в воздуховоде осуществляется от скорректированной поток воздуха.
Отображение желтого цвета соответствующей ячейки указывает на более высокую скорость воздуха. чем тихие значения, рекомендуемые в установках при низком давлении.
Настоятельно рекомендуется предусмотреть коэффициент запаса прочности:
- Сборка часто выполняется плохо, частично перекрывая проход
жидкости.
- Предполагается, что воздуховоды запылены.
- Из-за старения воздуховодов возможная коррозия может увеличить давление потери на трение.
При отображении всего таблица визуализируется в дополнении:
- Показатели шероховатости поверхности.
- Плотность воздуха.
- Динамическая вязкость воздуха.
- Число Рейнольдса.
Все цветные ячейки расчета запрограммированы.
Рекомендуемая скорость воздуха
Установки «низкого давления» (максимальная скорость от 1550 до 2000 футов / мин. — от 8 до 10 м / с)
Расход воздуха в воздуховодах Максимальная скорость — Максимальный расход <175 кубических футов в минуту (300 м³ / ч) 490 фут / мин (2.5 м / с) — Максимальный расход <590 куб. Фут / мин (1000 м³ / ч) 590 фут / мин (3 м / с) — Максимальный расход <1200 кубических футов в минуту (2000 м³ / ч) 785 фут / мин (4 м / с) — Максимальный расход <2350 куб. Футов в минуту (4000 м³ / ч) 980 фут / мин (5 м / с) — Максимальный расход <5900 кубических футов в минуту (10000 м³ / ч) 1180 фут / мин (6 м / с) — Максимальный расход> 5900 куб. Футов в минуту (10000 м³ / ч) 1380 фут / мин (7 м / с) Установки «высокого давления» (скорость воздуха> до 2000 фут / мин. — 10 м / с) — Эжекторные конвекторы, системы переменного расхода воздуха (VAV) или регулируемые Индукционные блоки и др.
Расход воздуха в воздуховодах Вал Коридоры Помещение — от 59000 до 41000 кубических футов в минуту — (от 100000 до 70000 м3 / ч) 5800 фут / мин (30 м / с) — от 41000 до 23500 куб. Футов в минуту — (от 70000 до 40000 м3 / ч) 4900 фут / мин (25 м / с) — от 23500 до 14700 куб. Фут / мин — (от 40000 до 25000 м3 / ч) 4300 фут / мин (22 м / с) 3940 фут / мин (20 м / с) — от 14700 до 10000 куб. Фут / мин — (от 25000 до 17000 м3 / ч) 3940 фут / мин (20 м / с) 3350 фут / мин (17 м / с) 3150 фут / мин (16 м / с) — от 10000 до 5900 куб. Футов в минуту — (от 17000 до 10000 м3 / ч) 3350 фут / мин (17 м / с) 2950 фут / мин (15 м / с) 2750 фут / мин (14 м / с) — от 5900 до 2950 куб. Футов в минуту — (от 10000 до 5000 м3 / ч) 2950 фут / мин (15 м / с) 2350 фут / мин (12 м / с) 2350 фут / мин (12 м / с) — от 2950 до 1200 куб. Футов в минуту — (от 5000 до 2000 м3 / ч) 2350 фут / мин (12 м / с) 2000 фут / мин (10 м / с) 2000 фут / мин (10 м / с) — Менее 1200 куб. Футов в минуту (2000 м3 / ч) 2000 фут / мин (10 м / с) 2000 фут / мин (10 м / с) 2000 фут / мин (10 м / с) — Клапаны противопожарные 2000 фут / мин (10 м / с) 2000 фут / мин (10 м / с) 2000 фут / мин (10 м / с) Скорость воздуха в воздуховодах не может превышать определенного значения.Это приводит к минимальному участок воздуховодов, ниже которого не рекомендуется спускаться для следующих причины:
- Усилить шум шороха воздуха в каналах пролива и особенно на уровне отклонений.
- Увеличьте потери давления и энергию, потребляемую вентилятором.
Пример: уменьшение половины секции вдвое увеличивает скорость воздуха потери давления и мощность всасывания вентилятором в 4 раза.
Последнее обновление:
Расчет CFM | РаботаACI
Расчет объема воздушного потока (CFM) в вашем ПЛК или системе управления зданием на основе выходных данных датчика перепада давления стоит лишь небольшую часть того, что вы могли бы потратить на дорогие мониторы скорости воздуха или CFM. В этом сообщении в блоге объясняется, как использовать выходной сигнал датчика перепада давления и простую математику, чтобы найти переменные в следующем уравнении, используемом для расчета объема потока:
CFM = FPM x Площадь поперечного сечения воздуховода
Нахождение Скорость потока , , обычно выражаемая в футах в минуту (FPM), является первым шагом в заполнении переменных нашего уравнения.Чтобы найти скорость потока, мы используем уравнение:
FPM = 4005 x √ΔP (квадратный корень из скоростного давления).
Значение давления скорости будет предоставлено преобразователем перепада давления ACI DLP или MLP2, соединенным с дифференциальной трубкой Пито PT, установленной в воздуховоде. PT — это трубка Пито из АБС-пластика, имеющая длину 3, 5,2, 7,5, 9,7 дюйма. Глубина вставки должна охватывать как можно большую ширину воздуховода, не касаясь противоположной стороны. На всем протяжении PT имеется несколько точек отбора проб, причем количество точек отбора проб зависит от длины PT.
Порт «H» трубки Пито PT подключается к порту HIGH датчика дифференциального давления, а порт «L» — к порту LOW. Разница между показанием общего давления, отслеживаемым на порте «H» ПТ, и статическим давлением, отслеживаемым на порте «L», и есть давление скорости. Выходной сигнал датчика перепада давления DLP или MLP2 обеспечивает значение давления скорости, которое будет использоваться в нашем уравнении.
Например: Если давление скорости 0,45 дюйма вод. Ст. измеряется нашим датчиком давления и вводится в наше уравнение, мы видим, что скорость потока составляет 2686 футов в минуту (FPM).
FPM = 4005 x √.45 или FPM = 2,686
Наше решение скорости потока 2686 FPM теперь может быть вставлено в наше уравнение, используемое для расчета объема потока в CFM:
CFM = 2,686 x Площадь поперечного сечения воздуховода
Затем нам нужно определить площадь поперечного сечения воздуховода.
Есть два уравнения для определения площади поперечного сечения воздуховода. Один используется для квадратного или прямоугольного воздуховода, а другой — для круглого воздуховода.
Уравнение для квадратного или прямоугольного воздуховода:
A ( Площадь поперечного сечения воздуховода) = X (высота в футах) x Y (ширина в футах)Уравнение для круглого воздуховода:
A (площадь поперечного сечения воздуховода) = π x r (радиус воздуховода в футах) ²Если у нас есть круглый воздуховод диаметром 14 дюймов, радиус будет вдвое меньше, или 7 дюймов, что преобразуется в.585 футов (7 дюймов / 12 дюймов).
Подставляя наши значения в уравнение, мы видим, что площадь поперечного сечения воздуховода равна пи, или 3,14159 умножить на нашего радиуса, 0,585 в квадрате , что дает нам решение 1,07 квадратных футов .
A = π x 0,585²
A = 1,07 кв. Футов
Теперь, когда мы рассчитали нашу скорость потока ( 2686 FPM), и площадь поперечного сечения воздуховода (1,07 квадратных футов), мы можем рассчитать воздушный поток в кубических футах в минуту для нашего воздуховода диаметром 14 дюймов, используя наше уравнение.
Расход воздуха, куб. Фут / мин = скорость потока в футах в минуту x площадь поперечного сечения воздуховода
CFM = FPM x Площадь поперечного сечения воздуховода
CFM = 2,686 x 1,07 кв. Футов
куб. Фут / мин = 2,874
Скорость воздушного потока = 2,874 куб. Фут / мин
.