Подключение трехфазного двигателя к однофазной сети
Здравствуйте, дорогие читатели и гости сайта «Заметки электрика».
Частенько у каждого из нас возникает необходимость в гараже или на даче подключить трехфазный асинхронный двигатель, например, для наждачного или сверлильного станка, бетономешалки и т.п.
А в наличии имеется только источник однофазного напряжения.
Как быть в данной ситуации?
Все просто. Необходимо трехфазный асинхронный двигатель включить как конденсаторный по следующим классическим схемам.
Еще раз напоминаю, что это самые распространенные схемы подключения трехфазного двигателя к однофазной сети. Существует еще несколько способов включения, но о них в данной статье мы говорить не будем.
Как видно из схем, это осуществляется с помощью рабочего и пускового конденсаторов. Их еще называют фазосдвигающими.
Кстати, со схемой соединения звездой и треугольником обмоток асинхронного двигателя я Вас знакомил в прошлой статье.
Выбор емкости конденсаторов
1. Выбор емкости рабочего конденсатора
Величина емкости рабочего конденсатора (Сраб.) рассчитывается по формуле:
- I1 – номинальный (фазный) ток статора, измеряется с помощью электроизмерительных клещей или определяется по известной формуле, (А)
- Uсети – напряжение однофазной сети, (В)
Полученное значение емкости рабочего конденсатора получается в (мкФ).
Вышеприведенная формула может показаться Вам сложной, поэтому Вашему вниманию предлагаю более легкий вариант расчета емкости рабочего конденсатора для подключения трехфазного двигателя к однофазной сети. Для этого Вам необходимо лишь знать мощность (кВт) асинхронного двигателя.
Если сказать еще более проще, то на каждые 100 (Вт) мощности трехфазного двигателя необходимо порядка 7 (мкФ) емкости рабочего конденсатора.
При выборе емкости рабочего конденсатора необходимо контролировать ток в фазных обмотках статора в установившемся режиме.
2. Выбор емкости пускового конденсатора
Если же у Вас пуск электродвигателя происходит при значительной нагрузке на валу, то параллельно рабочему конденсатору необходимо включать пусковой конденсатор. Включается он только на время пуска двигателя (примерно 2-3 секунды) с помощью ключа SA до набора номинальной частоты вращения ротора, а затем отключается.
Что случится, если забыть отключить пусковые конденсаторы?
Если забыть отключить пусковые конденсаторы, то возникнет сильный перекос по токам в фазах и двигатель может перегреться.
Величина емкости пускового конденсатора выбирается в 2,5-3 раза больше емкости рабочего конденсатора.
В таком случае пусковой момент двигателя становится номинальным и двигатель запустится без проблем.
Необходимая емкость набирается с помощью параллельного и последовательного соединения конденсаторов. Об этом я напишу отдельную статью в разделе «Электротехника«. Следите за обновлениями на сайте. Подписывайтесь на новые статьи.
Трехфазные двигатели мощностью до 1 (кВт) можно включать в однофазную сеть только с рабочим конденсатором. Пусковой конденсатор можно не применять.
Выбор типа конденсаторов
Как выбрать емкость рабочих и пусковых конденсаторов Вы уже знаете. Теперь необходимо разобраться, какой тип конденсаторов можно применять в представленных схемах.
Желательно использовать один и тот же тип конденсаторов, как для рабочих, так и для пусковых конденсаторов.
Чаще всего, для подключения трехфазного двигателя в однофазную сеть, применяют бумажные конденсаторы в металлическом герметичном корпусе типа МПГО, МБГП, КБП или МБГО.
Кое-что я нашел у себя в запасе.
Практически все они имеют прямоугольную форму.
На самом корпусе можно увидеть их параметры:
- емкость (мкФ)
- рабочее напряжение (В)
Но у бумажных конденсаторов есть один недостаток — они выпускаются слишком громоздкие и при этом имеют небольшую емкость. Поэтому при включении трехфазного двигателя небольшой мощности в однофазную сеть, батарея набранных конденсаторов получается «солидная».
Также вместо бумажных конденсаторов можно применять и электролитические, но схема их подключения совершенно другая и содержит в себе дополнительные элементы в виде диодов и резисторов.
Применять Вам электролитические конденсаторы я Вам настоятельно не рекомендую!!!
У них есть недостаток в виде того, что при пробое диода через конденсатор пойдет переменный ток, что вызовет его нагрев и взрыв (выход его из строя).
Тем более, что в современной электронике вышли в свет новые металлизированные полипропиленовые конденсаторы переменного тока типа СВВ.
Вот например, СВВ60 в круглом корпусе.
Или СВВ61 в прямоугольном корпусе.
В основном, они выпускаются на напряжение 400-450 (В). Вот на них то и стоит обратить внимание — очень хорошо себя зарекомендовали.
Выбор напряжения конденсаторов
Также при выборе конденсаторов для трехфазного двигателя в однофазной сети важно правильно учитывать их рабочее напряжение.
Если выбрать конденсатор с большим запасом по напряжению, то это будет не целесообразно и приведет к дополнительным затратам и увеличению габаритных размеров нашей установки.
Если же выбрать конденсатор с рабочим напряжением меньше, чем напряжение сети, то это приведет к преждевременному выходу из строя конденсаторов (даже возможен взрыв).
Принято выбирать рабочее напряжение конденсаторов для схем, указанных в данной статье, равное 1,15 напряжению сети, а еще лучше не менее 300 (В).
Вроде бы все ясно и понятно. Но не стоит забывать, что при использовании бумажных конденсаторов в сети переменного напряжения следует разделить их рабочее напряжение примерно в 1,5-2 раза.
Например, если на бумажном конденсаторе указано напряжение 180 (В), то его рабочее напряжение при переменном токе следует принять 90-120 (В).
Пример подключения трехфазного двигателя к однофазной сети
Чтобы закрепить теорию на практике, рассмотрим пример выбора конденсаторов для подключения трехфазного двигателя АОЛ 22-4 мощностью 400 (Вт) в однофазную сеть. Кстати я уже описывал устройство этого двигателя в предыдущих статьях. Прочитать про него можете здесь.
Цель нашего эксперимента — запустить этот двигатель от однофазной сети 220 (В).
Данные двигателя АОЛ 22-4:
- мощность двигателя составляет 400 (Вт)
- напряжение сети 220 (В) переменного напряжения
- ток, замеренный электроизмерительными клещами в трехфазном режиме работы равен 1,9 (А)
- схема соединения обмоток «звезда»
Т.к. мощность этого двигателя небольшая (до 1 кВт), то для его запуска в однофазной сети достаточно будет применить только рабочий конденсатор.
Определим емкость рабочего конденсатора:
Исходя из формул, принимаем среднее значение емкости рабочего конденсатора равной 25 (мкФ).
Для эксперимента я буду использовать емкость 10 (мкФ). Заодно и посмотрим, можно ли использовать емкость чуть ниже расчетной.
Далее идем в кладовку и ищем подходящие конденсаторы. Нашлись конденсаторы типа МБГО.
Теперь нам необходимо, применив навыки электротехники
, собрать из этих конденсаторов необходимую нам емкость.
Емкость одного конденсатора составляет 10 (мкФ).
При параллельном соединении 2 конденсаторов мы получим емкость, равную 20 (мкФ). Но рабочее напряжение у них составляет всего 160 (В). Поэтому для увеличения рабочего напряжения до 320 (В), эти 2 конденсатора соединим последовательно с 2 такими же конденсаторами, соединенных параллельно. Общая их емкость получится 10 (мкФ). Вот как это получилось.
Подключаем полученную батарею рабочих конденсаторов согласно схемы, представленной в начале данной статьи и пробуем запустить трехфазный двигатель в однофазной сети.
Дальнейшие итоги нашего эксперимента смотрите на видео.
Эксперимент завершился УДАЧНО!!!
И вообще мне показалось, что запуск двигателя от однофазной сети с помощью конденсаторов произошел легче и быстрее, чем от трехфазной сети…Выслушаю и Ваше мнение по этому поводу!!!
При включении трехфазного асинхронного двигателя в однофазную сеть его полезная мощность не превысит 70-80% номинальной мощности, а частота вращения ротора практически равна номинальной.
Примечание 1: если у Вас двигатель 380/220 (В), то подключать его в сеть 220 (В) необходимо только треугольником.
Примечание 2: если на бирке указана только схема звезды с напряжением 380 (В), то подключить такой двигатель в однофазную сеть 220 (В) получится только при одном условии. Нужно «распотрошить» общую точку звезды и вывести в клеммник 6 концов. Общая точка чаще всего находится в лобовой части двигателя.
Я думаю Вам будет интересно продолжение этой статьи о том, как осуществить реверс трехфазного двигателя, подключенного к однофазной сети.
P.S. Задавайте вопросы по данной теме в комментариях, я с удовольствием отвечу Вам. А также подписывайтесь на новые статьи. Дальше будет интереснее.
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
Калькулятор емкости последовательного соединения конденсаторов • Электротехнические и радиотехнические калькуляторы • Онлайн-конвертеры единиц измерения
Калькулятор позволяет рассчитать емкость нескольких конденсаторов, соединенных последовательно.
Пример. Рассчитать эквивалентную емкость двух соединенных последовательно конденсаторов 10 мкФ и 5 мкФ.
Входные данные
C1 фарад (Ф)микрофарад (мкФ)нанофарад (нФ)пикофарад (пФ)
C2 микрофарад (мкФ)
Добавить конденсатор
Поделиться
Поделиться ссылкой на этот калькулятор, включая входные параметры
Twitter Facebook Google+ VK
Закрыть
Выходные данные
Эквивалентная емкость
C микрофарад (мкФ)
Введите значения емкости в поля C1 и C 2, добавьте при необходимости новые поля, выберите единицы емкости (одинаковые для всех полей ввода) в фарадах (Ф), миллифарадах (мФ), микрофарадах (мкФ), пикофарадах (пФ), нанофарадах (нФ) и нажмите на кнопку Рассчитать.
1 мФ = 0,001 Ф. 1 мкФ = 0,000001 = 10⁻⁶ Ф. 1 нФ = 0,000000001 = 10⁻⁹ Ф. 1 пФ = 0,000000000001 = 10⁻¹² Ф.
В соответствии со вторым правилом Кирхгофа, падения напряжения V₁, V₂ and V₃ на каждом из конденсаторов в группе из трех соединенных последовательно конденсаторов в общем случае различные и общая разность потенциалов V равна их сумме:
По определению емкости и с учетом того, что заряд Q группы последовательно соединенных конденсаторов является общим для всех конденсаторов, эквивалентная емкость Ceq всех трех конденсаторов, соединенных последовательно, определяется как
или
Для группы из n соединенных последовательно конденсаторов эквивалентная емкость Ceq равна величине, обратной сумме величин, обратных емкостям отдельных конденсаторов:
или
Эта формула для Ceq и используется для расчетов в этом калькуляторе. Например, общая емкость соединенных последовательно трех конденсаторов емкостью 10, 15 and 20 мкФ будет равна 4,62 мкФ:
Если конденсаторов только два, то их общая емкость определяется по формуле
или
Если имеется n соединенных последовательно конденсаторов с емкостью C, их эквивалентная емкость равна
Отметим, что для расчета общей емкости нескольких соединенных последовательно конденсаторов используется та же формула, что и для расчета общего сопротивления параллельно соединенных резисторов.
Отметим также, что общая емкость группы из любого количества последовательно соединенных конденсаторов всегда будет меньше, чем емкость самого маленького конденсатора, а добавление конденсаторов в группу всегда приводит к уменьшению емкости.
Конденсаторы на печатной плате
Отдельного упоминания заслуживает падение напряжения на каждом конденсаторе в группе последовательно соединенных конденсаторов. Если все конденсаторы в группе имеют одинаковую номинальную емкость, падение напряжения на них скорее всего будет разным, так как конденсаторы в реальности будут иметь разную емкость и разный ток утечки. На конденсаторе с наименьшей емкостью будет наибольшее падение напряжения и, таким образом, он будет самым слабым звеном этой цепи.
Выравнивающие резисторы уменьшают разброс напряжений на отдельных конденсаторах
Для получения более равномерного распределения напряжений параллельно конденсаторам включают выравнивающие резисторы. Эти резисторы работают как делители напряжения, уменьшающие разброс напряжений на отдельных конденсаторах. Но даже с этими резисторами все равно для последовательного включения следует выбирать конденсаторы с большим запасом по рабочему напряжению.
Если несколько конденсаторов соединены параллельно, разность потенциалов V на группе конденсаторов равна разности потенциалов соединительных проводов группы. Общий заряд Q разделяется между конденсаторами и если их емкости различны, то заряды на отдельных конденсаторах Q₁, Q₂ and Q₃ тоже будут различными. Общий заряд определяется как
Конденсаторы, соединенные параллельно
По определению емкости, эквивалентная емкость группы конденсаторов равна
отсюда
или
Для группы n включенных параллельно конденсаторов
То есть, если несколько конденсаторов включены параллельно, их эквивалентная емкость определяется путем сложения емкостей всех конденсаторов в группе.
Возможно, вы заметили, что конденсаторы ведут себя противоположно резисторам: если резисторы соединены последовательно, их общее сопротивление всегда будет выше сопротивлений отдельных резисторов, а в случае конденсаторов всё происходит с точностью до наоборот.
Конденсаторы на печатной плате
Автор статьи: Анатолий Золотков
Калькулятор конденсаторов| Код конденсатора
Автор Wojciech Sas, PhD
Отзыв от Bogna Szyk и Jack Bowater
Последнее обновление: 13 февраля 2023 г.
Это калькулятор конденсаторов — всеобъемлющий инструмент, который поможет вам ответить на вопросы Что такое код конденсатора? и Какова общая формула конденсаторов?
Хотя этот калькулятор является конвертером кода в емкость и емкости в код , он также находит накопленный заряд для конденсатора с определенными параметрами. Вы когда-нибудь задумывались, что означают трехзначные коды конденсаторов? В тексте вы найдете объяснение — с примерами!
Если вы сомневаетесь в единицах измерения емкости, воспользуйтесь нашим калькулятором преобразования емкости.
Формула конденсатора
Наиболее общее уравнение для конденсаторов гласит:
C = Q / V
,
где:
-
C
– емкость электронного элемента. -
Q
— это электрический заряд, хранящийся в конденсаторе. -
В
это напряжение на конденсаторе.
Формула показывает, что конденсатор представляет собой пассивный элемент, способный накапливать электрический заряд до тех пор, пока на него подается некоторое напряжение.
Знаете ли вы, что существует несколько типов конденсаторов? Самыми популярными являются цилиндрические и параллельные пластины, но мы также используем сферические конденсаторы (проверьте наш калькулятор сферических конденсаторов, чтобы узнать, как оценить его емкость).
Тем не менее, общая формула конденсатора в каждом случае одинакова — на противоположных сторонах конденсатора хранятся заряды одинаковой абсолютной величины, но разных знаков.
Причем конденсаторы могут быть расположены как последовательно, так и параллельно. В любом случае мы можем рассматривать такие системы как системы, содержащие один конденсатор, результирующая емкость которого представляет собой сумму всех частей.
🔎 Если вы хотите поработать с некоторыми примерами емкостных цепей , вот калькулятор конденсаторов Omni в последовательном соединении и калькулятор параллельных конденсаторов, которые могут помочь вам в решении этой задачи.
Код конденсатора
Каждый конденсатор обычно имеет два числа, которые его характеризуют. Это его емкость и номинальное напряжение . Последнее говорит нам о максимальном напряжении, при котором элемент еще будет работать корректно. Производители часто пишут емкость напрямую, поэтому когда вы видите конденсатор с 220 мкФ 25 В , это просто означает, что он имеет емкость 220 мкФ и безопасно работает с напряжениями до 25 В .
Однако, когда емкость ниже 100 мкФ , мы обычно можем найти 3-значный код конденсатора, который определяет значение. Правило простое: Первая и вторая цифры говорят нам о емкости в пФ (пФ), а третья цифра является множителем (степень 10) — для числа n , емкость умножается на 10ⁿ . Это просто еще один способ использовать научную нотацию для описания больших чисел. Последняя цифра обычно находится в диапазоне от 0 до 6.
Если имеется одно- или двузначное число, оно просто определяет значение в пФ.
Давайте рассмотрим пример. У нас есть код конденсатора 104 :
Первые две цифры говорят о емкости в пФ, которая составляет 10 пФ .
Цифра 3ʳᵈ является множителем — 10⁴ или 10,000 .
Полученное значение равно 10 пФ × 10⁴ = 10⁵ пФ или 100 нФ или 0,1 мкФ .
Можно также задать обратный вопрос: Какой код конденсатора известной емкости? Попробуем с конденсатором C = 1,24 мкФ :
Нам нужны две начальные две цифры кода, поэтому пришло время округлить значение до двух значащих цифр — 1,24 мкФ → 1,2 мкФ . Таким образом, код будет начинаться с 12· .
Чтобы найти последнюю цифру, мы должны использовать соответствующие единицы измерения емкости, пФ – 1,2 мкФ = 1 200 000 пФ = 12 × 10⁵ пФ .
Из этой формы мы можем сразу определить, что цифра 3ʳᵈ — это 5 .
Следовательно, код конденсатора для емкости 1,24 мкФ: 125 .
К счастью, этот калькулятор конденсаторов работает и как код в емкость, и как преобразователь емкости в код ! Просто выберите подходящее поле для ввода данных, и результат появится в мгновение ока!
Какой код допуска конденсатора?
Рядом с 3-значным кодом конденсатора обычно можно найти букву, описывающую диапазон допустимых отклонений , в котором находится фактическое значение емкости. Мы можем записывать как абсолютные значения, так и процентные диапазоны. Мы собрали наиболее часто используемые коды допусков в следующей таблице:
Letter | Допуск | ||
---|---|---|---|
B0003 | ±0,1 пФ | ||
C | ±0,25 пФ | ±0,5 пФ | |
F | ±1% | ||
G | ±2 % | ||
J | 3
К ±10% | ||
М | ±20% | ||
Z | + |
Давайте посмотрим, как наш калькулятор конденсаторов справляется с кодом, содержащим букву допуска. , например, 104K :
Из предыдущего пункта можем записать значение емкости,
100 нФ
.Используя приведенную выше таблицу, мы можем определить допуск конденсатора — буква K соответствует диапазону допуска
±10%
.Верхний предел равен
110% × 100 нФ = 110 нФ
, а нижний предел равен90% × 100 нФ = 90 нФ
.Диапазон, в котором мы можем найти фактическое значение емкости, находится между
90 нФ
и110 нФ
.
Wojciech Sas, PhD
Преобразователь кода в мощность
Код допуска
Производительность
Преобразователь емкости в код
Емкость
Допустимая емкость
Параметры конденсатора
Ёмкость (Кл)
Напряжение (В)
Запас заряда (Ом)
Электронные калькуляторы
Выключатель размерМостовой выпрямительЭнергия конденсатора… Еще 46
Конденсатор в цепи постоянного тока
Исследование Физика
Эти онлайн-калькуляторы вычисляют различные параметры для зарядки и разрядки конденсатора с резистором
Эти онлайн-калькуляторы вычисляют различные параметры для зарядки и разрядки конденсатора с резистором. Формулы, используемые для расчетов, находятся под калькуляторами.
Зарядка конденсатора резистором
Напряжение источника питания, Вольт
Резистор, Ом
Номинал конденсатора, мкФ
Время зарядки, миллисекунды
900с03 Разр. mal point: 2
Постоянная времени , миллисекунды
5 Постоянная времени (99,2 % заряда), миллисекунды
Начальный ток, ампер
Максимальная рассеиваемая мощность, Вт
Заряд конденсатора, мкК
Энергия конденсатора, миллиДжоули
Работа источника питания, миллиДжоули
Разрядка конденсатора резистором
Начальное напряжение конденсатора, Вольт
Резистор, Ом
Номинал конденсатора, мкФ
Время разряда, миллисекунды
Точность расчета
Знаки после запятой: 2
Начальная энергия конденсатора, миллиДжоули 0
00Начальный заряд конденсатора, мкК
Постоянная времени, миллисекунды
Начальный ток, Амперы
Максимальная рассеиваемая мощность, Вт
Конечный заряд конденсатора, мкК
Конечная энергия конденсатора, миллиДжоули
Конечное напряжение конденсатора, Вольт
После замыкания ключа К постоянный ток начинает заряжать конденсатор.