Как сделать простой металлоискатель: Металлоискатель своими руками: как сделать самый простой прибор

Как сделать простой металлоискатель на Arduino своими руками

Из этой инструкции вы узнаете как сделать самодельный металлоискатель в домашних условиях. Поиск различных металлических объектов — отличное хобби, которое обеспечит вам прогулки на свежем воздухе, позволит обнаружить новые места и, возможно, найти что-то интересное. Прежде чем узнать как сделать металлоискатель своими руками, выясните местные законы о том, как действовать в случае возможной находки, в частности, в случае опасных объектов, археологических реликвий или объектов значительной экономической или эмоциональной ценности.

В сети довольно много инструкций по самодельной сборке дома мощных металлоискателей для цветных металлов своими руками, однако, особенность этой инструкции в том, что в дополнение к Arduino требуется всего несколько компонентов: обычный конденсатор, резистор и диод, образующие сердечник вместе с поисковой катушкой, состоящей из 20 обмоток электропроводящего кабеля. Светодиод, динамик и / или наушники. Дополнительным преимуществом является то, что всё может питаться от 5 В, для чего достаточно общей мощности USB 2000 мАч.

Для того, чтобы интерпретировать сигнал и понять, какие материалы и какой формы предметы детектор может обнаруживать, необходимо углубиться в физику. Согласно правилу большого пальца, детектор чувствителен к объектам на расстоянии или глубине не превышающей радиус катушки. Он наиболее чувствителен к объектам, в которых ток может течь в плоскости катушки. Таким образом, металлический диск в плоскости катушки даст гораздо более сильный отклик, чем тот же металлический диск, перпендикулярный катушке. Вес объекта не имеет большого значения. Тонкая алюминиевая фольга, ориентированная в плоскости катушки, даст гораздо более сильный отклик, чем тяжелый металлический болт.

Шаг 1: Принцип работы

Когда электричество начинает проходить через катушку, оно создает магнитное поле. Согласно закону индукции Фарадея, изменяющееся магнитное поле приведет к электрическому полю, которое противостоит изменению магнитного поля. 2 x R, с R в метрах.

Наличие металлического объекта вблизи катушки изменит его индуктивность. В зависимости от типа металла индуктивность может увеличиваться или уменьшаться. Немагнитные металлы, такие как медь и алюминий вблизи катушки, уменьшают индуктивность, поскольку изменяющееся магнитное поле индуцирует вихревые токи в объекте, которые уменьшают интенсивность локального магнитного поля.

Ферромагнитные материалы, такие как железо, вблизи катушки увеличивают индуктивность, потому что индуцированные магнитные поля выравниваются с внешним магнитным полем.

Таким образом, измеряя индуктивность катушки можно обнаружить присутствие металлов поблизости. С Arduino, конденсатором, диодом и резистором можно измерить индуктивность катушки следующим образом: делая катушку частью высокочастотного LR фильтра и питая его волновыми блоками, будут создаваться короткие всплески на каждом переходе. Длительность этих всплесков пропорциональна индуктивности катушки. Фактически, характерное время фильтра LR равно tau = L / R.

2 x 0,05 = 100 мкГн.

Для защиты Arduino от избыточного тока минимальное сопротивление составляет 200 Ом. Таким образом, мы ожидаем импульсы длиной около 0,5 микросекунды. Их трудно измерить напрямую с высокой точностью, учитывая, что тактовая частота Arduino составляет 16 МГц.

Вместо этого восходящий импульс можно использовать для зарядки конденсатора, который затем может быть считан аналого-цифровым преобразователем (ADC) Arduino. Ожидаемый заряд от импульса 25 мА длительностью 0,5 микросекунд составляет 12,5 нК, что даст 1,25 В на конденсаторе 10 нФ. Падение напряжения на диоде уменьшит это значение. Если импульс повторяется несколько раз, заряд конденсатора возрастает до ~ 2 В. Эти параметры можно получить с помощью Arduino ADC, используя analogRead (). Затем конденсатор можно быстро разрядить, изменив считывающий разъем на выходной и установив его на 0 В на несколько микросекунд.

Все измерения занимают около 200 микросекунд, 100 для зарядки и сброса конденсатора и 100 для преобразования ADC.

Точность может быть значительно увеличена путем повторения измерения и усреднения результата: в среднем 256 измерений занимают 50 мс и улучшают точность в 16 раз. Таким образом, 10-битный ADC достигает точности 14-битного ADC.

Так как получаемые параметры крайне нелинейны с индуктивностью катушки, мы не можем узнать реальное значение индукции. Однако, для обнаружения металла нас интересуют только незначительные изменения индуктивности катушки из-за присутствия металлов по близости, и для этого этот метод идеально подходит.

Калибровка измерений может выполняться в автоматическом режиме с помощью ПО. Если рядом с катушкой большую часть времени нет металла, то отклонение от среднего значения, будет означать наличие рядом металлического объекта.

Используя различные цвета лампочек и звуки, можно так же видеть разницу – увеличивается или уменьшается индукция.

Шаг 2: Список необходимых компонентов

Электрическая основа:

  • Arduino UNO R3 + макетная плата или Arduino Nano с 5×7см макетной платой
  • 10nF конденсатор
  • Маленький сигнальный диод, например, 1N4148
  • 220- ом резистор

Для питания:

  • Переносная зарядка с USB кабелем

Для визуального вывода:

  • 2 светодиода разного цвета, например, синий и зеленый
  • 2 резистора 220 Ом для ограничения тока

Для вывода звука:

  • Пассивный зуммер
  • Микровыключатель для отключения звука

Для выхода наушников:

  • Разъем для наушников
  • Резистор 1 кОм
  • Наушники

Чтобы легко подключить / отключить поисковую катушку:

  • 2-контактный винтовой зажим (клемма)

Для поисковой катушки:

  • ~ 5 метров тонкого электрического кабеля

Конструкция для катушки. Должна быть жесткой, но не должна быть круглой. Для конструкции: Около 1 метра — палка деревянная, пластиковая или селфи-палка.

Шаг 3: Поисковая катушка

Для поисковой катушки я намотал примерно 4 м многожильного провода вокруг картонного цилиндра диаметром 9 см, в результате чего получилось 18 витков. Тип кабеля не имеет значения, если сопротивление по меньшей мере в десять раз меньше значения R в фильтре RL, поэтому убедитесь, что оно осталось ниже 20 Ом. Я измерил, вышло 1 Ом, так что это безопасно. Так же подходит 10 метровый рулон соединительной проволоки с разветвленными концами.

Шаг 4: Собираем прототип

Учитывая небольшое количество внешних компонентов, вполне возможно собрать схему на маленькой макетной плате. Однако конечный результат довольно громоздкий и не очень надежный. Поэтому, лучше использовать Arduino nano и припаять с дополнительными компонентами на панели прототипов 5×7 см (см. Следующий шаг)

Для обнаружения металлов используются всего 2 контакта Arduino, один для обеспечения импульсов к фильтру LR и один для считывания напряжения на конденсаторе. Пульсирование может производиться с любого выходного контакта, но считывание должно проводиться с помощью одного из аналоговых контактов A0-A5. Еще 3 контакта используются для 2 светодиодов и для вывода звука.

Последовательность сборки:

  1. На макетной плате последовательно подключите резистор 220 Ом, конденсатор и диод, направленный отрицательной клеммой (черная линия) к конденсатору.
  2. Подключите A0 к резистору (конец, не подключенный к диоду)
  3. Подключите A1 к месту пересечения диода и конденсатора
  4. Подключите один конец катушки к точке пересечения резистора и диода
  5. Подключите другой конец катушки к земле
  6. Подключите один светодиод его положительной клеммой к выводу D12 и его отрицательной клеммой через резистор 220 Ом к земле
  7. Подключите другой светодиод его положительной клеммой к выводу D11 и его отрицательной клеммой через резистор 220 Ом к земле
  8. При желании, подключите наушники или динамики между контактом 10 и землей.
    Конденсатор или резистор можно добавить последовательно для уменьшения громкости.

На этом все!

Шаг 5: Делаем окончательную версию устройства

Для того, чтобы использовать металлоискатель на улице, необходимо надежно припаять все компоненты. Обычная макетная плата 7х5см прекрасно подойдет к Arduino nano и все остальным компонентам. Используйте ту же схему, что и в прошлом шаге. Я так же решил добавить выключатель последовательно с зуммером, чтобы иметь возможность отключать звук, когда он не нужен. При помощи винтового зажима, можно быстро попробовать различные катушки, без необходимости заново паять. Все питание осуществляется через 5В mini- или microUSB порт Arduino Nano.

Шаг 6: Программное обеспечение

Скетч Arduino вы можете скачать ниже. Загрузите и запустите его. Я использовал Arduino 1.6.12 IDE. Рекомендуется запускать с debug = true в начале, чтобы настроить количество импульсов на измерение. Лучше всего иметь показания АЦП между 200 и 300. Увеличьте или уменьшите количество импульсов в случае, если ваша катушка дает совершенно другие показания.

Скетч делает некоторую самокалибровку. Достаточно расположить катушку вдали от металлов на некоторое время. Небольшие перемены в индуктивности будут наблюдаться, но внезапные большие изменения не повлияют на долгосрочное среднее значение.

Файлы

  • metal_detector_v1_0.ino

Шаг 7: Закрепляем устройство

Скорее всего, вы не захотите заниматься поиском сокровищ ползая по полу, так что лучше установить всю конструкцию на конец палки. Селфи-палка подойдет идеально, она легкая, складная и регулируемая. Переносной аккумулятор прекрасно подошел к палке. Плату можно закрепить при помощи кабельных стяжек и точно таким же образом катушку, прикрепив ее к аккумулятору или селфи-палке.

Шаг 8: Инструкция по применению

Для того, чтобы установилось референсное значение, достаточно отдалить самодельный металлоискатель от металлов примерно на 5 секунд. Затем, когда катушка будет приближаться к металлу, зеленый или синий светодиод начнут мигать, а так же будут слышны звуковые сигналы.

Синие вспышки и звуковые сигналы низкой частоты указывают на присутствие неферромагнитных металлов. Зеленые вспышки и звуковые сигналы высокой частоты указывают на присутствие ферромагнитных металлов. Учтите, что когда катушка находится более 5 секунд вблизи металла, то полученное значение будет считаться референсным, и звуковой сигнал будет издаваться, когда вы отведете детектор от металла, который затихнет через несколько секунд. Частота моргания диодов и звуковых сигналов зависит от мощности сигнала.

Простейший металлоискатель своими руками / Хабр

Привет, Хабр! Что объединяет радиоприёмник, датчик охранной сигнализации, металлоискатель и музыкальный инструмент терменвокс? Прежде всего то, что все эти устройства реагируют на электрические и магнитные поля. А ещё многие из них имеют в своём принципе действия нечто общее.

Сегодня мы изучим историю и принцип работы металлоискателей, — индуктивных и ёмкостных датчиков, узнаем, что такое гетеродин, а также соберём и испытаем простой опытный экземпляр.

Началась эта история очень давно. В 1918 году изобретатель частотной модуляции в радиосвязи (благодаря которой мы можем слушать высококачественные стереопередачи на ультракоротких волнах), Эдвин Армстронг и Вальтер Шоттки, изобретатель одноимённого диода с малым прямым падением напряжения…


На самом деле, Вальтер Герман Шоттки полупроводникового диода не изобретал, зато разработал инновационную теорию о физических процессах в кристаллах, в частности, вакансиях атомов, предсказавшую эффект Шоттки, используемый в этих самых диодах. А ещё изобрёл вакуумный тетрод, — электронную лампу с экранирующей сеткой, позволившую значительно снизить проходную ёмкость, и повысить внутреннее сопротивление. И коэффициент усиления, а точнее, крутизну характеристики.


А Эдвин Говард Армстронг сделал для мира радиосвязи очень много. Например, регенеративные и сверхрегенеративные приёмники с положительной обратной связью, позволявшие получить прекрасную чувствительность при малом количестве ламп, то есть, низкой цене и высокой доступности. Но надо отметить, что эти радиоприёмники капризны в настройке, а при неверной настройке могут излучать в эфир помехи, мешая окружающим радиослушателям. Что было особенно актуально в эпоху гигантских винтажных антенн, своим размером компенсировавших несовершенство электронной аппаратуры.

Ещё частотная модуляция впоследствии оказалась жизненно необходима для записи цифровой информации на магнитные носители. Так что без Армстронга не было бы и «винчестеров», они же накопители на жёстких дисках. Как и на гибких, если вы помните, что такое дисковод.

Что такое QSL-карта, вы точно не помните. В противном случае — напишите комментарий. Радиолокаторами Армстронг занимался тоже, в том числе участвовал в проекте «Диана», положившем начало радиолокационной астрономии. Сигналы радара посылались в направлении Луны, и принимались как специалистами проекта, так и радиолюбителями.

Хотя это всё официальные версии. Для чего на самом деле были нужны огромные антенны HAARP и подобных проектов, у разных людей разные мнения. Можете поделиться своими.

▍ Супергетеродин

Так вот, в 1917-18 годах начальник полутора киловаттной радиостанции Эйфелевой башни Люсьен Леви (на фото слева) подал два патента на супергетеродинный радиоприёмник, который в 1918 году построил на базе идей Леви работавший тогда под его началом Эдвин Армстронг. Независимо от них, в 1918 супергетеродин изобрёл и Вальтер Шоттки, работавший в немецкой компании Siemens & Halske.

Супергетеродином называется радиоприёмник, в котором, кроме принимающего колебательного контура, имеется перестраиваемый синхронно с последним генератор — гетеродин. Смешение его сигнала с усиленным сигналом радиочастоты приводит к появлению двух сигналов.

Частота первого является суммой двух частот и не используется, фильтры её подавляют. Зато второй сигнал, частота которого является разностью частот входного сигнала и гетеродина, проходит через фильтр промежуточной частоты, и далее на детектор и усилитель звуковой частоты.

Такая система позволяет значительно повысить чувствительность и избирательность радиоприёмника, так как тракт промежуточной частоты не требуется перестраивать, и его можно реализовать очень прецизионно. Например, с использованием кварцевых или керамических резонаторов.


Сам принцип гетеродина открыт ещё раньше. В 1901 году канадец Реджинальд Обри Фессенден изобрёл и использовал гетеродин, разность частоты которого с частотой принимаемого сигнала лежала в звуковом диапазоне. Это позволяло принимать немодулированный телеграфный сигнал, представлявший собой просто синусоиду несущей частоты.


А уж сам факт биений с разностной частотой при сложении двух колебаний известен ещё с древности. История его открытия теряется далеко в веках. Биения помогают настраивать музыкальные инструменты. Например, гитары и другие струнные щипковые настраивают по биениям между открытой струной и соседней, прижатой на определённом ладу, а также по флажолетам над определёнными ладами.

Причём настройщики фортепиано и других гармоник придерживаются не пифагорейских чистых квинт и чистых октав, то есть, не настраивают струны и другие генераторы тона до прекращения биений, а отсчитывают определённое число биений в секунду. Так добиваются нужного строя.

Например, современной равномерной темперации, позволяющей легко транспонировать и модулировать музыкальные фрагменты и произведения из тональности в тональность. Или хорошей темперации, которую любил Иоганн Себастьян Бах, и не любил равномерную. Или чего-то другого, исторического либо экспериментального.

А самые точные на сегодня тюнеры, — приборы для настройки музыкальных инструментов, — используют стробоскопический эффект, либо его визуализацию на экране. Этот эффект тоже относится к числу явлений биений разностной частоты при сложении двух колебаний, даже если речь идёт о механических колебаниях струны и оптической модуляции яркости света.

▍ Терменвокс

В 1919-20 годах Лев Сергеевич Термен, будущий начальник и по совместительству заключённый той самой «шарашки», в которую попал Александр Солженицын, по мотивам чего впоследствии написал «В круге первом», изобрёл музыкальный инструмент этерофон, более известный как терменвокс. Он стал первым в мире ЭМИ — электронным музыкальным инструментом.

Напишите в комментариях, что на данном фото свидетельствует об использовании секретного атмосферного электричества. Это сейчас модно.

Как можно было изобрести музыкальный инструмент в лаборатории, где разрабатывались ёмкостные датчики для научных и охранных целей? — Почти просто. Ведь терменвокс и является ёмкостным датчиком. Вот только для того, чтобы увидеть и услышать в датчике инструмент, нужно любить музыку и быть музыкантом. А Термен, выпускник Петербургской консерватории по классу виолончели, музыку очень любил.

Терменвокс в классическом виде представляет собой два электронных генератора, колебательный контур одного из которых подключён к антенне. Поднося к ней руку, можно изменять частоту колебаний, и, таким образом, получается музыкальный тон разностной частоты, детектируемый и усиливаемый звуковоспроизводящей аппаратурой. То есть, терменвокс — это супергетеродин.

Вторая антенна работает таким же образом, и служит для управления громкостью звука, позволяя делать виртуозные амплитудные вибрато, они же тремоло. Терминологические холивары о том, что называть вибрато, а что тремоло, среди музыкантов весьма популярны, хотя и не настолько, насколько дискуссии о том, кто из звёздных музыкантов не умеет играть на своём инструменте. Зато гораздо популярнее споров, на тему, какая темперация лучше. Последние — удел избранных.

Что до терменвоксов, то большинство их моделей вообще не предоставляют музыканту фиксированного звуковысотного ряда. Высота ноты целиком зависит от исполнителя. И только немногие терменвоксы реализуют квантование частоты, проще говоря, автотюн.

На сегодня самым успешным серийным производителем терменвоксов является компания Роберта Моуга — пионера и непревзойдённого изобретателя аналоговых синтезаторов.

На фото он с Кларой Рокмор, ведущей мировой исполнительницей на терменвоксе.

А здесь Бильбо Бэггинс с Кольцом Власти демонстрирует инновационный полотенцесушитель, работающий от атмосферного электричества. Внутри кафедры находится тайник с амальгамой красной ртути.

На самом деле это Боб Моуг играет на терменвоксе. Хотя предки Льва Сергеевича Пьер Этьен и Франсуа Клод Термен были известными ювелирами, и с амальгамой работали. Их работы хранятся в Лувре, Эрмитаже и Оружейной палате. Например, этот скипетр Георгия XII.


▍ Металлоискатель

А если внешнее воздействие приложено не к ёмкости колебательного контура через антенну, а к его индуктивности, получается, соответственно, не ёмкостный, а индуктивный датчик, то есть металлоискатель. С помощью которого можно найти сокровища наподобие скипетра, либо просто металлолом. Что тоже интересно.

Свист в наушниках металлоискателя — это и есть биения, образуемые расстройкой контура с катушкой датчика относительно эталонного. А расстройку через изменение индуктивности вызывает находящийся вблизи катушки металлический предмет.

Один из самых простейших вариантов металлоискателя мы сейчас соберём. Как обычно, из набора с Алиэкспресс.

Приятно держать в руках катушки индуктивности, изготовленные методом печатного монтажа. Это не только ощущение прикосновения к современным технологиям, но и стабильность параметров благодаря жёсткости конструкции. Стабильность повторяемая, так как печатные платы изготавливаются серийно с высокой точностью.

На фото два конденсатора плёночные, а мне досталась более дешёвая версия набора, где все конденсаторы, кроме оксидного, он же электролит, керамические дисковые «флажки». Немного обидно, но не смертельно. Работать будет.

▍ Изучаем схему


На схеме мы видим не два, а всего лишь один LC генератор на транзисторе Q1. Параллельный колебательный контур образован индуктивностью L1 и ёмкостью С3. L2 — катушка обратной связи, C2 — её развязка по постоянному току. R1 — резистор смещения, задающий режим Q1, а С1 — фильтр питания.

Секрет схемы состоит в подстроечном резисторе W. Его сопротивление задаёт коэффициент усиления каскада на Q1, и установить движок этого подстроечника при настройке прибора следует так, чтобы генерация находилась на краю срыва.

На транзисторах Q2 и Q3 собран детектор. Когда генератор работает, и амплитуда колебаний в контуре L1C3 превышает 0.6 вольта (это порог открытия кремниевого транзистора Q2, он же напряжение прямого смещения эмиттерного перехода), Q2 открывается отрицательной полуволной и разряжает конденсатор C4. При этом Q3 закрыт, и зуммер не звучит.

Когда колебательный контур испытывает отток энергии на какой-либо металлический предмет, мощности вынужденных колебаний в контуре перестаёт хватать для функционирования обратной связи. Генерация срывается, Q3 закрывается, C4 заряжается, открывается Q3. Появляется питание зуммера, и он пищит, сигнализируя о присутствии обнаруженного металла.

Отметим, что это самозвучащий зуммер, устроенный подобно автомобильному звуковому сигналу. Принцип действия предельно прост. Электромагнит притягивает мембрану, которая разрывает цепь электромагнита. Ток в катушке прерывается, исчезает магнитное поле. Мембрана возвращается назад, снова касается контакта. Замыкается цепь, и всё повторяется заново.

▍ Сборка и испытание

Как работает этот игрушечный металлоискатель, а также состав набора и процесс сборки, можно посмотреть на видео.

Прибор, то пронзительно и противно орёт, то модулированно пищит, подобно пению птиц. Что высоко оценили все мои кошки, которых у меня много. При каждом эксперименте с металлоискателями они собирались вокруг, как будто происходит что-то величественное и очень интересное. Даже лазерная указка и кошачьи игрушки проигрывают по привлекательности для пушистых разбойников этому забавному устройству.

Металлоискатель действительно реагировал на все имеющиеся в моём распоряжении металлы, ферромагнетики, парамагнетики и диамагнетики, включая ртуть.

▍ Выводы

В очередной раз, набор удалось собрать без проблем, и устройство сразу заработало. Потому надо продолжать покупать и собирать радиоконструкторы. Потому что травить и сверлить платы всегда будет некогда.

Расскажите в комментариях о своём опыте постройки и применения металлоискателей, а также электронных музыкальных инструментов и радиоприёмников. Лично я в 1990-х годах построила примерно десяток приёмников, в том числе супергетеродинов и ламповых, и переделала несколько телевизоров, путём замены лампового ПТК на полупроводниковый селектор, что придавало аппарату удобство настройки и добавляло дециметровый диапазон. А электронная музыка и гитарные эффекты — моё сегодняшнее хобби.

И коль скоро речь зашла о металлоискателях, давайте не забывать, что поиски различных предметов на разных территориях регламентируются законами, а также могут привлечь нежелательное внимание лиц, эти законы нарушающих. Будем подходить к хобби честно и ответственно.

Спасибо за внимание! В следующий раз изучим и соберём ещё что-нибудь электронное.

‎Сделай сам металлоискатель (Au,Ag,Fe) в App Store

Скриншоты iPhone

Описание

Приложение предназначено для подключения простых схем металлоискателя к iPhone через разъем для наушников телефона. Схемы самодельных металлоискателей ОЧЕНЬ ПРОСТЫЕ и их может сделать любой, даже тот, кто никогда не держал в руках паяльник. Металлоискатели могут обнаруживать черные и цветные металлы (включая золото и серебро) и способны различать их (с дискриминацией). Положительное число означает, что это черный металл, а отрицательное число означает цветной. Цифры, отображаемые на экране, НЕ являются «ID цели» или VDI, как на металлодетекторах известных марок. Первая схема (БЕЗ ЧИПА) называется «Очень простой» металлоискатель (МД1), а вторая — «Чувствительный» металлоискатель (МД2).

«ОЧЕНЬ ПРОСТОЙ» МЕТАЛЛОИСКАТЕЛЬ — ЭТО, ВОЗМОЖНО, САМАЯ ПРОСТАЯ СХЕМА НАСТОЯЩЕГО, РАБОТАЮЩЕГО МЕТАЛЛОИСКАТЕЛЯ, ПОТОМУ ЧТО ОН СОСТОИТ ТОЛЬКО ИЗ LC-КОНТУРА И ДВУХ РЕЗИСТОРОВ, ЕСЛИ НЕ СЧИТАТЬ В IPHONE :).

Основной частью устройства является LC-контур. Стабильность его параметров очень важна. Они постоянно колеблются при малейших изменениях температуры. Причем индуктивность изменяется при малейших изменениях геометрии катушки индуктивности. Эти изменения постоянно корректируются приложением. Параметры внутренних цепей iPhone и переходника для наушников также могут колебаться, но они стабилизируются примерно через 2-3 минуты после включения сигнала (поэтому металлоискатель во время поиска должен работать непрерывно).

Диапазон частот 3-14 кГц. Частоту можно подобрать, выбрав емкость конденсатора в LC-контуре. После изменения емкости или индуктивности, при первом запуске или при изменении температуры воздуха (например, при выходе на улицу) нужно включить поиск резонансной частоты.

Поиск с помощью металлоискателя не так прост, как может показаться, и иногда может быть смертельным. Поэтому необходимо изучать эту тему на специализированных сайтах. Обязательно проведите несколько экспериментов с монетой, положенной на землю.

БЕСПЛАТНЫЕ ВЕРСИИ МЕТАЛЛОИСКАТЕЛЕЙ ОГРАНИЧЕНЫ ПОРОГОМ ЗВУКОВОГО СИГНАЛА И СВЕТОВОЙ ИНДИКАТОРОМ. ЭТО ОЗНАЧАЕТ, ЧТО МЕТАЛЛ МОЖНО ОБНАРУЖИТЬ ПО ЦИФРАМ (РАЗМЕР ШРИФТА КОТОРЫХ УМЕНЬШЕН) НА ЭКРАНЕ IPHONE, НО ЕГО НЕ СЛЫШАТЬ ИЛИ УВИДЕТЬ ПЕРИФЕРИЧЕСКИМ ЗРЕНИЕМ, ЕСЛИ НЕ СМОТРЯ ПРЯМО НА ЭКРАН.

Металлоискатель «Очень простой» (БЕЗ ЧИПА):
• Монета: 4 дюйма (10 см)
• Маленькая лопатка: 6 1/2 дюйма (16 см)
• Различение металлов

Металлоискатель «Sensitive»:
• Монета: 6 1/2 дюйма (16 см)
• Маленькая лопата: 9 дюймов (23 см)
• Различение металлов

Версия 1.2.6

• Адаптация для iPhone 14 Pro.

Разработчик Дмитрий Харуцкий указал, что политика конфиденциальности приложения может включать обработку данных, как описано ниже. Для получения дополнительной информации см. политику конфиденциальности разработчика.

Данные не связаны с вами

Могут быть собраны следующие данные, но они не связаны с вашей личностью:

Методы обеспечения конфиденциальности могут различаться в зависимости, например, от используемых вами функций или вашего возраста. Узнать больше 

Информация

Поставщик
Дмитрий Харуцкий

Размер
25,4 МБ

Категория
Утилиты

Возрастной рейтинг
4+

Авторское право
© 2018 Дмитрий Харуцкий

Цена
Бесплатно

  • Сайт разработчика
  • Тех. поддержка
  • политика конфиденциальности

Еще от этого разработчика

Вам также может понравиться

Как сделать простую схему металлоискателя

Принцип работы предлагаемой схемы металлоискателя довольно прост, но очень интересен. Функция обнаружения запускается путем обнаружения снижения уровня добротности LC-сети, связанной с цепью, в присутствии металла на заданном уровне близости.

Введение

В основном встроенный генератор микросхемы CS209 работает за счет включения параллельной резонансной LC-цепи в сочетании с резистором обратной связи, подключенным к выходам OSC и RF.

Полное сопротивление настроенной резонансной сети можно ожидать на максимальном уровне, пока частота источника возбуждения равна резонансной частоте сети LC-контура.

При обнаружении наличия металлического предмета в непосредственной близости от индуктора амплитуда напряжения LC-цепи постепенно начинает падать в соответствии с близостью металла к индуктору.

Из-за вышеуказанного фактора, когда колебание кадра чипа падает и достигает определенного порогового уровня, срабатывает положение дополнительных выходов, так что они меняют свое состояние.

Точные технические операции можно понимать следующим образом:

Согласно рисунку, как только на входе катушки индуктивности обнаруживается металлический предмет, конденсатор, подключенный к DEMOD, заряжается через встроенный источник тока 30 мкА. .

Однако в процессе обнаружения вышеуказанный ток отклоняется от конденсатора пропорционально генерируемому отрицательному смещению в цепи LC.

Таким образом, заряд конденсатора, подключенного к DEMOD, снимается с каждым отрицательным циклом, генерируемым в сети LC.

Напряжение постоянного тока с пульсациями на конденсаторе DEMOD напрямую соотносится с внутренним фиксированным уровнем напряжения 1,44.

Когда процедура вызывает срабатывание внутреннего компаратора, он переключает транзистор, который вводит сопротивление 23,6 кОм параллельно заданному резистору 4K8.

Этот результирующий опорный уровень равен примерно 1,2 В, что вносит некоторый гистерезис в схему и становится идеально подходящим для предотвращения ошибочных или ложных срабатываний.

Потенциометр обратной связи, подключенный между OSC и RF, используется для установки диапазона обнаружения цепи.

Увеличение сопротивления потенциометра, естественно, увеличивает диапазон обнаружения и, следовательно, точку срабатывания выходов.

Однако обнаружение и точки срабатывания также могут зависеть от конфигурации LC и добротности сети LC.

Как настроить схему металлодетектора

Предложенную схему металлодетектора можно первоначально настроить, выполнив следующие шаги:

Расположите металлический предмет на относительно большем расстоянии от индуктора, предполагая, что добротность LC имеет максимальную чувствительность, а расстояние находится в пределах допустимого диапазона, обеспечиваемого добротностью индуктора.

С помощью этой настройки отрегулируйте потенциометр таким образом, чтобы выходы просто меняли состояния, указывая на обнаружение металлического предмета.

Повторите процедуру регулировки, постепенно увеличивая расстояние, пока не будет оптимизирована подходящая максимальная чувствительность цепи.

Удаление или перемещение металла вручную должно привести к тому, что выход схемы вернется в исходное состояние, подтверждая безупречную работу схемы.

Хотя схема способна обнаруживать металлы в пределах 0,3 дюйма, диапазон можно соответствующим образом увеличить, увеличив добротность катушки индуктивности.

Коэффициент добротности прямо пропорционален чувствительности схемы и степени обнаружения.

Металлодетектор с использованием обычных компонентов

В этом металлодетекторе просто используются все стандартные компоненты, как показано ниже. В нем используется транзистор 2N2222 и пара микросхем 741.

Даже детекторная катушка настолько проста, насколько это возможно! Вам просто нужно намотать 8 витков суперэмалированного медного провода 22 SWG на каркас диаметром 9 дюймов.

После завершения намотки закрепите катушку с помощью ленты или прочного клея, аккуратно потяните ее и снимите с каркаса. Транзистор Q1 работает как основной компонент генератора Колпитца. Диод D1 выпрямляет частоту генератора Колпитца до определенного переменного постоянного тока.

Операционный усилитель U1 работает как дифференциальный усилитель для обнуления изменяющегося постоянного тока, а U2 используется для усиления сигнала выше 200 мкА. Чтобы использовать простую схему металлоискателя, точно настройте потенциометр, пока индикатор M1 не достигнет середины шкалы циферблата.

Как только металлический предмет, такой как золото, зубные пломбы и т. д., оказывается в непосредственной близости от поля зрения катушки, небольшие изменения амплитуды частотных волн вызывают изменения показаний счетчика. Переключатель S1 работает как переключатель ослабления или выбора чувствительности.

О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем/печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *