Какое давление в насосной станции: Давление в насосных станциях — для расширительного бачка – 1,7 Ат

Содержание

Давление в насосных станциях — для расширительного бачка – 1,7 Ат

Насосная станция – это агрегат, подающий воду в дома или на дачи в автономном режиме. Несмотря на то, что устроены подобные агрегаты довольно сложно, принцип работы их является достаточно простым – насос всасывает воду из источника и закачивает в специально предназначенный резервуар. В резервуаре установлен датчик, который контролирует уровень жидкости. Если уровень уменьшается, датчик подает сигнал и станция включается. В противном случае насосная станция должна отключиться.

Как выбрать насосную станцию?

Подбирая оптимальный вариант агрегата, стоит обратить внимание на следующие критерии:

  • В гидроаккумуляторе объем должен соответствовать заявленным требованиям.
  • Материал, из которого изготовлен корпус, должен быть крепким и надежным.
  • Мощность насоса должна обеспечить хороший напор воды в системе водоснабжения.

Из чего состоит насосная станция?

Важным элементом для нормального функционирования любой насосной станции является давление.

Прежде чем узнать, какие существуют причины, влияющие на давление, стоит разобраться, из каких элементов состоит аппарат:

  • Насос.
  • Гидроаккумулятор.
  • Реле давления.
  • Манометр.

Регулировка давления насосной станции


Реле давления в агрегатах с насосами считается основной частью её нормального функционирования, то каждый владелец агрегата должен знать, как осуществляется настройка:

  • Обеспечить работающее состояние насоса и накачать воды до отметки в три атмосферы.
  • Выключить аппарат.
  • Снять крышку, и не спеша проворачивать гайку до тех пор, пока элемент не включится. Если совершать движения по ходу стрелки часов, то можно увеличить давление воздуха, против хода – уменьшить.
  • Открыть кран и уменьшить показания жидкости до отметки в 1,7 Атмосфер.
  • Перекрыть кран.
  • Снять крышку реле и крутить гайку до момента срабатывания контактов.

Какое давление должно быть в насосной станции в груше?

Гидроаккумулятор агрегата с насосом содержит в себе такой элемент, как резиновая емкость, которую еще принято называть груша. Между стенками бачка и самим резервуаром должен находиться воздух. Чем больше воды будет находиться груше, тем сильнее будет сжат воздух и, соответственно, больше будет его давление. И наоборот, если падает давление, значит, объем воды в резиновой емкости уменьшился. Так каким же должно быть значение оптимального давления для подобного агрегата? В большинстве случаев производители заявляют давление в 1,5 Атмосферы. Приобретая насосную станцию, необходимо проверить уровень давления манометром.

Не забывайте и о том, что разные манометры имеют разные погрешности. Поэтому лучше всего использовать поверенный автомобильный манометр с минимальными значениями градуировки шкалы на нем.

Какое давление должно быть в расширительном баке насосной станции?


Давление в ресивере не должно быть больше верхнего предела уровня давления жидкости. Иначе ресивер перестанет выполнять свою прямую обязанность, а именно, заполняться водой и смягчать гидроудары. Рекомендуемое уровень давления для расширительного бачка – 1,7 Атмосфер.

Почему падает давление в насосной станции?


Некоторые неисправности агрегата могут привести к тому, что в итоге насосная станция не включается при падении давления. Причинами того, что в водопроводе падает давление, может быть:
  1. Насос недостаточно мощный или его детали изношены.
  2. Происходит утечка воды через соединения или имеется разрыв трубы.
  3. Падает напряжение электрической сети.
  4. Всасывающая труба захватывает воздух.

Почему насосная станция не набирает давление и не отключается?


Основное предназначение подобных агрегатов – подавать жидкость из различных источников с большой глубиной, создавать и поддерживать постоянные показатели давления. Однако в процессе эксплуатации аппаратов имеют место различные неполадки. Случается и так, что агрегат не может нагнать нужное давление и выключается. Причинами этого могут стать:

  • Работа насоса «всухую». Происходит это вследствие падения водяного столба ниже уровня забора воды.
  • Увеличение сопротивления трубопровода, что возникает, если длина магистрали не соответствует диаметру.
  • Негерметичные соединения, вследствие чего наблюдается подсос воздуха. При этой проблеме стоит проверить все соединения и в случае необходимости обеспечить каждый из них герметиком.
  • Забит фильтр грубой очистки. Очистив фильтр, можно пробовать подавать давление в насосную станцию.
  • Сбой в работе реле давления. Решить проблему поможет регулировка реле.

Найдя причину неисправности насосной станции, можно приступать к её устранению.

Почему не поднимается давление в насосной станции?


Когда манометр насосной станции показывает низкое давление, и оно не поднимается, такой процесс еще принято называть завоздушиванием. Причинами такой проблемы могут быть:

  • Если это не погружной насос, то причина может скрываться во всасывающей трубке, через которую может всасываться нежелательный воздух. Справиться с проблемой поможет установка датчика «сухого хода».
  • Подающая магистраль негерметична вовсе нет плотности на стыках. Нужно проверить все стыки и обеспечить их полной герметизацией.
  • Наполняясь, в насосной установке остается воздух. Тут не обойтись без его выгонки, заполняя насос сверху под давлением.

Насосная станция не держит давление и постоянно включается


В связи с некоторыми неисправностями, давление в агрегате иногда падает, а сама станция может периодически включаться. Причиной может стать:
  • Разрыв резиновой емкости в гидроаккумуляторе, в результате чего бачок полностью заполняется водой даже там, где должен быть воздух. Именно этот элемент и регулирует постоянство давления станции. Обнаружить проблему можно, придавив штуцер закачки жидкости. Если же жидкость станет просачиваться, то проблема в резиновой емкости. Здесь лучше сразу прибегнуть к замене мембраны.
  • В гидроаккумуляторе не наблюдается давление воздуха. Решить проблему – это подкачать воздух в камеру, используя обычный прибор для закачивания воздуха.
  • Поломано реле. В случае, когда штуцер без подтеков, то проблема именно с реле. Если настройки не помогают, придется прибегнуть к замене прибора.

Рекомендуем попробовать натуральное вкуснейшее кокосовое молоко от интернет-магазина НеБанан — вы точно не пожалеете!

Контроль и регулировка давления воздуха в гидроаккумуляторе

Интернет-магазин «Водомастер.ру» ценит доверие своих клиентов и заботится о сохранении их личных (персональных) данных в тайне от мошенников и третьих лиц. Политика конфиденциальности разработана для того, чтобы личная информация, предоставленная пользователями, были защищены от доступа третьих лиц.

Основная цель сбора личных (персональных) данных – обеспечение надлежащей защиты информации о Пользователе, в т. ч. его персональных данных от несанкционированного доступа и разглашения третьим лицам, улучшение качества обслуживания и эффективности взаимодействия с клиентом.

1. ОСНОВНЫЕ ПОНЯТИЯ

Сайт – интернет магазин «Водомастер.ру», расположенный в сети Интернет по адресу: vodomaster.ru

Пользователь – физическое или юридическое лицо, разместившее свою персональную информацию посредством любой Формы обратной связи на сайте с последующей целью передачи данных Администрации Сайта.

Форма обратной связи – специальная форма, где Пользователь размещает свою персональную информацию с целью передачи данных Администрации Сайта.

Аккаунт пользователя (Аккаунт) – учетная запись Пользователя позволяющая идентифицировать (авторизовать) Пользователя посредством уникального логина и пароля. Логин и пароль для доступа к Аккаунту определяются Пользователем самостоятельно при регистрации.

2. ОБЩИЕ ПОЛОЖЕНИЯ

2. 1. Настоящая Политика в отношении обработки персональных данных (далее – «Политика») подготовлена в соответствии с п. 2 ч .1 ст. 18.1 Федерального закона Российской Федерации «О персональных данных» №152-ФЗ от 27 июля 2006 года (далее – «Закон») и описывает методы использования и хранения интернет-магазином «Водомастер.ру» конфиденциальной информации пользователей, посещающих сайт vodomaster.ru.

2.2. Предоставляя интернет-магазину «Водомастер.ру» информацию частного характера через Сайт, Пользователь свободно, своей волей дает согласие на передачу, использование и раскрытие его персональных данных согласно условиям настоящей Политики конфиденциальности.

2.3. Настоящая Политика конфиденциальности применяется только в отношении информации частного характера, полученной через Сайт. Информация частного характера – это информация, позволяющая при ее использовании отдельно или в комбинации с другой доступной интернет-магазину информацией идентифицировать персональные данные клиента.

2.4. На сайте vodomaster.ru могут иметься ссылки, позволяющие перейти на другие сайты. Интернет-магазин не несет ответственности за сведения, публикуемые на этих сайтах, и предоставляет ссылки на них только в целях обеспечения удобства пользователей. При этом действие настоящей Политики не распространяется на иные сайты. Пользователям, переходящим по ссылкам на другие сайты, рекомендуется ознакомиться с политикой конфиденциальности, размещенной на таких сайтах.

3. УСЛОВИЯ, ЦЕЛИ СБОРА И ОБРАБОТКИ ПЕРСОНАЛЬНЫХ ДАННЫХ ПОЛЬЗОВАТЕЛЕЙ

3.1. Персональные данные Пользователя такие как: имя, фамилия, отчество, e-mail, телефон, адрес доставки, skype и др., передаются Пользователем Администрации Сайта с согласия Пользователя.

3.2. Передача персональных данных Пользователем через любую размещенную на сайте Форму обратной связи, в том числе через корзину заказов, означает согласие Пользователя на передачу его персональных данных.

3.3. Предоставляя свои персональные данные, Пользователь соглашается на их обработку (вплоть до отзыва Пользователем своего согласия на обработку его персональных данных), в целях исполнения интернет-магазином своих обязательств перед клиентом, продажи товаров и предоставления услуг, предоставления справочной информации, а также в целях продвижения товаров, работ и услуг, а также соглашается на получение сообщений рекламно-информационного характера и сервисных сообщений.

3.4. Основными целями сбора информации о Пользователе являются принятие, обработка и доставка заказа, осуществление обратной связи с клиентом, предоставление технической поддержки продаж, оповещение об изменениях в работе Сайта, предоставление, с согласия клиента, предложений и информации об акциях, поступлениях новинок, рекламных рассылок; регистрация Пользователя на Сайте (создание Аккаунта).

3.5. Регистрация Пользователя на сайте vodomaster.ru не является обязательной и осуществляется Пользователем на добровольной основе.

3.6. Интернет-магазин не несет ответственности за сведения, предоставленные Клиентом на Сайте в общедоступной форме.

4. ОБРАБОТКА, ХРАНЕНИЕ И ЗАЩИТА ПЕРСОНАЛЬНОЙ ИНФОРМАЦИИ ПОЛЬЗОВАТЕЛЕЙ САЙТА

4.1. Администрация Сайта осуществляет обработку информации о Пользователе, в т.ч. его персональных данных, таких как: имя, фамилия, отчество, e-mail, телефон, skype и др., а также дополнительной информации о Пользователе, предоставляемой им по своему желанию: организация, город, должность, и др.

4.2. Интернет-магазин вправе использовать технологию «cookies». «Cookies» не содержат конфиденциальную информацию и не передаются третьим лицам.

4.3. Интернет-магазин получает информацию об ip-адресе Пользователя сайта vodomaster.ru и сведения о том, по ссылке с какого интернет-сайта он пришел. Данная информация не используется для установления личности Пользователя.

4.4. При обработке персональных данных пользователей интернет-магазин придерживается следующих принципов:

  • Обработка информации осуществляется на законной и справедливой основе;
  • Информация не раскрываются третьим лицам и не распространяются без согласия субъекта Данных, за исключением случаев, требующих раскрытия информации по запросу уполномоченных государственных органов, судопроизводства;
  • Определение конкретных законных целей до начала обработки (в т.ч. сбора) информации;
  • Ведется сбор только той информации, которая является необходимой и достаточной для заявленной цели обработки;
  • Обработка информации ограничивается достижением конкретных, заранее определенных и законных целей;

4. 5. Персональная информация о Пользователе хранятся на электронном носителе сайта бессрочно.

4.6. Персональная информация о Пользователе уничтожается при желании самого Пользователя на основании его официального обращения, либо по инициативе администратора Сайта без объяснения причин, путём удаления информации, размещённой Пользователем.

4.7. Обращение об удалении личной информации, направляемое Пользователем, должно содержать следующую информацию:

для физического лица:

  • номер основного документа, удостоверяющего личность Пользователя или его представителя;
  • сведения о дате выдачи указанного документа и выдавшем его органе;
  • дату регистрации через Форму обратной связи;
  • текст обращения в свободной форме;
  • подпись Пользователя или его представителя.

для юридического лица:

  • запрос в свободной форме на фирменном бланке;
  • дата регистрации через Форму обратной связи;
  • запрос должен быть подписан уполномоченным лицом с приложением документов, подтверждающих полномочия лица.

4.8. Интернет-магазин обязуется рассмотреть и направить ответ на поступившее обращение Пользователя в течение 30 дней с момента поступления обращения.

4.9. Интернет-магазин реализует мероприятия по защите личных (персональных) данных Пользователей в следующих направлениях:

  • предотвращение утечки информации, содержащей личные (персональные) данные, по техническим каналам связи и иными способами;
  • предотвращение несанкционированного доступа к информации, содержащей личные (персональные) данные, специальных воздействий на такую информацию (носителей информации) в целях ее добывания, уничтожения, искажения и блокирования доступа к ней;
  • защита от вредоносных программ;
  • обнаружение вторжений и компьютерных атак.

5. ПЕРЕДАЧА ПЕРСОНАЛЬНЫХ ДАННЫХ

5.1. Интернет-магазин «Водомастер.ру» не сообщает третьим лицам личную (персональную) информацию о Пользователях Сайта, кроме случаев, предписанных Федеральным законом от 27.07.2006 г. № 152-ФЗ «О персональных данных», или когда клиент добровольно соглашается на передачу информации.

5.2. Условия, при которых интернет-магазин «Водомастер.ру» может предоставить информацию частного характера из своих баз данных сторонним третьим лицам:

  • в целях удовлетворения требований, запросов или распоряжения суда;
  • в целях сотрудничества с правоохранительными, следственными или другими государственными органами. При этом интернет-магазин оставляет за собой право сообщать в государственные органы о любой противоправной деятельности без уведомления Пользователя об этом;
  • в целях предотвращения или расследования предполагаемого правонарушения, например, мошенничества или кражи идентификационных данных;

5.3. Интернет-магазин имеет право использовать другие компании и частных лиц для выполнения определенных видов работ, например: доставка посылок, почты и сообщений по электронной почте, удаление дублированной информации из списков клиентов, анализ данных, предоставление маркетинговых услуг, обработка платежей по кредитным картам. Эти юридические/физические лица имеют доступ к личной информации пользователей, только когда это необходимо для выполнения их функций. Данная информация не может быть использована ими в других целях.

6. БЕЗОПАСНОСТЬ БАНКОВСКИХ КАРТ

6.1 При оплате заказов в интернет-магазине «Водомастер.ру» с помощью кредитных карт все операции с ними проходят на стороне банков в специальных защищенных режимах. Никакая конфиденциальная информация о банковских картах, кроме уведомления о произведенном платеже, в интернет-магазин не передается и передана быть не может.

7. ВНЕСЕНИЕ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ

7.1. Все изменения положений или условий политики использования личной информации будут отражены в этом документе. Интернет-магазин «Водомастер.ру» оставляет за собой право вносить изменения в те или иные разделы данного документа в любое время без предварительного уведомления, разместив обновленную версию настоящей Политики конфиденциальности на Сайте.

Какое давление должно быть в гидроаккумуляторе?

Если просмотреть переписку на тему автономного водоснабжения на различных строительных порталах и форумах, то один из часто встречающихся вопросов – почему в бак вместо обозначенной в его паспорте емкости (к примеру) 50 л заливается всего 30 – 35? Как результат – устройство работает не совсем корректно.

Основная причина – неправильно выставленное давление в гидроаккумуляторе. А каким оно должно быть в гидроаккумуляторе – это и интересует многих пользователей.

О назначении и устройстве ГА подробно рассказывается здесь. Чтобы не повторяться, достаточно лишь отметить, что в баке изначально есть воздух. Он закачивается в него еще на производстве, и давление составляет (для подавляющего большинства моделей) 1,5 атмосферы. Если изделие от известной компании-изготовителя, то небольшую утечку (за предпродажный период) в расчет можно не брать – качественные гидроаккумуляторы не «травят».

Не все пользователи учитывают, что ГА функционирует в системе водоснабжения только совместно с реле давления, иначе теряется сам смысл установки бака. Именно эти два элемента автоматики и обеспечивают стабильность давления в контуре и регулируют интервал между пуском в работу и остановкой насоса.

Но есть и еще ряд нюансов, которые правильно оценить может лишь профильный специалист. Например, как рассматривать следующую рекомендацию, размещенную на одном из форумов – взять разницу высот (в м) между ГА и верхней точкой водоразбора (H) и разделить эту цифру (число) на 10. Частное – это и есть рекомендуемое давление в баке (в

атм). У человека, хоть немного понимающего, как организуется схема водоснабжения, неминуемо возникнут хотя бы такие элементарные вопросы.

  • В любом доме есть много бытовой техники, присоединяемой к водопроводу. Для каждого изделия – свой нижний порог давления, при котором оно может нормально функционировать. Как это учесть?
  • Трубы в жилых строениях прокладываются по-разному. На это влияют этажность здания, внутренняя планировка и так далее. Каждый поворот «нитки», отвод от нее, фитинги – это некоторая потеря давления. Есть ли поправочные коэффициенты для всех подобных случаев?
Существует главное правило настройки гидроаккумулятора – давление в нем должно быть на 10% ниже минимального (для включения перекачивающего устройства), установленного при регулировке срабатывания реле. Но это типовая рекомендация, которой следует придерживаться. В принципе, можно взять разницу и в 12, а то и 15%. Но точно определить ее способен лишь специалист, с учетом всех нюансов системы.

Наиболее вероятные последствия неправильной настройки гидроаккумулятора

  • Некорректная работа бытовой техники, присоединенной к контуру водоснабжения. Например, периодические сбои в функционировании котельного оборудования, а то и аварийная остановка агрегата.
  • Снижение ресурса насоса по причине повышенного износа.
  • Проблемы с напором из кранов на последних этажах дома.

Производители прилагают к каждому гидроаккумулятору инструкцию, в которой расписан порядок его настройки. В чем сложность? Сортамент реле давлений значительный, и у каждой модели – свои характеристики.

Одна из основных – так называемая «дельта», то есть разница между Pmin (для пуска насоса) и Pmax (для его отключения). Применительно к большинству этих приборов она равна 1 (иногда 1,5). Но ни одно руководство не в состоянии учесть всех особенностей конкретной системы, самого строения, его «наполнения» техническими устройствами, способов их подключения и так далее.

Вывод

Он напрашивается сам собой. Несмотря на кажущуюся простоту настройки давления в гидроаккумуляторе, данную технологическую операцию целесообразнее доверить профессионалу. Логика достаточно проста – лучше оплатить его услуги «здесь и сейчас», чем не в такой уж далекой перспективе тратить деньги за визиты различных мастеров (по ремонту котла, посудомоечной машинки, того же насоса и так далее). Однозначно – в совокупности обойдется значительно дороже. А если учесть еще и неудобства, нервы, время, то решение более чем рациональное.

Компания «АЛЬФАТЕП» всегда окажет проживающим в Подмосковье практическую помощь в выборе оптимальной модели гидроаккумулятора и его настройке. Достаточно лишь позвонить на номер ее контактного телефона 8 (495) 109-00-95, и сотрудники подробно проконсультируют по любому вопросу, касающемуся организации водоснабжения, подберут требуемый для системы ГА, сами его установят и настроят по давлению его и реле. По желанию клиента, возьмут все оборудование на сервисное обслуживание.

Как производится регулировка давления насосной станции?

Итак, регулировка давления насосной станции осуществляется в следующем порядке.

Для начала нужно проверить давление сжатого воздуха внутри расширительного бака. Желательно проверять давление в баке насосной станции примерно раз в месяц. Можно установить датчик давления в насосной станции, чтобы быть осведомлённым о состоянии давления и сохранить насосную станцию и бачок в рабочем состоянии как можно дольше.

В расширительном баке установлена резиновая диафрагма; в неё которую насос закачивает воду. Между этой диафрагмой и металлическим корпусом бачка находится воздух под некоторым давлением. И для определения давления (а также для накачкиспуска воздуха) в задней части этого резервуара предусмотрен особый клапан (нипель).С помощью манометра измерим воздушное давление в баке насосной станции. При необходимости производим подкачку воздуха автомобильным насосом. Если это не поможет, необходимо будет осуществлять настройку реле давления на необходимое давление.

Для баков на 20-25 л рабочее давление насосной станции должно составлять примерно 1,4–1,7 бар, и для больших резервуаров (от 50 до 100 л) — давление в 1,7–1,9 бар.

Регулировка реле давления осуществляться должна в действующей системе под давлением. Включаем насос, даём ему накачать в систему давление и отключиться при достижении установленного давления. Это — «верхнее» давление; его значение будет отображаться на манометре. Если же это значение отлично от рекомендуемого, отрегулируйте его с помощью малого болта реле. Аналогичным образом измеряется «нижнее» давление. Начав сливать воду, наблюдаем за манометром. Значение давления на нём будет постепенно падать. Наконец, при достижении нижнего предела ваш насос снова включится. Это и будет «нижним» давлением. Оно регулируется большим болтом реле.

Итак, регулировка давления насосной станции завершена. Давление включения насоса должно быть больше давления воздуха в резервуаре на 10%; иначе резиновая диафрагма быстрее износится. Можно, конечно, установить на реле другие значения давления включения и выключения. Например, повысив значение разницы между нижним и верхним давлением, вы можете продлить срок службы вашего насоса за счёт того, что он включается реже. Но при этом давление во всей системе не будет равномерным.

Также помните, что гидроаккумулятор, резиновые шланги, сантехника и сама механика реле давления имеют своё рабочее давление насосной станции, которое нельзя превышать. Если вы будете соблюдать эти рекомендации, правильно настроенный датчик давления в насосной станции поможет ей прослужить как можно дольше.

Каким должно быть давление в гидроаккумуляторе насосной станции

Давление воздуха в гидроаккумуляторе (гидроаккумулирующем баке) насосной станции должно соответствовать минимальному давлению (включения насоса) установленному на её реле и быть примерно на 10% ниже его. Если, например, минимальное давление 1,5 бар (атм.), то оптимальное давление воздуха в гидроаккумуляторе должно быть 1,5 — 0,15 = 1,35 бар (атм.).

Узнать минимальное давление в системе водоснабжения вашего дома, если вы его не регулировали самостоятельно, можно по показаниям манометра в момент включения насоса станции.

Для чего нужно давление воздуха в гидроаккумуляторном баке

Если давление воздуха в гидроаккумуляторе будет ниже нормы или вообще будет равно нулю, то насосная станция будет очень часто включаться. При этом, она будет включаться сразу же после каждого открывания крана (так как жидкость не сжимается и в этом случае будет моментальное падение давления в системе) и сразу же отключаться после его закрывания. Кстати, это является одним из основных признаков, что давления воздуха нет или оно недостаточное.

Нежелательно также, чтобы давление воздуха в гидроаккумуляторном баке превышало бы давление включения насоса (минимальное), а тем более, чтобы оно превышало максимальное  в системе (выключения насоса). В первом случае бак не будет полностью заполняться водой, а во втором — он практически не будет заполняться и насос также будет часто включаться.

Как замерить и увеличить давление воздуха?

Замерить давление воздуха в гидроаккумуляторе насосной станции можно с помощью манометра, которым измеряют давление в шинах автомобиля. Для этого в баке под пластиковой крышкой имеется штуцер с золотником.

Перед тем, как проверить давление необходимо обязательно сбросить давление воды в системе до нуля. Для этого достаточно отключить насосную станцию и открыть кран пока вода не перестанет течь.

Накачивать воздух в гидроаккумулятор можно автомобильным компрессором или обычным насосом (лучше всего с манометром).

Обратите внимание! Иногда, при нажатии на золотник штуцера для закачивания воздуха из него поступает вода. Это может свидетельствовать о том что нарушена герметичность или целостность резиновой мембраны бака, так называемой «груши». В этом случае её необходимо заменить.

Подробнее о насосной станции для водоснабжения дома в статьях:

Безбашенка: насосная станция для водоснабжения дома

Как выбрать насосную станцию

Безбашенка: неисправности насосной станции

 

Насосная станция: как отрегулировать давление

Насосная станция – это комплексная система, в которой нужно и можно регулировать давление. Насосная станция представляет собой поверхностный насос, соединенный гибкой подводкой с гидроаккумулятором и управляющим насосом реле давления. Именно реле давления и отвечает за регулировку давления в системе.

Чаще всего, реле давления воды для насоса уже настроено оптимально. Однако, если нужны индивидуальные настройки, то это возможно сделать. Для регулировки давления в самом реле есть два болта, которые расположены под крышкой устройства.

Давление в гидроаккумуляторе насосной станции есть так называемое «нижнее» и «верхнее». «Нижнее» давление регулируется большим болтом №1. Если Вы повернете болт по часовой стрелке, то Вы увеличите давление, а если будете поворачивать против часовой стрелки — уменьшать. «Верхнее» давление можно регулировать с помощью малого болта №2.


1 – винт изменения значения верхнего и нижнего давления (Р) одновременно

2 – винт изменения разности P между верхним и нижним давлением

3 – клеммы подключения двигателя

4 – клеммы подключения электропитания

5 – клеммы подключения заземления

Вращением винта 1 производится установка значения давления (Р) включения (нижнее давление) и выключения (верхнее давление) насоса.

Вращение винта 2 изменяет разность P между нижним и верхним значениями давления.

Реле давления воды для насоса настраивается с помощью двух шагов:

1) Определение давления воздуха в расширительном баке. Для баков объемом 20-25 л давление воздуха должно составлять 1,4 – 1,7 бар, и 1,7 – 1,9 бар для резервуаров емкостью 50 – 100 л. Помните, что воздух в баке должен быть всегда. Его давление нужно время от времени проверять и корректировать. Желательно это делать не реже 1 раза в месяц. Поддержание правильного давления позволит увеличить срок службы насосной станции.

2) Определение и регулировка давления включения и отключения насосной станции.

После того, как Вы отрегулировали давление воздуха в баке, необходимо подключить насосную станцию к сети. После включения насос начнет закачивать воду в бак и после завершения отключится. Именно тогда на мониторе покажется так называемое «верхнее давление». Если это значение слишком высокое и больше рекомендуемого, тогда уменьшите его с помощью реле давления. Так называемое «нижнее давление» появиться при сливании воды. Его также отрегулировать можно при помощи реле давления.

Обратите внимание, что давление при включении насоса должно быть на 10% выше, чем давление воздуха в резервуаре. Если Вы не будете придерживаться этого правила, то насосная станция быстро износится.


Сначала настройте верхнее давление выключения посредством винта 2. Значение будет показано указателем 3. Затем настройте нижнее давление включения посредством винта 5. Значение будет показано указателем 4. Точная настройка производится по манометру

Еще несколько моментов, о которых важно помнить:

· Нельзя устанавливать «верхнее» давление, которое составляет более 80% максимального для данной модели реле.

· Перед тем как повысить давление включения насоса («верхнее») необходимо посмотреть его характеристики, сможет ли он развить такое давление.

· При регулировании не надо закручивать гайки регуляторов до отказа – реле вообще может перестать срабатывать.


В насосной станции возможно отрегулировать давление с помощью реле давления. Но, важно помнить, что неправильная регулировка может привести к быстрому износу всей системы.

📐 принципы и правила настройки

Для стабильной поставки воды с необходимыми значениями давления недостаточно просто купить насосную станцию. Оборудование надо еще настроить, запустить и грамотно эксплуатировать. Признайтесь, не все из нас знакомы с тонкостями настройки. А перспектива испортить приборы некорректными действиями не слишком прельщает, согласны?

Мы готовы поделиться с вами ценной информацией о том, как производится регулировка насосной станции. В нашей статье приведены приемы и правила устранения нарушений в работе, связанных с недостаточно высоким напором.

Вы узнаете о причинах падения давления и ознакомитесь с методами их устранения. Графические и фото приложения пояснят, как нужно правильно настраивать насосное оборудование.

Содержание статьи:

Особенности устройства насосной станции

Готовая, укомплектованная производителем насосная станция представляет собой механизм для принудительной подачи воды. Схема работы ее до предела проста.

Насос качает воду в эластичную емкость, расположенную внутри гидроаккумулятора, именуемого также гидробаком. При заполнении водой она растягивается и давит на ту часть гидробака, которая заполнена воздухом или газом. Давление, достигая определенного уровня, становиться причиной выключения насоса.

Во время забора воды давление в системе падает, и в определенный момент, при достижении заданных владельцем значений, насос снова начинает работать. За выключение и включение устройства отвечает реле, контроль уровня давления осуществляется с помощью манометра.

Нарушения в работе бытовой насосной станции могут стать причиной поломок сантехнического оборудования

Подробнее с принципом работы, разновидностями и проверенными на практике схемами установки ознакомит рекомендуемая нами статья.

Причины неполадок оборудования

Статистика неполадок в работе бытовых насосных станций говорит, что чаще всего проблемы возникают из-за нарушения целостности мембраны , трубопровода, утечки воды или воздуха, а также из-за различных загрязнений в системе.

Необходимость во вмешательстве в ее работу может возникать вследствие многих причин:

  • Песок и различные вещества, растворенные в воде, способны вызывать коррозию, приводят к неполадкам и снижению производительности оборудования. Для предотвращения засорения устройства необходимо использовать фильтры, очищающие воду.
  • Снижение воздушного давления в станции становится причиной частого срабатывания насоса и его преждевременного износа. Рекомендуется время от времени проводить измерение давления воздуха и регулировать его, если необходимо.
  • Отсутствие герметичности стыков всасывающего трубопровода причина того, что двигатель работает без выключения, но жидкость перекачивать не может.
  • Неправильная регулировка напора насосной станции также может стать причиной неудобств и даже поломок в системе.

Чтобы продлить срок эксплуатации станции рекомендуется периодически проводить ревизию. Любые работы по регулировке нужно начинать с отключения от электросети и слива воды.

Следует периодически проверять расход энергии и максимальный напор. Повышение расхода энергии сигнализирует о трение в насосе. Если без обнаруженных в системе протечек упал напор, то оборудование изношено

Исправление погрешности в работе

Прежде чем приступать к более серьезному вмешательству в работу оборудования необходимо принять самые простые меры — прочистить фильтры, устранить протечки. Если они не дали результатов, тогда приступают к дальнейшим шагам, пытаясь выявить первопричину.

Следующее, что необходимо предпринять — настроить давление в баке гидроаккумулятора и .

Галерея изображений

Фото из

Условия для нормальной работы насосной станции

Заполнение водой всасывающей трубы и рабочей полости

Запрет на использование без расхода воды

Исключение попадания воздуха во встасывающую трубу

Насосное оборудование в сухом подвале

Установка агрегата в подсобном помещении

Откачка из открытого водоема

Эксплуатация станции в зимний период

Ниже приводятся самые распространенные нарушения в работе бытовой насосной станции, которые пользователь может попытаться решить самостоятельно. При более серьезных проблемах необходимо обращаться в сервисный центр.

Нарушение правил эксплуатации

Если станция беспрерывно работает, не выключаясь, вероятной причиной является неправильная регулировка реле — выставлено высокое давление выключения. А также случается, что двигатель работает, но станция воду не качает.

Причина может крыться в следующем:

  • При первом запуске насос не был заполнен водой. Необходимо исправить ситуацию, залив воду через специальную воронку.
  • Нарушена целостность трубопровода или образовалась воздушная пробка в трубе или во всасывающем клапане. Для обнаружения конкретной причины необходимо убедиться, что: приемный клапан и все соединения герметичны, по всей длине всасывающей трубы нет изгибов, сужений, гидравлических затворов. Все неисправности устраняют, при необходимости заменяют поврежденные участки.
  • Оборудование работает, не имея доступа к воде (на сухую). Необходимо проверить, почему его нет или выявить и устранить иные причины.
  • Засорен трубопровод — необходимо очистить систему от загрязнений.

Бывает, что станция очень часто срабатывает и выключается. Скорее всего это происходит из-за поврежденной мембраны (тогда необходимо заменить ее), или же в системе отсутствует . В последнем случае необходимо измерять наличие воздуха, проверить бак на наличие трещин и повреждений.

Перед каждым запуском необходимо через специальную воронку залить воду в насосную станцию. Она не должна работать без воды. Если есть вероятность работы помпы без воды, следует приобретать насосы-автоматы, оборудованные контролером потока

С меньшей вероятностью, но может случиться, что открыт и заблокирован из-за попадания мусора или постороннего предмета. В такой ситуации придется разобрать трубопровод в районе возможного засорения и устранить проблему.

Неполадки в действии двигателя

Двигатель бытовой станции не работает и не издает шума, возможно, по следующим причинам:

  • Оборудование отключено от питания или отсутствует напряжение в сети. Необходимо проверить схему подключения.
  • Перегорел предохранитель. В таком случае нужно заменить элемент.
  • Если не удается провернуть крыльчатку вентилятора — значит, ее заклинило. Необходимо выяснить почему.
  • Повреждено реле. Его нужно попытаться отрегулировать или, если не удастся, заменить новым.

Неполадки в работе двигателя чаще всего вынуждают пользователя воспользоваться услугами сервисного центра.

Проблемы с напором воды в системе

Недостаточный напор воды в системе можно объяснить несколькими причинами:

  • Давление воды или воздуха в системе выставлено на недопустимо-низкое значение. Тогда необходимо настроить работу реле в соответствии с рекомендуемыми параметрами.
  • Трубопровод или рабочее колесо насоса заблокировано. Очистка элементов насосной станции от загрязнений, возможно, поможет решить проблему.
  • В трубопровод попадает воздух. Проверка элементов трубопровода и их соединений на герметичность сможет подтвердить или опровергнуть эту версию.

Плохая подача воды бывает также обусловлена тем, что происходит втягивание воздуха из-за неплотных соединений водопроводных труб или уровень воды упал настолько, что при ее заборе закачивается воздух в систему.

Плохой напор воды может создавать ощутимый дискомфорт при использовании водопроводной системы

Ревизия накопительного бака

Начиная работы по регулировке оборудования, отключают систему от сети, закрывают напорный вентиль со стороны забора воды. Откручивают кран и сливают воду, а остатки спускают через напорный рукав, отсоединив его от . Сначала проверяют воздушное давление в емкости гидроаккумулятора.

Роль гидроаккумулятора в работе системы

Мембранный бак насосной станции является, по сути, металлической емкостью с расположенной внутри резиновой грушей, которая предназначена для сбора воды.

В свободное пространство между резиновой грушей и стенками бака накачивается воздух. В некоторых моделях гидроаккумуляторов бак разделен пополам мембраной, которая размежевывает емкость на два отделения — для воды и воздуха.

Бак гидроаккумулятора поддерживает давление в системе и создает небольшой запас воды. Раз в месяц следует проводить проверку давления в гидропневматическом баке при отключенном насосе и слитой из подающей трубы воды

Чем больше воды поступает в устройство, тем больше она сжимает воздух, увеличивая его давление, которое стремится вытолкнуть воду из емкости. Это позволяет поддерживать стабильный напор воды даже во время бездействия насоса.

Гидроаккумулятор требует регулярного обслуживания, удаления из груши воздуха, который попадает в нее вместе с водой в виде маленьких пузырьков и постепенно накапливается там, уменьшая полезный объем.

Для этого сверху на больших баках предусмотрен специальный клапан. С маленькими емкостями приходится ухищряться, чтобы удалить воздух: обесточивать систему и несколько раз сливать и наполнять бак.

Подбор гидробака по объему производится с учетом наибольшего значения потребления воды для конкретного потребителя. Учитывается допустимое количество включений в час, указанное производителем, а также номинальные показатели давления включения, давления выключения и заданное пользователем давления в гидробаке

Контроль давления воздуха

Хоть производитель и проводит регулировку всех элементов насосной станции еще на этапе производства, перепроверять давление нужно даже в новом оборудовании, так как на момент продажи оно может несколько снизиться. Устройство, которое эксплуатируется, осматривают до двух раз за год.

Для измерений используют как можно более точный манометр, ведь даже небольшая погрешность в 0,5 бар может повлиять на работу оборудования. Если есть возможность воспользоваться автомобильным манометром, со шкалой, с наименьшей градуировкой — это обеспечит более достоверные результаты.

Показатель давления воздуха в мембранном баке должен соответствовать 0,9-кратному давлению включения насосной станции (выставляется с помощью реле). Для баков с различным объемом показатель может составлять от одного до двух бар. Регулировку осуществляют через ниппель, накачивая или стравливая лишний воздух.

Для нормальной работы станцию оснащают обязательными контрольно-регулирующими приборами:

Галерея изображений

Фото из

Обязательными компонентами насосной станции являются реле давления, позволяющее регулировать значения давления в системе, и манометр, необходимый для его контроля

Для настройки параметров давления в системе реле оснащено двумя пружинами, позволяющими задавать верхний и нижний пределы давления в контуре водоснабжения

Для того чтобы повысить верхний предел параметров давления, при котором автоматически прерывается работа помпы, гайку 1 вращают по часовой стрелке. При этом гайку 2, отвечающую за нижний предел, нужно поднять на такую же величину

Все действия по настройке реле давления необходимо проводить с параллельным контролем изменений манометром. Перепад верхнего и нижнего пределов давления рекомендован в интервале 1,2 — 1,6 бар

Обязательные составляющие насосной станции

Пружины для настройки реле давления

Специфика изменения давления с помощью реле

Использование манометра при настройке реле

Чем меньше воздуха закачано в систему, тем больше воды она способна аккумулировать. Напор воды будет сильным при наполненном баке, и все более ослабляться при заборе воды.

Если такие перепады являются комфортными для потребителя, то можно оставить давление на наименьшем допустимом уровне, но не меньше 1 бар. Меньшее значение может привести к трению наполненной водой груши об стенки бака и ее повреждению.

Чтобы установить в сильный напор воды, необходимо зафиксировать давление воздуха в пределах около 1,5 бар. Так, разница напора при наполненном и пустом баке будет менее ощутимой, обеспечивая ровный и сильный поток воды.

Использование реле для регулировки давления

За автоматизацию системы отвечает — прибор, который управляет насосной станцией, выполняя функцию включения и отключения устройства. Оно также предохраняет систему от создания излишнего давления.

Реле давления управляет циклами включение/выключение при достижении заданного пользователем значения рабочего давления. Работоспособность реле давления контролируется с помощью манометра

#1: Принцип работы датчика давления

Главный элемент реле — группа контактов, которая закреплена на металлическом основании и отвечает за включение и отключение устройства.

Рядом находится две пружины разных размеров для регулировки давления внутри системы. Снизу к металлическому основанию крепится крышка мембраны, под которой размещена сама мембрана и поршень из металла. Сверху все закрыто пластиковым колпаком.

Продукция разных производителей и принцип ее действия практически идентичны, отличаться могут лишь в незначительных деталях

В процессе работы действующего устройства можно выделить несколько этапов:

  1. При включении крана, вода некоторое время поступает к сантехнической точке из наполненного бака. При этом давление, присутствующее в системе, постепенно начинает падать, и мембрана перестает давить на поршень. Происходит замыкание контактов, насос включается.
  2. Насос работает, качая воду к потребителю, а когда все краны выключены, наполняет бак с водой.
  3. При постепенном наполнении бака гидроаккумулятора происходит усиление давления, и оно начинает действовать на мембрану, а та давит на поршень. В результате, происходит размыкание контактов, и работа насоса останавливается.

От того, как настроено реле, зависит частота включения станции, напор воды и даже время службы оборудования. При неправильно выставленных параметрах насос не будет срабатывать вовсе или будет работать непрерывно.

Поршень реле давления и чувствительная металлическая пластина, реагирующая на созданный мембраной гидробака напор, скрыты под корпусом — доступ к ним полностью закрыт

#2: Регулировка и расчет необходимого давления

Новое устройство уже имеет заводские настройки реле, но, все же, лучше дополнительно их проверить. Приступая к настройке, необходимо выяснить рекомендованные производителем значения для установки допустимого порога давления (для смыкания и размыкания контактов).

В случае , по причине неправильной регулировки, производитель имеет полное право отказаться от своих гарантийных обязательств.

Расчет допустимого давления, при включении-выключении устройства, производитель проводит с учетом предполагаемых особенностей эксплуатации. Они учитываются в разработке рабочих параметров для разных моделей насосных станций.

Значение включения равно сумме:

  • Необходимого давления в наиболее высокой точке водопроводной системы, где производится отбор воды;
  • Разницы, между высотой самой верхней точки отбора воды и насосом;
  • Потери в трубопроводе водного давления.

Показатель выключения рассчитывается следующим образом: к давлению выключения плюсуют один и отнимают полтора бар. При этом нельзя допускать, чтобы давление выключения превышало максимально допустимое давление, которое возникает на участке выхода трубопровода из насоса.

Нередкой ошибкой, влияющей на работу насосной станции, является не учет всей суммы горизонтальных и вертикальных участков, а также гидравлических потерь при транспортировке воды к точкам водоразбора

#3: Настройка рекомендуемых параметров

Прежде чем изменять настройки, необходимо зафиксировать прежние показатели с помощью манометра. Включив насос, записывают значения давления в момент выключения и включения. Это поможет определить, в какую сторону проводить регулировку — в сторону уменьшения или увеличения.

Необходимо помнить, что любое изменение установленного порога давления в реле требует также соответствующих изменений и в воздушном отделении гидроаккумулятора

Дальнейшие действия имеют следующую очередность:

  1. Отключают станцию от питания, спускают воду и открывают крышку реле гаечным ключом.
  2. Давление включения насоса регулируют путем вращения гайки, которая держит большую пружину (Р). Закручивая ее по направлению хода часовой стрелки, добиваются сжатия пружины и установки необходимого давления включения. В различных моделях устройства допустимые показатели могут колебаться от 1,1 до 2,2 бар.
  3. Вращением маленькой гайки (∆Р) по направлению движения часовой стрелки можно увеличить разрыв между значением давления отключения и включения устройства, который обычно равен 1 бар. Таким образом давление выключение удается зафиксировать на значениях в диапазоне от 2,2 бар до 3,3 бар.

Важным нюансом является то, что малая пружина не регулирует порог отключения, как некоторые ошибочно понимают.

Она задает именно дельту между значениями включения станции, и ее отключением. То есть, полностью ослабленная пружина не создаст разности — дельта будет равна нулю и значения включения и выключения будут одинаковыми. Но чем больше ее затягивать, тем большей будет разница между ними.

Малая пружина реле давления отличается большей чувствительностью, и сжимать ее нужно крайне осторожно

Проверяют правильность выставленных показателей с помощью манометра. Если не удалось достигнуть требуемых значений с первой попытки, регулировку продолжают.

#4: Выбор нестандартных значений давления

Можно установить иной уровень давления в приборе, отличный от рекомендаций производителя, подстроив оборудование под индивидуальные запросы пользователя. Увеличивая диапазон при включении-отключении, добиваются более редких срабатываний станции.

Это делает службу устройства продолжительней, но придает напору воды неравномерный характер. Уменьшая разницу, добиваются стабильного напора, но так насос будет срабатывать чаще.

Выводы и полезное видео по теме

Как отрегулировать давление станции, продемонстрирует видео:

Видеоролик о том, что делать, если станция часто срабатывает:

Проводя самостоятельную регулировку насосной станции, необходимо учитывать, что иногда изменения заводских рекомендаций могут ухудшить работу водопроводной системы. Насос, шланги, сантехнические приборы — все имеют предельные значения давления, нарушение которых, приведет к поломкам. Поэтому прежде, чем приступать к самостоятельным действиям, лучше попросить совета у опытного специалиста.

Оставляйте, пожалуйста, комментарии в расположенном ниже блоке. Делитесь личным опытом в установке и эксплуатации насосных станций, а также в выполнении их настройки. Задавайте вопросы, сообщайте о недочетах в тексте, размещайте фото по теме статьи.

Расход, давление и производительность насоса

Кривая производительности насоса суммирует возможности и требования данного насоса. Производители используют множество форматов, но все кривые насоса показывают наиболее важные параметры. К ним относятся напор, требуемый напор и требуемая мощность во всем доступном диапазоне расхода.

Заинтересованы в Stormwater?

Получайте статьи, новости и видео о Stormwater прямо в свой почтовый ящик! Войти Сейчас.

Ливневая вода + Получать оповещения

Проектирование насосной станции — распространенный муниципальный проект. Однако не следует путать простоту и простоту.

Для насосных станций не существует единой оптимальной конструкции. Производительность насосов, тип станции, стратегия управления и множество других факторов способствуют изменению конструкции. Операторы и менеджеры должны знать особенности проектирования станций, чтобы обеспечивать руководство и надзор за проектировщиками.

Насосные станции следует рассматривать как системы. Насосы могут быть наиболее важными элементами, но они не будут работать без электрических, структурных компонентов и компонентов HVAC. Чтобы насосная станция работала успешно, необходимо согласовать отношения между этими компонентами.

Между насосными станциями питьевой, ливневой и сточной воды есть сходство, но есть и различия. В этой статье речь пойдет о перекачке сточных вод.

Определение скорости потока

Первой задачей проектирования является определение расхода, который должна обеспечивать насосная станция.Обычно это означает определение диапазона потоков, поскольку насосные станции должны учитывать значительные колебания спроса. Производительность обычно выражается в галлонах в минуту.

Расчет обычно начинается со среднесуточного расхода. Это номинальный расход, который станция должна обеспечить в конце своего расчетного срока службы. Немногие насосные станции работают со среднесуточным расходом в течение длительного периода времени. Большинство станций рассчитаны на мощность, превышающую текущий ADF. Конструкция станции предназначена для удовлетворения растущих требований к мощности — часто на 20 лет вперед.В первые годы эксплуатации требуемый расход обязательно будет намного ниже — большинство насосных станций работают с одной третью расчетного расхода.

Суточные колебания расхода — это реальность при перекачивании воды и сточных вод. Пиковый расход в засушливую погоду обычно вдвое превышает среднесуточный расход. Колебания расхода на водонасосных станциях обычно меньше, чем на перекачке сточных или ливневых вод.

Дождь и таяние снега, очевидно, определяют размер насосных станций ливневых вод, но они также являются важным фактором при перекачке сточных вод. Приток и инфильтрация обычно определяют максимальную производительность перекачки. Соотношение между средним суточным расходом и пиковой производительностью называется коэффициентом пика. Обычны четыре или пять факторов, а в общинах со старыми или комбинированными коллекторами используются коэффициенты до восьми.

Изменение производительности или минимальный расход, который система может обеспечить в процентах от максимального расхода, может иметь решающее значение. Оценка потока должна включать ADF, дневной минимум и максимум, а также максимальный часовой поток.Изменения могут быть компенсированы прерывистой работой насоса. Однако следует избегать насосов увеличенного размера, поскольку они приводят к чрезмерному количеству циклов пуска / останова. Большие насосы более подвержены поломкам из-за частого запуска.

Количество насосов

Регулирующие органы требуют, чтобы насосная станция включала резервные (резервные) насосы. Это означает, что при выходе из строя самого большого насоса оставшиеся насосы должны иметь производительность, позволяющую обеспечить максимальную почасовую подачу. Поскольку один насос, как правило, не может достичь необходимого диапазона изменения, в большинстве конструкций используется несколько небольших насосов вместо большого насоса и идентичного резервного.Стоимость нескольких насосов компенсируется, потому что каждый насос дешевле, чем большой.

Небольшие насосные станции часто бывают «дуплексными» с двумя насосами постоянной скорости. Каждый насос способен обрабатывать пиковый почасовой расход.

Напор

Вторая характеристика для выбора насоса — это напор насоса или давление нагнетания. Термин «напор» происходит от высоты воды, которую насос может преодолеть при заданном расходе, обычно выражаемой в футах водяного столба (1 фут водяного столба = 0.43 фунта на кв. Дюйм = 6,3 бар). Операторы часто думают, что напор — это давление нагнетания в насосе, но на производительность насоса влияет множество различных аспектов напора (рис. 1).

Разница в напоре от всасывания до нагнетания определяет производительность и мощность насоса. Это называется полным динамическим напором.

hfs, d = потеря напора на трение во всасывающем и напорном трубопроводах (футы)
ht = общий статический напор; разница в высоте воды на напорной и всасывающей сторонах насоса (футы)

Важно помнить, что насосы производят поток, но сопротивление системы потоку создает напор.Насос с отсоединенной напорной трубой будет производить большой поток, но не давление.

Два компонента TDH, которым уделяется наибольшее внимание при перекачивании, — это статический напор и напор трения на нагнетании. Статический напор — это высота воды на стороне нагнетания насоса за вычетом высоты воды на стороне всасывания насоса. Для большинства приложений статический напор почти постоянный.

Напор трения возникает из-за сопротивления воде, движущейся по трубам и фитингам.Потери на трение возникают как на стороне всасывания, так и на стороне нагнетания насоса. Потери на трение изменяются в зависимости от квадрата скорости воды и размера трубы, обратной величине пятой степени.

В некоторых приложениях, таких как головные части очистных сооружений, статический напор является самым большим компонентом TDH. В других случаях, например при прокачке через длинную силовую магистраль, более важен напор трения. Относительные пропорции статического напора и фрикционного напора будут влиять на стратегию управления насосом и характеристики энергопотребления системы.

Два обычно игнорируемых, но важных компонента напора на стороне всасывания насоса — это требуемый чистый положительный напор на всасывании и имеющийся чистый положительный напор на всасывании. Требуемый напор зависит от конструкции насоса. Это установлено испытаниями производителя и отображается на кривой насоса. Доступный и необходимый напор — это абсолютное давление относительно вакуума.

В большинстве муниципальных насосных систем всасывающий патрубок затоплен. Это означает, что уровень воды в мокром колодце выше всасывающего патрубка насоса.Это одна из составляющих имеющейся головки. Другой — атмосферное давление. На уровне моря это составляет 14,7 фунтов на квадратный дюйм (14,7 фунтов на квадратный дюйм = 1,01 бар = 33,9 футов вод. Ст.). По мере увеличения высоты площадки барометрическое давление снижается.

Давление пара — это давление, при котором вода закипает при данной температуре. Давление пара увеличивается с повышением температуры воды с соответствующим уменьшением доступного напора.

pa = барометрическое давление (psia)
Y = удельный вес воды, 62.4 фунта-силы / фут3
hfs = потери на трение во всасывающем трубопроводе (футы)
hts = высота воды выше (+) или ниже (-) всасывания насоса (футы)
pv = давление водяного пара при температуре всасывания (фунт / кв.дюйм)

Эксплуатация насоса, когда доступный напор ниже требуемого, может привести к повреждению насоса. Всегда должен обеспечиваться запас прочности между рассчитанным доступным напором и требуемыми изготовителем значениями напора.

Кривая производительности насоса

Кривая производительности насоса суммирует возможности и требования данного насоса (рисунок 2). Производители используют множество форматов, но все кривые насоса показывают наиболее важные параметры. К ним относятся напор, требуемый напор и требуемая мощность во всем доступном диапазоне расхода. Большинство кривых насоса показывают производительность при различных скоростях или диаметрах рабочего колеса.

Кривая насоса не определяет фактическую рабочую точку насоса. Для этого необходимо построить кривую системы (TDH в зависимости от расхода) на кривой насоса. Их пересечение определяет фактический поток.

Когда два насоса работают параллельно, в результате расход не увеличивается вдвое. Статический напор остается постоянным. Однако напор трения увеличивается, что «толкает» рабочий поток ниже. Построение кривой системы с потерями на трение при удвоенном расходе позволяет определить новую рабочую точку.

Смотря вперед

Определение производительности и производительности насоса является первым и наиболее важным шагом при проектировании насосной станции. После определения требований к насосу можно продолжить процесс проектирования станции и ее вспомогательных компонентов.Они будут рассмотрены во второй и третьей частях этой серии.

2 Основные расчеты

2.2.1 Определение размеров насосной станции Рутса

Сначала требуются различные предварительные соображения. определение размеров насосной станции Рутса.

Степень сжатия

Степень сжатия $ K_0 $ e насоса Рутса обычно составляет от 5 до 70. Чтобы определить это соотношение, сначала рассмотрим объем перекачиваемого газа и обратного потока за счет проводимости $ C_R $, а также возврат газа из разрядной камеры на скорость откачки $ S_R $:

\ [p_a \ cdot S = p_a \ cdot S_0 — C_R \ влево (p_v-p_a \ right) -S_R \ cdot p_v \]

Формула 2-1: Газовая нагрузка насоса Рутса

S $ Объемный расход (скорость откачки)
$ S_0 $ Теоретическая скорость откачки на стороне всасывания
$ S_R $ Скорость откачки возвратного газа
$ C_R $ Электропроводность
$ за $ Давление на входе
$ п_в $ Поддерживающее вакуумное давление

Выбирая $ S $ равным 0, получаем сжатие соотношение

\ [\ frac {p_a} {p_v} = K_0 = \ frac {S_0 + C_R} {C_R + S_R} \]

Формула 2-2: Степень сжатия насоса Рутса

В случае ламинарного потока проводимость значительно увеличивается. больше скорости откачки обратного потока.Это упрощает Формула 2-2 до

\ [K_0 = \ frac {S_0} {C_R} \]

Formula 2-3: Степень сжатия насоса Рутса для ламинарный поток

В диапазоне молекулярных потоков скорость откачки все еще самая высокая. на стороне всасывания, но скорость откачки обратного потока теперь значительно больше, чем проводимость. Степень сжатия составляет следовательно:

\ [K_0 = \ frac {S_0} {S_R} \]

Formula 2-4: Степень сжатия насоса Рутса для молекулярный поток

При ламинарном потоке (высокое давление) степень сжатия равна ограничивается обратным потоком через щель между долями корня и Корпус.Поскольку проводимость пропорциональна среднему давлению, степень сжатия будет уменьшаться с ростом давления.

В диапазоне молекулярных потоков поток возвратного газа $ S_R \ cdot p_v $ из сторона нагнетания преобладает и ограничивает степень сжатия к низкому давлению. Из-за этого эффекта использование насосов Рутса ограничено давлением $ p_a $ более 10 -4 гПа.

Скорость откачки

Насосы

Рутса оснащены перепускными клапанами, которые позволяют максимально перепад давления $ \ Delta p_d $ от 30 до 60 гПа на насосы.Если насос Рутса комбинируется с подкачивающим насосом, различие должно выполняться между диапазонами давления при открытом перепускном клапане ($ S_1 $) и закрытые ($ S_2 $).

Так как расход газа одинаков в обоих насосах (насос Рутса и подкачивающий насос) применяется следующее:

\ [S_1 = \ frac {S_V \ cdot p_v} {p_v \ cdot \ Delta p_d} \]

Формула 2-5: Скорость откачки насосной станции Рутса при открытом перепускном клапане и высоком форвакуумном давлении

$ S_1 $ Скорость откачки при открытом перепускном клапане
$ S_V $ Скорость откачки форвакуумного насоса
$ п_в $ Давление форвакуума
$ \ дельта п_д $ максимальный перепад давления между давлением и сторона всасывания насоса Рутса

Пока перепад давления значительно меньше чем давление форвакуума, скорость откачки Станция будет лишь немного выше, чем у форвакуумного насоса.В качестве поддерживающее вакуумное давление приближается к перепаду давления, переполнение клапан закроется и подаст

\ [S_1 = \ frac {S_0} {1- \ frac {1} {K_0} + \ frac {S_0} {K_0 \ cdot S_V}} \]

Формула 2-6: Скорость откачки насосной станции Рутса при закрытом перепускном клапане и давлении форвакуума, близком к перепад давления

Рассмотрим теперь частный случай работы насоса Рутса. против постоянного давления (например,грамм. конденсаторный режим). Формула 2-3 будет применяться в диапазоне высокого давления. Используя значение $ C_R $ в Формула 1 и без учета обратного потока $ S_R $ против проводимости value $ C_R $ получаем:

\ [S = S_0 \ cdot \ left [1- \ frac {1} {K_0} \ left (\ frac {p_v} {p_a} -1 \ right) \ right] \]

Формула 2-7: Скорость откачки насосной станции Рутса при высоком давлении всасывания

При низких давлениях используется $ S_R $ из Формулы 2-4, и мы получаем

\ [S = S_0 \ cdot \ left (1- \ frac {p_v} {K_0 \ cdot p_a}) \ справа) \]

Формула 2-8: Скорость откачки насосной станции Рутса при низком давлении всасывания

Из формулы 2-6 видно, что $ S $ стремится к $ S_0 $, если степень сжатия $ K_0 $ значительно больше, чем степень сжатия между теоретической скоростью откачки насоса Рутса $ S_0 $ и скорость форвакуумной откачки $ S_V $.

Выбор степени сжатия, например, равной 40 и скорость откачки насоса Рутса в 10 раз больше, чем у подкачки, то получаем $ S $ = 0.816 $ \ cdot S_0 $

Для настройки на насосную станцию поэтому теоретическая скорость откачки насоса Рутса не должна более чем в десять раз превышает скорость откачки основы насос.

Поскольку перепускные клапаны настроены на перепады давления около 50 гПа, практически только объемный расход форвакуумного насоса эффективен при давлении более 50 гПа.Если большие суда должны быть откачивается до 100 гПа в течение заданного периода времени, например, должен быть выбран форвакуумный насос подходящего размера.

Рассмотрим на примере насосной станции, которая должна откачивать сосуд объемом 2 м³ до давления 5 · 10 -3 гПа за 10 минут. Для этого мы выбрал бы форвакуумный насос, который может откачать резервуар до 50 гПа в 5 минут. Следующее действует при постоянном объемном расходе:

\ [t_1 = \ frac {V} {S} \ mbox {ln} \ frac {p_0} {p_1} \]

Formula 2-9: Время откачки

S $
$ t_1 $ Время откачки подкачивающего насоса
$ V $ Объем сосуда
$ Скорость откачки форвакуумного насоса
$ p_0 $ Начальное давление
$ p_1 $ Конечное давление

Переставив Формулу 2-9, мы можем вычислить необходимое скорость откачки:

\ [S = \ frac {V} {t_1} \ mbox {ln} \ frac {p_0} {p_1} \]

Формула 2-10: Расчет скорости откачки

Используя приведенные выше числовые значения, получаем:

\ [S = \ frac {2,000 l} {300 s} \ mbox {ln} \ frac {1,000} {50} = 20 \ frac {l} {s} = 72 \ frac {m ^ 3} {h} \]

Выбираем Hepta 100 со скоростью откачки $ S_V $ = 100 м³ ч -1 как подкачивающий насос.Используя ту же формулу, оценим, что скорость откачки насоса Рутса составит 61 л с -1 = 220 м³ ч -1 , и выберите Okta 500 со скоростью откачки $ S_0 $ = 490 м³ ч -1 и давление перепускного клапана дифференциал $ \ Delta p_d $ = 53 гПа для среднего вакуума.

Из приведенной ниже таблицы мы выбираем указанные значения давления форвакуума. в столбце $ p_v $ используйте соответствующие скорости откачки $ S_V $ для Hepta 100 по кривой скорости откачки и рассчитайте пропускная способность: $ Q = S_V \ cdot p_v $.

степень сжатия $ K_ \ Delta = \ frac {p_v + \ Delta p_d} {p_v} $

рассчитан на открытый перепускной клапан до форвакуума. давление 56 гПа. $ K_0 $ для форвакуумных давлений ≤ 153 гПа составляет взято из рисунка 2.1. Есть два способа рассчитать прокачку скорость насоса Рутса:

$ S_1 $ можно получить из Формулы 2-5 для открытого переполнения клапан, или $ S_2 $ по формуле 2-6 для закрытого перелива клапан.

Рисунок 2.2: Объемный расход (скорость откачки) насосная станция с Hepta 100 и Okta 500

Когда давление форвакуума приближается к перепаду давления $ \ Delta p_d $, $ S_1 $ будет больше $ S_2 $. Меньшая из двух перекачивающих скорости всегда будут правильными, которые мы обозначим как $ S $. Давление на входе рассчитывается по формуле:

.

$ p_a = \ frac {Q} {S}

$

Рисунок 2.2 показан график скорости откачки для этой перекачки. станция.

Рисунок 2.1: Степень сжатия без нагрузки для воздуха с Насосы Рутса

P a / гПа P v / гПа S v / (м 3 / ч) Q / (гПа · м 3 / ч) К $ \ Delta $ К 0 S 1 / (м 3 / ч) S 2 / (м 3 / ч) т / ч т / с
Время откачки: 344.94 с
1,000.0000 1 053,00 90,00 94 770,00 1,05 94,77 0,00490 17,66
800.0000 853,00 92,00 78 476,00 1,07 98.10 0,00612 22,04
600.0000 653,00 96,00 62 688,00 1,09 104,48 0,00827 29,79
400.0000 453,00 100,00 45 300.00 1,13 113,25 0,01359 48,93
200.0000 253,00 104,00 26 312,00 1,27 131,56 0,00652 23,45
100.0000 153,00 105,00 16 065,00 1,53 7,00 160,65 321,56 0,00394 14,18
50,0000 103,00 105,00 10 815,00 2,06 13,00 216.30 382,20 0,00608 21,87
14.9841 56,00 110,00 6 160,00 18,70 18,00 2 053,33 411,10 0,00822 29,58
2,5595 10,00 115.00 1 150,00 36,00 449,30 0,01064 38,30
0,2300 1,00 105,00 105,00 50,00 456,52 0,00670 24,13
0.0514 0,30 75,00 22,50 46,00 437,39 0,00813 29,27
0,0099 0,10 37,00 3,70 40,00 375,17 0.00673 24,23
0,0033 0,06 15,00 0,90 39,00 270,42 0,00597 21,51
0,0018 0,05 5,00 0,25 37.00 135,29

Таблица 2.1: Скорость откачки насосной станции Рутса и время откачки

Время откачки

Время откачки резервуара рассчитывается индивидуально. шаги. На участках с сильным изменением скорости откачки форвакуум интервалы давления должны быть настроены близко друг к другу.Формула 2-9 — это используется для определения времени откачки в течение интервала, с $ S $ используется как среднее значение двух скоростей откачки для расчетный интервал давлений. Общее время откачки будет суммой всех времен в последнем столбце Таблицы 2-1.

На время откачки дополнительно влияет скорость утечки вакуумной системы, проводимость трубопроводов и испаряющихся жидкостей, которые присутствуют в вакуумной камере, а также как дегазация пористых материалов и загрязненных стен.Некоторые из эти факторы будут обсуждаться в разделах 2.2.3.1 и 2.3. Если любой из вышеупомянутые влияния неизвестны, необходимо будет обеспечить соответствующие резервы в насосной станции.

Контроль помпажа на насосных станциях

В данном учебном пособии представлены основные принципы контроля помпажа и функции различных клапанов, связанных с насосными станциями.

Водопроводы и распределительные системы почти ежедневно подвергаются скачкам напряжения, которые со временем могут привести к повреждению оборудования и самого трубопровода.Скачки вызваны внезапными изменениями скорости жидкости и могут быть от нескольких фунтов на квадратный дюйм до пятикратного статического давления. Будут обсуждены причины и последствия этих скачков в насосных системах, а также оборудование, предназначенное для предотвращения и рассеивания скачков. Будет сделана ссылка на типовые установки и примеры, чтобы можно было понять применимые ограничения.

На рис. 1 показана типичная система перекачки / распределения воды, в которой два параллельных насоса забирают воду из мокрого колодца, а затем перекачивают воду через обратные клапаны и дроссельные заслонки в коллектор и распределительную систему насоса.Расширительный бак и предохранительный клапан показаны как возможное оборудование на коллекторе насоса для снятия и предотвращения скачков. Каждый из них будет рассмотрен более подробно.

Причины и последствия

Скачки вызваны внезапными изменениями скорости потока, которые являются результатом общих причин, таких как быстрое закрытие клапана, запуск и остановка насоса, а также неправильная практика заполнения. Трубопроводы часто сталкиваются с первым всплеском во время заполнения, когда воздух, выпускаемый из трубопровода, быстро выходит через ручной выпускной клапан или дроссельный клапан, за которым следует вода.

Будучи во много раз более плотной, чем воздух, вода следует за воздухом к выпускному отверстию с высокой скоростью, но ее скорость ограничена выпускным отверстием, тем самым вызывая выброс. Крайне важно, чтобы скорость потока наполнения тщательно контролировалась, а воздух выпускался через автоматические воздушные клапаны надлежащего размера. Точно так же линейные клапаны должны закрываться и открываться медленно, чтобы предотвратить резкие изменения расхода.

Работа насосов и внезапная остановка насосов из-за перебоев в подаче электроэнергии, вероятно, имеют наиболее частое воздействие на систему и наибольшую вероятность возникновения значительных скачков напряжения.Если насосная система не контролируется или не защищена, загрязнение и повреждение оборудования и самого трубопровода могут быть серьезными.

Последствия скачков напряжения могут быть как незначительными, например ослабление стыков труб, так и серьезными, например, повреждением насосов, клапанов и бетонных конструкций. Поврежденные соединения труб и условия вакуума могут вызвать загрязнение системы грунтовыми водами и обратным потоком. Неконтролируемые скачки также могут иметь катастрофические последствия. Разрывы линий могут вызвать затопление, а смещение линии может вызвать повреждение опор и даже бетонных опор и сводов.Убытки могут исчисляться миллионами долларов, поэтому очень важно понимать и контролировать скачки с помощью соответствующего оборудования.

Фон перенапряжения

Будут представлены некоторые из основных уравнений теории помпажа, чтобы можно было получить представление об оборудовании для контроля помпажа. Во-первых, импульсное давление (H), возникающее в результате мгновенной остановки потока, прямо пропорционально изменению скорости и может быть рассчитано следующим образом:

H = средн. / Г

где:

H = импульсное давление, фут водяного столба

a = скорость волны давления, фут / с

v = изменение скорости потока, фут / с

г = плотность, 32.2 фут / с2

Скорость волны давления (а) зависит от жидкости, размера трубы и материала трубы. Для стальной линии среднего размера это значение составляет около 3500 футов / с. Для труб из ПВХ скорость будет намного меньше. Для 12-дюймовой стальной линии с водой, протекающей со скоростью 6 футов / с, величина скачка от мгновенной остановки потока составляет:

H = (3500 фут / с) (6 фут / с) / (32 фут / с2)

H = 656 футов водяного столба

Это импульсное давление 656 футов (285 фунтов на кв. Дюйм) в дополнение к статическому давлению в трубопроводе; следовательно, результирующее давление, вероятно, превысит номинальное давление системы.Кроме того, это высокое давление будет поддерживаться в течение нескольких секунд, поскольку волна отражается от одного конца системы трубопроводов к другому концу, вызывая избыточное давление в уплотнениях труб и фитингов. Затем после отражения волна давления может вызвать отрицательное давление и вакуумные карманы на несколько секунд, позволяя загрязненным грунтовым водам попадать в систему через уплотнения или соединения.

В системах с длинными трубопроводами достигаются даже более высокие скорости, чем скорость откачки.Если насосы внезапно останавливаются из-за сбоя питания, кинетическая энергия воды в сочетании с низкой инерцией насоса может вызвать разделение водяного столба в насосе или в высокой точке трубопровода. Когда водяные столбы возвращаются через статический напор линии, обратная скорость может превышать нормальную скорость. Результирующее импульсное давление может быть даже выше, чем рассчитанное выше 656 футов.

Компьютерные программы анализа переходных процессов обычно используются для прогнозирования разделения колонок и фактических скоростей обратного потока и скачков.переходные программы могут также моделировать методы, используемые для управления разделением колонок, такие как использование расширительного бака, вакуумного прерывателя или воздушного клапана. Эти решения будут рассмотрены более подробно.

До сих пор изменения скорости описывались как «внезапные». Насколько внезапными должны быть изменения скорости, чтобы вызвать скачки? Если изменение скорости происходит в течение периода времени, волна давления пройдет по длине трубопровода и вернется, изменение скорости можно считать мгновенным, и применимо уравнение для импульсного давления (S), приведенное ранее.Этот период времени, часто называемый критическим периодом, можно рассчитать по уравнению:

т = 2 л / год

где:

t = критический период, с

L = длина трубы, фут

a = скорость волны давления, фут / с

Для более раннего примера 12-дюймовой линии критический период для стального трубопровода длиной 4 мили будет следующим:

t = 2 (21 120 футов) / (3500 фут / сек)

t = 12 сек

Чтобы вызвать скачки, насос не должен останавливаться быстро, а клапан не должен закрываться мгновенно (или даже внезапно).Обычная остановка потока на 5 или 10 секунд может вызвать максимальный скачок в длительных насосных системах. Отсюда следует, что стратегии борьбы с помпажами должны применяться на всех протяженных трубопроводах.

Насосы

Снова обращаясь к рисунку 1, ключом к управлению скачками в насосных системах является управление скоростью увеличения и уменьшения скорости потока в системе. Насосы должны быть рассчитаны на ожидаемый расход. Для удовлетворения различных потребностей в воде можно использовать несколько насосов.Негабаритные насосы могут нанести ущерб некоторым насосным системам.

Доступны специальные системы управления двигателем насоса для медленного разгона и торможения насосов путем управления электрическим приводом насоса. Эти системы контролируют подачу и могут предотвратить скачки напряжения во время нормальной работы насоса. Однако после сбоя питания органы управления двигателем перестают работать, и насос немедленно отключается и вызывает внезапную остановку потока.

В некоторых конструкциях насосных станций используется несколько насосов, поэтому, когда один из насосов запускается или останавливается, остановленный насос оказывает незначительное влияние на общую скорость в трубопроводе.Однако эти станции также сталкиваются с серьезными последствиями перебоя в электроснабжении. Почти все насосные системы нуждаются в дополнительном импульсном оборудовании для предотвращения скачков напряжения после сбоя питания.

Вертикальные насосы и воздушные клапаны для обслуживания скважин

Вертикальные насосы, как показано на Рисунке 2, поднимают воду из резервуара или колодца в трубопровод. Когда насос выключен, уровень всасываемой воды ниже напорной трубы насоса. Колонна насоса наполняется воздухом после каждой остановки насоса.

Воздушные клапаны играют важную роль в автоматическом удалении воздуха из колонны насоса и контроле скачков давления в колонне насоса. Если вертикальный турбинный насос запускается без воздушного клапана, воздух в насосной колонне будет сжат и выдавлен через обратный клапан в трубопровод, вызывая проблемы, связанные с воздухом. Воздушные клапаны для нагнетания насоса, называемые воздушными клапанами для обслуживания скважины, похожи на воздушные / вакуумные клапаны, но оснащены либо дросселирующим устройством, либо устройством, препятствующим захлопыванию, и предназначены для выпуска воздуха при запуске насоса и впуска воздуха за насосом. неисправность.

Как показано на Рисунке 3, воздушный клапан для обслуживания скважины представляет собой нормально открытый поплавковый клапан, который быстро сбрасывает воздух из колонны насоса. Когда вода попадает в клапан, поплавок автоматически поднимается и закрывается, чтобы предотвратить слив воды.

Дроссельные устройства предусмотрены на выходе 3-дюймовых и меньших клапанов для управления скоростью выпуска воздуха, особенно с медленно открывающимися регулирующими клапанами насоса. Дросселирующее устройство регулируется с помощью внешнего винта для замедления подъема воды в колонне насоса.Однако после отключения насоса второй порт в верхней части дроссельного устройства обеспечивает полный поток в колонну насоса для сброса вакуума. Дросселирующее устройство с двумя портами важно, поскольку оно обеспечивает полный вакуумный поток и предотвращает попадание загрязненной воды в трубопровод, что может произойти, если устройство имеет общее выхлопное и вакуумное соединение.

Когда регулирующий клапан насоса с механическим приводом используется с вертикальным насосом, можно использовать выпускной воздушный клапан, оборудованный вакуумным прерывателем, как показано на Рисунке 4.В этом случае запускается насос, и открытие регулирующего клапана задерживается на несколько секунд, так что выпускной воздушный клапан может медленно вытеснять воздух через небольшое отверстие.

Во время процесса колонна насоса будет находиться под давлением до запорной головки насоса и вытеснять воздух под высоким давлением. На мгновение захваченный воздух будет действовать как подушка, чтобы контролировать подъем воды в колонне насоса. Размер отверстия клапана позволяет регулировать подъем воды до безопасной скорости, обычно 2 фута / с.

Обратные клапаны

Еще одним ключевым элементом конструкции насосной системы является правильный выбор и работа обратного клапана нагнетания насоса. Каждый проектировщик насосной станции сталкивался с захлопыванием обратного клапана, которое вызвано внезапной остановкой обратного потока через закрывающий обратный клапан. Во избежание захлопывания обратный клапан должен закрываться очень быстро или очень медленно. Все, что находится посередине, — это нейтральная зона и повод для беспокойства.Но не менее важно, что клапан должен защищать насосную систему и трубопровод от внезапных изменений скорости, если это находится в пределах его функциональных возможностей. Обратный клапан также должен быть надежным и обеспечивать низкие потери напора.

Мы подробно рассмотрим две категории обратных клапанов. Первые, быстрозакрывающиеся обратные клапаны, представляют собой общую категорию обратных клапанов, которые работают автоматически менее чем за секунду и без использования внешнего источника питания или сигналов от насосной системы.Другая категория — это регулирующие клапаны насоса, которые работают очень медленно (например, от 60 до 300 секунд), чтобы тщательно контролировать изменения скорости жидкости в трубопроводе.

Быстро закрывающиеся обратные клапаны

Быстро закрывающиеся обратные клапаны просты, автоматичны и экономичны, но часто страдают от проблемы с захлопыванием обратного клапана и, как следствие, скачком давления в системе. Если замедление прямого потока можно оценить, например, с помощью анализа переходных процессов в насосной системе, можно спрогнозировать потенциал захлопывания различных обратных клапанов.Затем будут представлены несколько вариантов клапанов без гидрораспределителя, а характеристики производительности и затраты могут быть использованы для выбора наилучшего обратного клапана для конкретного применения.

Самый распространенный тип обратного клапана — это традиционный поворотный обратный клапан. Поворотные обратные клапаны определены в AWWA C508 для гидротехнических сооружений и предназначены для быстрого закрытия, чтобы предотвратить обратное вращение насоса во время реверсирования потока.

Традиционные поворотные обратные клапаны имеют седла под углом 90 градусов с длинным ходом и подвержены ударам.Таким образом, эти клапаны снабжены широким спектром принадлежностей, которые выходят за рамки стандарта AWWA C508. Наверное, самый распространенный аксессуар — это рычаг и грузик. Хотя обычно предполагается, что вес заставляет клапан закрываться быстрее, на самом деле он уменьшает захлопывание, ограничивая ход диска, но, в свою очередь, вызывает значительное увеличение потери напора. Закрытие клапана также замедляется инерцией самого веса и трением набивки штока.

В более тяжелых условиях иногда используется воздушная подушка, чтобы замедлить воздействие закрытия клапана.Все видели, насколько эффективно работает воздушная подушка при хлопке штормовой двери. Но условия в трубопроводе существенно другие.

Когда дверь захлопывается, ее импульс плавно поглощается воздушным цилиндром, потому что по мере замедления движения двери силы от закрывающей пружины и внешнего ветра становятся все меньше и меньше. И наоборот, когда обратный клапан в трубопроводе закрывается, обратный поток ускоряется с огромной скоростью, поэтому каждую долю секунды, когда закрытие клапана задерживается, силы на диске будут увеличиваться на порядок.

Хотя это может быть правдой, что воздушная подушка предотвращает столкновение диска с седлом клапана в витрине с продукцией, на практике воздушная подушка просто удерживает диск открытым достаточно долго для того, чтобы обратный поток усилился и еще сильнее ударьте диск по седлу. Поскольку воздушные подушки основаны на использовании воздуха (который является сжимаемым), они не обеспечивают принудительного ограничения закрывающего диска и не могут противодействовать огромным силам, создаваемым обратным потоком.В целом, наилучшая настройка воздушной подушки обычно происходит при полностью открытом выпускном игольчатом клапане и выпуске воздуха с максимальной скоростью.

Гораздо более эффективным аксессуаром для управления движением обратного клапана поворота является масляная подушка, также называемая масляной заслонкой. Поскольку масло несжимаемо, масляная подушка будет выдерживать большие силы, оказываемые на диск обратным потоком, и должным образом контролировать последние 10 процентов закрытия клапана. Однако насос должен быть способен к некоторому значительному обратному потоку, потому что масляный бачок позволит обратному клапану пропускать часть потока обратно через насос.

Поскольку силы обратного потока на тарелке клапана чрезвычайно высоки, давление масла часто превышает 2000 фунтов на кв. Дюйм, из-за чего клапаны с этими устройствами становятся дорогостоящими. Масляный цилиндр высокого давления стоит дорого, и, поскольку он подвергает шток клапана высоким нагрузкам, часто требуется специальный обратный клапан. Поскольку насосы могут выдерживать только такое количество обратного потока, время закрытия дашпотов обычно ограничивается 1–5 секундами. Если в трубопроводе есть мусор или сточные воды, обратный клапан с масляной подушкой может действовать как экран в условиях обратного потока и быстро забивать трубопровод.

Еще лучшим решением является выбор обратного клапана, который закрывается до того, как разовьется значительный обратный поток, тем самым предотвращая захлопывание. Одним из таких клапанов является подпружиненный «бесшумный» обратный клапан (SCV) с центральной направляющей, как показано на рисунке 6. SCV почти защищен от взлома из-за его короткого линейного хода (1/4 диаметра), расположения клапана диск в потоке и сильная пружина сжатия. Однако выбор бесшумного обратного клапана имеет несколько недостатков, таких как высокая потеря напора, отсутствие индикации положения и ограничение применения чистой воды.

На другом конце спектра находится обратный клапан Tilted Disc® (TDCV). TDCV, показанный на Рисунке 7, имеет самые низкие потери напора, поскольку площадь его порта составляет 140 процентов от размера трубы, а его диск похож на диск дроссельной заслонки, где потоку позволяют проходить по обеим сторонам диска. Этот клапан имеет надежные металлические седла и может быть оснащен масляными коллекторами, установленными сверху или снизу, для обеспечения эффективных средств управления клапаном и минимизации помпажа.Он полностью автоматический и не требует внешнего питания или электрического подключения к системе управления насосом.

Другой вариант — обратный клапан с упругим диском, называемый обратным клапаном Swing-Flex® (SFCV). Единственная движущаяся часть SFCV — это гибкий диск. Этот клапан имеет 100-процентный канал, наклоненный под углом 45 градусов, что обеспечивает короткий ход 35 градусов, быстрое закрытие и низкую потерю напора. Он также доступен с механическим индикатором положения и концевыми выключателями. Surgebuster® (SB) имеет еще более быстрое закрытие благодаря добавлению дискового ускорителя, обеспечивающего характеристики закрытия SB, аналогичные бесшумному обратному клапану.

Имея все возможности обратного клапана, один доступен для каждой системы с низкой потерей напора и безударной работой. Характеристики закрытия всех типов обратных клапанов показаны для различных замедлений системы на рис. 9. Клапаны, кривые которых наиболее правы, имеют лучшие характеристики без захлопывания.

Регулирующие клапаны насоса

Даже несмотря на то, что обратный клапан с быстрым закрытием может предотвратить захлопывание, он не может полностью защитить насосные системы с длительными критическими периодами от изменений скорости во время запуска и остановки насоса.Для насосных систем с длительным критическим периодом часто используется регулирующий клапан насоса. Клапан управления насосом подключен к контуру насоса и обеспечивает регулируемое время открытия и закрытия сверх критического периода времени системы. Клапаны управления насосом имеют гидравлическое управление, поэтому движение запорного элемента клапана (т. Е. Диска дроссельной заслонки) не зависит от потока или давления в линии. Кроме того, большинство используемых сегодня насосов имеют низкую инерцию вращения и останавливаются менее чем за 5 секунд.

Регулирующий клапан насоса может быстро закрываться при отключении электроэнергии или отключении насоса для защиты насоса. Однако, когда требуется быстрое закрытие, потребуется дополнительное оборудование для перенапряжения, как объясняется в следующем разделе. Однако сначала будут представлены критерии выбора регулирующих клапанов насоса.

Список возможных регулирующих клапанов насоса длинный, потому что многие клапаны могут быть оснащены автоматическим управлением, необходимым для насосных систем.Обычно рассматриваются такие клапаны, как дроссельные, пробковые, шаровые и шаровые регулирующие клапаны. Вероятно, наиболее распространенным критерием выбора клапана является первоначальная стоимость, но для насосных систем процесс выбора должен быть тщательно продуман с учетом следующих факторов:

  • клапан и затраты на установку
  • затраты на прокачку
  • целостность сиденья
  • надежность
  • расходные характеристики

Стоимость установки различных типов регулирующих клапанов насосов может сильно различаться.Например, 12-дюймовый дроссельный или плунжерный клапан с гидравлическим приводом и элементами управления может стоить 5000 долларов, в то время как шаровой или шаровой регулирующий клапан может стоить от 2 до 4 раз больше. Помимо стоимости покупки, следует также добавить затраты на выполнение фланцевых соединений, управляющую проводку к органам управления двигателем насоса и обеспечение бетонных оснований для более тяжелых шаровых и шаровых регулирующих клапанов.

Конечно, стоимость установки клапана важна и представляет собой важное вложение.Но не менее важна стоимость перекачки, связанная с потерей напора через клапан. Электрический ток, потребляемый насосом, зависит от потери напора в системе и расхода. Дополнительные затраты на электроэнергию из-за потери напора клапана можно рассчитать по формуле:

A = (1,65 Q ΔH Sg C U) / E

где:

A = годовая стоимость энергии, долларов в год

Q = расход, галлонов в минуту

ΔH = потеря напора, фут водяного столба

Sg = удельный вес, безразмерный (вода 1.0)

C = стоимость электроэнергии, $ / кВт · час

U = использование, процент x 100 (1,0 равняется 24 часам в день)

E = КПД насоса и двигателя (типичное значение 0,80)

Например, разница в потерях напора между дроссельной заслонкой 12 дюймов (K = 0,43) и шаровым регулирующим клапаном (K = 5,7) в системе 4500 галлонов в минуту (12,7 футов / с) может быть рассчитана как следует:

ΔH = K v2 / 2 г

где:

ΔH = потери напора, фут водяного столба

K = коэффициент гидравлического сопротивления, безразмерный

v = скорость, фут / с

г = плотность, 32.2 фут / с2

заменяющий:

ΔH = (5,7 — 0,43) (12,7) 2/2 · 32,2

= 13,2 футов туалета

Эту разницу в потерях напора можно затем использовать для расчета разницы в годовых эксплуатационных расходах, принимая затраты на электроэнергию в размере 0,05 доллара США за кВт-час и 50-процентное использование.

A = (1,65 х 4500 х 13,2 х 1,0 х 0,05 х 0,5) / (0,8)

= 3 062 долл. США

Расчет показывает, что использование 12-дюймовой дроссельной заслонки вместо 12-дюймовой проходной регулирующей заслонки может сэкономить 3062 доллара в год на затратах на электроэнергию.Если бы на насосной станции четыре таких клапана работали в течение сорока лет, общая экономия составила бы около 490 000 долларов за весь срок службы станции. Понятно, что затраты на перекачку могут быть даже более важными, чем затраты на установку. Кроме того, чем больше размер клапана, тем больше влияние затрат энергии.

Типичные коэффициенты потери напора показаны в таблице ниже в порядке уменьшения потерь напора. Шаровой кран AWWA имеет самые низкие потери напора среди всех регулирующих клапанов насосов, но дроссельный клапан AWWA, вероятно, обеспечивает лучший баланс между затратами на электроэнергию и затратами на установку.

Тип клапана размер порта cv k регулирующий клапан globepattern 100 1800 570 бесшумный обратный клапан 100 2500 295 двухдисковый обратный клапан 80 4000 115 обратный клапан 100 4200 105 эксцентриковый плунжерный клапан 80 4750 81 обратный клапан swingflex 100 4800 80 обратный клапан с наклонным диском 140 5400 63 Дроссельная заслонка 90 6550 43 Шаровой кран 100 21500 4

Целостность седла регулирующего клапана насоса также важна, чтобы насос можно было обслуживать без обратного потока через клапан.Упругое седло в клапане, которое сопрягается с устойчивой к коррозии посадочной поверхностью, очень надежно, поскольку обеспечивает нулевую утечку. Если какая-либо утечка допустима, например, из-за неподходящих металлических седел, в местах утечки будет накапливаться мусор, а сопрягаемые поверхности могут подвергнуться эрозионному износу от мусора или утечке с высокой скоростью.

Чтобы клапан был надежным, он должен быть построен и испытан на соответствие промышленным стандартам, таким как AWWA C504, Butterfly Valves, опубликованным Американской ассоциацией водопроводных сооружений, чтобы гарантировать надежность конструкции, а также рабочие характеристики.Некоторые клапаны, такие как регулирующие клапаны с шаровой опорой, не подпадают под стандарт AWWA.

Наконец, характеристики потока регулирующих клапанов насоса определят, насколько хорошо они будут предотвращать скачки. Наиболее желательной характеристикой расхода клапана является такая, при которой клапан равномерно изменяет расход при установке в системе. Данные о расходе, доступные от производителей клапанов, представляют собой внутренние характеристики расхода, обычно выражаемые через коэффициент расхода (Cv) в различных положениях, как показано на рисунке 10.

С левой стороны изображена кривая быстро открывающегося клапана (например, поворотного обратного клапана), которая отображает быстрое изменение расхода при открытии клапана. С другой стороны, это равнопроцентный клапан (например, шаровой кран с V-образным отверстием), который изменяет скорость потока в равном процентном соотношении. Наиболее желательной характеристикой потока для длинных трубопроводов является равный процент, обеспечиваемый поворотными дисковыми затворами и шаровыми кранами.

Все обсуждаемые критерии выбора, включая стоимость, потери напора, надежность и характеристики потока, следует рассматривать вместе при выборе клапана.Ни один тип клапана не превзойдет всех категорий. Выгоды от ожидаемой производительности должны быть сопоставлены с затратами и влиянием на потенциал всплеска системы.

Работа регулирующего клапана насоса

Используя дроссельную заслонку, давайте рассмотрим работу типичного регулирующего клапана насоса. Дроссельная заслонка приводится в действие поворотом вала на 90 градусов и обычно оснащена приводом с гидроцилиндром. Цилиндр может питаться водой под давлением от магистрали или от независимой масляной энергосистемы.

Ранее мы узнали, что отрицательные помпажи могут возникать в течение нескольких секунд, поэтому резервная водяная или масляная система является подходящей. На рисунке 11 показана типичная установка. На клапане установлено гидравлическое управление, электрически подключенное к контуру насоса. Четырехходовые и двухходовые электромагнитные клапаны (SV) направляют рабочую среду к портам цилиндра для включения клапана. Скорость открытия и закрытия регулируется независимо регулируемыми клапанами управления потоком (FCV).Клапаны управления потоком представляют собой специальные игольчатые клапаны со встроенным обратным обратным клапаном, позволяющим свободный поток в цилиндр, но контролируемый поток из цилиндра.

Когда насос запускается и давление растет, реле давления (PS), расположенное на коллекторе насоса, подает сигнал на открытие дроссельной заслонки. Во время останова клапан закрывается, а насос продолжает работать. Когда клапан приближается к закрытому положению, концевой выключатель (LS), расположенный на клапане, останавливает насос.

Безопасное время работы регулирующего клапана насоса обычно намного больше критического периода. Для трубопроводов требуется длительное время работы, поскольку эффективное время закрытия клапана составляет часть его общего времени закрытия из-за того, что потеря давления клапана должна быть объединена с общей потерей давления в трубопроводе при регулировании расхода. Начальные полевые настройки обычно в три-пять раз превышают критический период, чтобы свести к минимуму помпаж.

Следует рассмотреть еще одну дополнительную функцию регулирующего клапана насоса: предотвращение обратного вращения насоса после сбоя питания или отключения по перегрузке. Поскольку современные насосы больше не оснащены маховиками, как в старых дизельных агрегатах, они имеют низкую инерцию вращения и останавливаются всего за несколько секунд. Следовательно, после отключения электроэнергии или отключения насоса регулирующий клапан насоса должен закрываться быстрее, чтобы предотвратить обратное вращение.

Гидравлическое управление клапана оснащено байпасной линией, оснащенной 2-ходовым соленоидным клапаном (SV), чтобы направлять контролируемый поток цилиндра вокруг клапана регулирования нормального потока и через большой клапан регулирования потока (FCV), тем самым закрывая управление насосом. клапан автоматически через 5-10 секунд после сбоя питания.Это важно для предотвращения избыточного обратного вращения насоса и предотвращения истощения воды в гидропневматическом расширительном баке обратно через насос, если он используется.

В качестве альтернативы специальной байпасной схеме перед регулирующим клапаном насоса иногда устанавливается быстрозакрывающийся обратный клапан для поддержки регулирующего клапана. Быстро закрывающийся обратный клапан не только предотвращает обратный поток через насос, но также обеспечивает избыточную защиту насоса, если регулирующий клапан насоса не может закрыться из-за потери давления или неисправности оборудования.

Быстрое закрытие либо регулирующего клапана насоса, либо быстрозакрывающегося обратного клапана в системе длинных трубопроводов создает дилемму. Ранее было объяснено, что регулирующий клапан должен закрываться в три-пять раз больше критического периода. С другой стороны, клапан должен закрываться через пять секунд, чтобы защитить насос после сбоя питания. Следовательно, в этих системах при отключении электроэнергии будут возникать чрезмерные скачки напряжения, поэтому обычно требуется дополнительная защита от перенапряжения.

Оборудование для защиты от перенапряжений

Поскольку непрактично использовать материалы для труб, которые могут выдерживать высокие скачки давления или замедлять рабочую скорость потока до ползучей, необходимо оборудование для разгрузки от помпажа, чтобы предвидеть и рассеивать скачки при резких изменениях скорости после перебоев в подаче электроэнергии.Оборудование для сброса перенапряжения также обеспечит защиту от неисправных клапанов, неправильного наполнения или других проблем в системе.

Напорные трубы и расширительные баки

Многие типы оборудования для защиты от перенапряжения используются для защиты насосных систем. В системах с низким давлением напорная труба, открытая в атмосферу, почти мгновенно сбрасывает давление за счет выпуска воды. Для систем с более высоким давлением высота стояка была бы непрактичной, поэтому баллонный аккумулятор или уравнительный бак с воздухом под давлением над водой можно использовать для поглощения ударов и предотвращения разделения колонн (см. Рисунок 12).

Однако для типичных насосных систем эти резервуары имеют тенденцию быть большими и дорогими и должны поставляться с системой сжатого воздуха. При использовании также необходим дополнительный обратный клапан с быстрым закрытием, чтобы предотвратить утечку воды из расширительного бачка обратно через насос. Это распространенный пример, когда вы видите установленный регулирующий клапан насоса и обратный клапан с быстрым закрытием.

Кроме того, расширительный бачок создает чрезвычайно высокие показатели замедления (т.е.е. 25 футов / с2), поэтому для предотвращения захлопывания следует использовать быстрозакрывающиеся обратные клапаны или обратные клапаны, оборудованные расположенными снизу масляными коллекторами.

Предохранительные клапаны

Клапаны сброса давления часто являются более практичным средством сброса давления. В этих клапанах скачок давления поднимает диск, позволяя клапану быстро сбрасывать воду в атмосферу или обратно во влажный колодец.

Клапаны сброса перенапряжения имеют ограничение, заключающееся в том, что они могут не открываться достаточно быстро для рассеивания скачков в случаях, когда может произойти разделение колонки.В тех случаях, когда компьютерная модель переходных процессов предсказывает резкие или быстрые скачки давления, следует рассмотреть возможность использования предохранительных клапанов, оборудованных упреждающими устройствами. Регулирующий клапан с шаровой опорой, оснащенный элементами управления для защиты от перенапряжения и предотвращения перенапряжения, показан на рисунке 13. Клапан предупреждения перенапряжения быстро открывается при обнаружении события высокого или низкого давления.

Когда насос внезапно останавливается, давление в коллекторе упадет ниже статического давления, что приведет к открытию клапана предотвращения перенапряжения.В этом случае клапан будет частично или полностью открыт, когда произойдет скачок давления в обратном трубопроводе. Клапаны антиципатора обычно открываются менее чем за пять секунд, проходят высокие низкие скорости и повторно закрываются медленно со скоростью закрытия регулирующего клапана насоса (от 60 до 300 секунд). Подбор предохранительных клапанов имеет решающее значение и должен контролироваться специалистами по анализу переходных процессов.

Комбинированные воздушные клапаны Anti-Slam

Воздушные клапаны помогают уменьшить скачки давления в трубопроводах, предотвращая образование воздушных карманов в трубопроводах при нормальной работе.Воздушные карманы могут перемещаться по трубопроводу и вызывать внезапные изменения скорости и отрицательно влиять на работу оборудования, такого как устройства измерения расхода. Воздушные клапаны также предназначены для открытия и впуска воздуха в трубопровод для предотвращения образования вакуумного кармана, связанного с разделением колонны. Компьютерные программы анализа переходных процессов позволяют анализировать уменьшение помпажа при использовании воздушных клапанов различного размера.

Если ожидается разделение колонки в месте расположения воздушного клапана, воздушный клапан должен быть оборудован устройством защиты от захлопывания, которое контролирует поток воды в воздушный клапан, чтобы предотвратить повреждение поплавка клапана (см. Рисунок 14).

Устройство предотвращения захлопывания позволяет воздуху беспрепятственно проходить через него во время цикла выпуска или повторного входа воздуха. Когда вода (из-за ее большей плотности) попадает в устройство, диск быстро закрывается и обеспечивает медленное закрытие поплавка воздушного клапана. Диск содержит отверстия, которые позволяют воде проходить через устройство защиты от захлопывания, когда оно закрыто, чтобы заполнить воздушный клапан примерно на 5 процентов от полной скорости заполнения, предотвращая закрытие воздушного клапана.

Клапаны вакуумного прерывателя

Другой тип воздушного клапана, который используется в критических точках трубопровода, где может произойти разделение колонны, — это вакуумный прерыватель (VB), см. Рисунок 15. VB имеет компоненты, очень похожие на устройство предотвращения захлопывания, за исключением того, что диск VB удерживается закрытым с помощью пружину, в то время как тормозной диск остается открытым. Следовательно, вакуумный прерыватель не может удалить воздух; он пропускает воздух только для предотвращения образования вакуумного кармана. Это поддерживает избыточное давление в трубопроводе и снижает помпаж, связанный с разделением колонны.По сути, большая воздушная подушка попадает в трубопровод и задерживается в трубопроводе после отключения насоса. Затем воздух медленно выпускается в течение нескольких минут через примыкающий к нему выпускной воздушный клапан с маленьким (т.е. ¼-дюймовым) отверстием. Опять же, программы анализа переходных процессов также предназначены для моделирования этого типа решения с воздушным клапаном.

Список литературы

1. Американская ассоциация водопроводных сооружений, Стальная водопроводная труба: руководство по проектированию и установке M11, «Гидравлический удар и скачок давления», 4-е изд.2004, с. 51-56.

2. Боссерман Баярд Э. «Контроль гидравлических переходных процессов», Проект насосной станции, Баттерворт-Хайнеманн, 2-е изд., 1998 г. Санкс, Роберт Л., изд., Стр. 153-171.

3. Хатчинсон, Дж. У., Справочник ISA по регулирующим клапанам, 2-е изд., Instrument Society of America, 1976, стр. 165-179.

4. Kroon, Joseph R., et. др., «Причины и последствия гидроудара», журнал AWWA, ноябрь 1984 г., стр. 39-45.

5.Val-Matic Valve & Mfg. Corp, 1993 «Критерии выбора обратного клапана» Обзор Waterworld, ноябрь / декабрь 1993 г., стр. 32-35.

6. Рахмейер, Уильям, 1998. «Испытания обратного потока восьмидюймовых обратных клапанов Valmatic», Отчет лаборатории Университета штата Юта № USU-609, Отчет об испытаниях клапана Val-Matic № 117, Элмхерст, Иллинойс, [конфиденциально].

7. Таллис, Дж. Пол, Гидравлика трубопроводов, Черновик 1984 г., Университет штата Юта, стр. 249-322.

8.Valmatic Valve & Mfg. Corp., «Динамические характеристики обратных клапанов», 2003 г.

Насосы и системы , май 2007 г.

Модернизация насосной станции в стиле исторического стиля Beaux-Arts в Южном Бруклине на 210 миллионов долларов…

ДЛЯ НЕМЕДЛЕННОГО ВЫПУСКА 15-16

24 марта 2015

Контакты:

[email protected], (718) 595-6600

Количество разливов канализации в ручье Кони-Айленд сократилось почти на 90 процентов

Фотографии столетней насосной станции и Кони-Айленд-Крик доступны на странице DEP на Flickr

Комиссар Департамента охраны окружающей среды Нью-Йорка Эмили Ллойд объявила сегодня о завершении масштабных работ по восстановлению и модернизации столетней насосной станции на авеню V в Грейвсенде, Бруклин, стоимостью 210 миллионов долларов.Отремонтированный объект теперь способен перекачивать 80 миллионов галлонов бытовых и ливневых стоков на очистные сооружения Owl’s Head каждый день, что более чем на 150 процентов больше, чем было до модернизации. Моделирование показывает, что это сократит переток канализации в залив Кони-Айленд на 87 процентов и существенно улучшит состояние и чистоту водного пути. Первоначально построенная между 1911 и 1916 годами, насосная станция была спроектирована в архитектурном стиле изящных искусств, и с годами более утилитарные дополнения к объекту заблокировали большую часть фасада оригинального здания.По согласованию с Комиссией по сохранению достопримечательностей и Комиссией по общественному дизайну эти пристройки были снесены, а отличительные оригинальные детали здания были тщательно восстановлены.

«Эти инвестиции в размере 210 миллионов долларов сокращают количество загрязняющих веществ, сбрасываемых в залив Кони-Айленд почти на 90 процентов, что будет иметь большое значение для восстановления его экологического здоровья и превращения береговой линии в более привлекательное место для жителей Бруклина», — сказал DEP Комиссар Эмили Ллойд .«Мы также позаботились о восстановлении исторического фасада объекта, чтобы он оставался уникальной достопримечательностью района на юге Бруклина».

«Эти инвестиции означают значительное повышение качества воды в заливе Кони-Айленд-Крик», — сказал Дэниел Заррилли, директор мэрии мэрии по восстановлению и устойчивости. «Это повысит устойчивость сообществ в Южном Бруклине и поддержит проводимое городскими властями исследование снижения риска наводнений и воздействия на качество воды в части города, сильно пострадавшей от штормового нагона во время урагана« Сэнди ».”

«Эффективное управление комбинированными потоками ливневых и бытовых сточных вод имеет решающее значение для защиты качества воды Нью-Йорка, природных ресурсов и экономики прибрежной зоны», — заявил комиссар Департамента охраны окружающей среды штата Нью-Йорк Джо Мартенс . «Департамент охраны окружающей среды Нью-Йорка завершил модернизацию своей исторической насосной станции на авеню V. В соответствии с нашим Соглашением 2012 года о значительном сокращении выбросов CSO в Нью-Йорке. Это приносит большую пользу общинам, граничащим с заливом Кони-Айленд.”

«Здесь, в Бруклине, мы не просто« плывем по течению », когда что-то не работает, — сказал президент Brooklyn Borough Эрик Л. Адамс. «Когда дело доходит до проблемы переполнения канализации, которая приводит к выбросу разбавленных неочищенных сточных вод в нашу морскую экосистему, необходимы серьезные изменения для защиты жителей, бизнеса и дикой природы. Всего через пару недель после того, как мой офис объявил о плане управления ливневыми водами, чтобы помочь уменьшить разливы в Ист-Ривер, Канал Гованус, Нью-Йоркскую гавань и Ньютаун-Крик, модернизация насосной станции Авеню V окажет ту же услугу для Кони-Айленд-Крик, очистка этот критический водный путь.Кроме того, была сохранена конструкция этой станции, которая возникла в Управлении президента округа Бруклин, сохранив архитектурный характер, который делает наш район уникальным. Я приветствую комиссара Ллойда и Департамент охраны окружающей среды за их приверженность делу оздоровления окружающей среды в Бруклине ».

«Наши водные пути имеют важное значение для наших сообществ, и сокращение переполнения сточных вод на 90 процентов является огромным шагом к обеспечению чистоты воды вокруг Грейвсенда», — сказал сенатор Марти Голден .«В последние месяцы мы стали свидетелями значительного возвращения морской жизни в нашей гавани, от китов до дельфинов и тюленей, и во многом это является прямым результатом того, что наши береговые линии и водные пути стали чище, чем были за последние десятилетия. Я поздравляю DEP Нью-Йорка с завершением этого проекта и надеюсь, что будут предприняты дополнительные шаги для продолжения сокращения перелива канализации и улучшения наших водных путей ».

«Я благодарю Департамент охраны окружающей среды Нью-Йорка за завершение проекта модернизации и реабилитации насосной станции на авеню V», — сказал член парламента Уильям Колтон .«Этот ремонт и модернизация помогут улучшить качество жизни семей на юго-западе Бруклина за счет улучшения качества воды в близлежащем заливе Кони-Айленд, который соединяется с заливом Грейвсенд, а также с другими водами южного Бруклина».

«Эти инвестиции в критически важную инфраструктуру Южного Бруклина помогут улучшить здоровье и качество воды в заливе Кони-Айленд за счет значительного снижения количества загрязняющих веществ, попадающих в этот важный водный путь», — сказал член городского совета Марк Трейгер .«Это представляет собой значительный прогресс в достижении нашей цели по оживлению нашей береговой линии, чтобы она могла использоваться населением для будущих поколений. Я также очень рад, что DEP сделал восстановление невероятного фасада здания своей приоритетной задачей и сохранил частичку характера и истории нашего района. Мы должны продолжать уделять внимание улучшению инфраструктуры нашего города и поиску новых способов улучшения качества наших береговых линий и воды ».

В день средней засушливой погоды в Нью-Йорке примерно 1.3 миллиарда галлонов сточных вод попадают в городскую канализационную систему и, в первую очередь под действием силы тяжести, проходят по трубам длиной 7500 миль к одной из 14 станций очистки сточных вод, расположенных в пяти районах города. DEP обслуживает 96 насосных станций по всему городу, которые создают дополнительное давление в системе и помогают сточным водам проходить через сложные с топографической точки зрения районы и обеспечивать их непрерывный поток к очистным сооружениям. Когда сточные воды поступают на насосную станцию, они поднимаются насосами в напорную трубу или силовую магистраль, а оттуда сбрасываются в большой коллектор-перехватчик, который спускается вниз к станции очистки сточных вод.Использование насосных станций и силовых магистралей уменьшает требуемый размер и глубину канализационных линий и снижает общие затраты на строительство и обслуживание канализационных систем.

Насосная станция Avenue V обслуживает юго-запад Бруклина и помогает направлять сточные воды на север через канализационную систему к станции очистки сточных вод Owls Head, расположенной в Bay Ridge. До этой модернизации предприятие могло перекачивать до 30 миллионов галлонов сточных вод в день через две силовые магистрали диаметром 24 и 30 дюймов.В рамках работ DEP построила более шести миль новых силовых линий диаметром 42 и 48 дюймов, расположенных на глубине до 40 футов ниже уровня улицы. Для обеспечения некоторой избыточности были установлены шесть новых центробежных насосов мощностью 350 лошадиных сил. При работе на полную мощность в дождливую погоду предприятию требуется четыре насоса, поэтому теперь доступны два дополнительных насоса в случае отказа рабочего насоса или если один из них выйдет из строя. Кроме того, было модернизировано все механическое, электрическое и HVAC оборудование.Значительно усовершенствованная электрическая система, включая новые трансформаторы и сетевые устройства защиты, обеспечивает мощность, необходимую для работы объекта, а аварийные генераторы обеспечат непрерывную работу в случае отключения электроэнергии на площадке.

Завершение модернизации насосной станции Avenue V поможет поддержать общее экологическое и экономическое возрождение и устойчивость Кони-Айленда. Это включает в себя текущее технико-экономическое обоснование приливных барьеров и водно-болотных угодий Кони-Айленд-Крик, которое является ключевым компонентом комплексного городского планирования устойчивости для сообществ вокруг Кони-Айленд-Крик и за его пределами.

Главное здание насосной станции на авеню V было первоначально спроектировано Альбертом А. Мартином, который работал в Департаменте общественных работ, который в то время размещался в офисе президента округа Бруклин. Здание, получившее в мае 1998 года статус «Достопримечательности города Нью-Йорка», спроектировано в стиле изящных искусств, с симметричными фасадами и богатым использованием терракотовых деталей. Реставрация была проведена в соответствии с архитектурными деталями оригинального здания, чтобы сохранить его исторический облик.Мартин также спроектировал по крайней мере четыре других насосных станции в различных стилях, три из которых, Gowanus, Paerdegat Basin и насосные станции Кони-Айленда, все еще существуют.

Нью-Йорк, как и другие старые городские поселения, в основном обслуживается комбинированной канализационной системой, в которой ливневые воды, попадающие на крыши, улицы и тротуары, а также сточные воды из домов и предприятий отводятся по единой канализационной линии на очистные сооружения. 14 городских очистных сооружений могут обрабатывать и очищать в соответствии с федеральными стандартами Закона о чистой воде все сточные воды, образующиеся в Нью-Йорке в день сухой погоды, или около 1.В среднем 3 миллиарда галлонов. В дождливый день они могут очищать более чем в два раза потоки в сухую погоду. Однако во время сильных осадков ливневые воды, которые попадают на непроницаемые поверхности города, превышают эту емкость, и их перелив может сбрасываться в местные водотоки. Если бы перелив не был сброшен, очистные сооружения города были бы затоплены и серьезно повреждены, а сточные воды могли бы попасть в дома и предприятия.

За последнее десятилетие DEP инвестировала более 10 миллиардов долларов в модернизацию очистных сооружений, и соответствующие усилия по сокращению комбинированного перелива канализационных сетей и испытаний подтверждают, что вода в гавани Нью-Йорка сегодня чище, чем за более чем столетие.Однако основной проблемой качества воды в гавани остается разлив воды. В 2010 году был запущен План экологической инфраструктуры Нью-Йорка. Альтернативный подход к улучшению качества воды в гавани, он сочетает в себе традиционные инфраструктурные проекты, такие как модернизация насосной станции Avenue V, и интеграцию зеленой инфраструктуры для улавливания и удержания ливневых стоков до того, как они попадут в канализационную систему и способствуют переливам. . План ставит перед собой амбициозную цель уловить первый дюйм дождя, который выпадает на 10 процентов водонепроницаемых поверхностей города в комбинированных канализационных зонах.В течение следующих 15 лет DEP планирует выделить 1,5 миллиарда долларов из государственного финансирования и еще 900 миллионов долларов в виде финансирования, связанного с новым развитием или реконструкцией, для целевых установок зеленой инфраструктуры, а также приблизительно 2,9 миллиарда долларов на рентабельную модернизацию серой инфраструктуры, чтобы значительно сократить разливы и улучшить состояние местных водных путей.

DEP управляет водоснабжением Нью-Йорка, обеспечивая более одного миллиарда галлонов воды каждый день более чем девяти миллионам жителей, включая восемь миллионов жителей Нью-Йорка.Вода поступает из водораздела, который простирается более чем на 125 миль от города и включает 19 водохранилищ и три контролируемых озера. Примерно 7000 миль водопроводов, туннелей и акведуков доставляют воду в дома и предприятия в пяти районах, а 7500 миль канализационных линий и 96 насосных станций отводят сточные воды на 14 городских очистных сооружений. В DEP работает около 6000 сотрудников, в том числе почти 1000 человек в северной части штата. Кроме того, у DEP есть надежная программа капиталовложений с запланированными инвестициями в размере 14 миллиардов долларов в течение следующих 10 лет, которые создадут до 3000 рабочих мест в строительстве в год.Эта программа капиталовложений отвечает за такие важные проекты, как Городской водный тоннель № 3; программа Staten Island Bluebelt, экологически безопасная и экономичная система управления ливневыми водами; городская программа защиты водоразделов, которая защищает уязвимые земли в пригородах штата рядом с городскими водохранилищами, чтобы поддерживать их высокое качество воды; и установка более 820 000 устройств автоматического считывания показаний счетчиков, которые позволяют клиентам отслеживать ежедневное потребление воды, более легко управлять своими счетами и получать уведомления о потенциальных утечках на их объектах.Для получения дополнительной информации посетите nyc.gov/dep, поставьте нам отметку «Нравится» на Facebook или подпишитесь на нас в Twitter.

Насосная станция Nall Avenue | WaterOne


Leawood — это сообщество привлекательных кварталов и высококлассных магазинов. Что ему нужно, так это некоторое давление.

Leawood находится более чем в 10 милях от ближайшего очистного сооружения WaterOne. По мере процветания сообщества рост поставил под сомнение способность системы водоснабжения удовлетворять спрос, в результате чего жители иногда испытывали более низкое давление воды в периоды высокого спроса.

Предвидя рост на своей юго-восточной территории, WaterOne заранее запланировала строительство новой насосной станции и резервуара в своем Генеральном плане. Объект обеспечит дополнительную мощность и дополнительные мускулы, необходимые для проталкивания воды в зону обслуживания.

WaterOne и ее технический партнер Burns & McDonnell работали с властями города Ливуд, чтобы повлиять на проект объекта, расположенного недалеко от пересечения 143-й улицы и Нолл-авеню. В рамках проекта резервуар на 6 миллионов галлонов был благополучно закопан под холмистым зеленым холмом.Привлекательная кирпичная насосная станция с металлическими деталями вмонтирована в
. склон водохранилища, гармонирующий с окрестностями, граничащими с Ливудом и Оверленд-парком.

На участке высажено более 600 деревьев, кустарников и декоративных растений. Зона биологического удержания обрабатывает сток с участка,
с почти 1400 насаждений. Земля над водохранилищем размером с два футбольных поля с почти ровной засаженной травой территорией, благоустройство района.

Проект обеспечивает минимальное давление 40 фунтов на квадратный дюйм во время пиковых нагрузок и типичное минимальное давление 70-90 фунтов на квадратный дюйм в остальное время.Кроме того, огнестойкость Leawood обеспечивается улучшенными потоками и устойчивой мощностью для тушения пожара, обеспечивая безопасность и поставки в будущем.

Когда компания WaterOne отметила завершение проекта в ноябре 2012 года посвящением общественности, стало ясно, почему насосная станция и водохранилище на Нолл-авеню заслуживают внимания. Более 120 человек пришли полюбоваться новым помещением, в том числе Правление WaterOne, должностные лица города и Палаты, местные жители и члены проектной группы из Burns & McDonnell, CAS Construction и WaterOne.

Насосная станция Налла объединила поставщика воды и его технического партнера с местными лидерами, чтобы удовлетворить потребности сообщества, соответствовать его стандартам и создать устойчивое заявление о совершенстве.

Заказ на кипячение

выдан после отключения электроэнергии на насосной станции Роузленд — NBC Chicago

Постановление о кипячении действует во многих районах Чикаго после того, как было сообщено о проблеме на насосной станции Roseland, сообщили в четверг официальные лица.

Должностные лица Чикагского управления по чрезвычайным ситуациям и коммуникациям заявили, что давление питьевой воды в насосе было снижено с 8:30 до 9:30 утра, что может повлиять на некоторые части района, в том числе в районах Беверли и Морган Парк.

Андреа Чанг, исполняющая обязанности комиссара Департамента водного хозяйства, заявила, что приказ о кипячении был выпущен «из большой осторожности» и после консультаций с Агентством по охране окружающей среды штата Иллинойс, когда официальные лица проводят испытания.

В соответствии с приказом находятся здания к востоку от Сакраменто-авеню и к северу от 119-й улицы, а также к западу от межштатной автомагистрали 57 и к юго-западу от Беверли-авеню. Порядок кипячения действует до дальнейшего уведомления.

«Департамент управления водными ресурсами Чикаго проводит полное расследование того, как произошел инцидент, и примет соответствующие меры на основе этих выводов, чтобы обеспечить аналогичные ситуации в будущем», — сказал Чанг на пресс-конференции в четверг.

Дальнейшая информация о том, что вызвало проблему или как долго приказ будет оставаться в силе, не была немедленно выпущена. OEMC первоначально заявил, что причиной проблемы является отключение электроэнергии, но в заявлении ComEd говорится, что не было обнаружено доказательств отключения электроэнергии в этом районе.

«ComEd считает, что нет никаких доказательств того, что это было отключение электричества… Ни в какой момент не было перебоев в работе насосной станции», — говорится в заявлении ComEd. «Персонал находится на месте, и они тесно сотрудничают с городом в ходе расследования. и решить эту проблему.”

Тем, кто находится в режиме кипячения, рекомендуется соблюдать следующие меры предосторожности перед употреблением водопроводной воды:

  • доведите воду до полного кипения в течение не менее пяти минут, чтобы убедиться, что она безопасна для употребления
  • Храните кипяченую воду комнатной температуры или охлаждайте в закрытом контейнере до тех пор, пока она не понадобится, включая воду для питья, приготовление кубиков льда, мытье продуктов , изготовление детских смесей, мытье посуды, чистка зубов или любой другой вид деятельности, связанный с потреблением воды

Насосная станция Розленда расположена на 351 Вт.104-я улица и обслуживает район Розленд.

По данным Иллинойского университета в Чикаго, это одна из 12 таких насосных станций в Чикаго, которые обеспечивают давление воды для предприятий, жителей и пожарных систем по всему городу.

Насосная станция

Magnum: оригинальная серия

СУПЕР ТИХИЕ И ЛЕГКОЕ ОБСЛУЖИВАНИЕ

Наши насосные станции Magnum работают тихо и плавно с небольшой вибрацией, что снижает износ оборудования и операторов.Они также мощные, обеспечивая превосходное качество насосной станции для мойки автомобилей под высоким давлением для всех системных нужд, от 8 до 35 галлонов в минуту.

  • Запатентованная MacNeil Isolastic Suspension устраняет разрушительные вибрации и снижает шум в помещении
  • Лазерная система прямого натяжения ремня обеспечивает контроль за выравниванием ремня и снижает его износ
  • Насосная станция для автомойки Magnum может работать как на пресной, так и на очищенной воде
  • Требуется минимальное пространство в подсобном помещении

ОСОБЕННОСТИ:

  • Подача системы оборудования высокого давления
  • Производительность до 35 галлонов в минуту
  • 50 U.Вместимость S. галлонов воды
  • Датчик низкого уровня воды
  • Работает на пресной или оборотной воде
  • Встроенный сетчатый фильтр для защиты насоса и предотвращения засорения
  • Клапан автоматического заполнения
  • Коллектор перелива, установленный на баке, чтобы двигатель оставался сухим в случае перелива
  • Отдельная конструкция для бака и насоса с электродвигателем для лучшего контроля вибрации
  • Запатентованная подвеска Isolastic Suspension устраняет разрушительные вибрации и снижает шум в подсобном помещении
  • Лазерная система натяжения ремня контролирует выравнивание ремня, уменьшая его износ
  • Современный, цельнопластиковый коррозионностойкий поплавковый клапан
  • Требуется минимальное пространство в подсобном помещении

ТЕХНИЧЕСКИЕ ДАННЫЕ:

M1000R:

Электродвигатель:
  • 230/460 В переменного тока, 60 Гц
  • Номинальная мощность = 7.5 л.с.
  • Скорость при полной нагрузке = 1760 об / мин
  • Трехфазный, четырехполюсный
  • Непрерывный режим
Системный насос:
  • Макс.скорость = 1450 об / мин
  • Максимальный расход = 8 галлонов в минуту
  • Подача при макс. Фунт / кв. Дюйм = 185 об. / Долл. США
  • Макс.давление на входе = 250 фунтов на кв. Дюйм
  • Максимальное давление нагнетания = 1000 фунтов на квадратный дюйм
  • Впускной порт 1 дюйм NPT
  • ”нагнетательный насос NPT
Вода:
  • Линия высокого давления 1/2 ″
  • Линия перелива 1 ″
  • 3/4 ″ линия разгрузки до разрыва
  • Впускная линия насоса 1 дюйм

M2000R 20 галлонов в минуту 15 л.с.:

Электродвигатель:
  • 230/460 В переменного тока, 60 Гц
  • Номинальная мощность = 15 л.с.
  • Скорость при полной нагрузке = 1760 об / мин
  • Трехфазный, четырехполюсный
  • Непрерывный режим
Системный насос:
  • Макс.скорость = 1150 об / мин
  • Макс.расход = 20.2 галлона в минуту
  • Подача при макс. Фунт / кв. Дюйм = 57 об. / Долл. США
  • Макс.давление на входе = 250 фунтов на кв. Дюйм
  • Максимальное давление нагнетания = 1000 фунтов на квадратный дюйм
  • Впускной порт 1 ½ дюйма NPT
  • Напорный патрубок 1 дюйм NPT
Вода:
  • Линия высокого давления 1 дюйм
  • Линия перелива 1 ”
  • ¾ ”линия разгрузки для разрыва
  • Впускная линия насоса 2 дюйма

M3500R 35 гал / мин 25 л.с.:

Электродвигатель:
  • 575 В переменного тока, 60 Гц
  • Номинальная мощность = 25 л.с.
  • Скорость при полной нагрузке = 1770 об / мин
  • Трехфазный, четырехполюсный
  • Непрерывный режим
Системный насос:
  • Макс.скорость = 1150 об / мин
  • Макс.расход = 34.5 галлонов в минуту
  • Подача при макс. Фунт / кв.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *