Цвета светодиодов: Цвета свечения светодиодов | Светодиодное табло

Содержание

Цвета свечения светодиодов | Светодиодное табло

Свет.

Данное явление имеет двойственные свойства: Во-первых, свет это электромагнитная волна, длина которой определяет видимый человеческим глазом цвет. В основе доказательства данной теории лежит опыт Томаса Юнга. Во-вторых, свет это частица — фотон, не существующая при скорости, отличной от скорости света. Открытие Фотона принадлежит Альберту Эйнштейну и датируется 1905-1917 годами, хотя своё имя «Фотон» эта частица получила только в 1926 году.

Видимый диапазон спектра

Цвет неразделимо связан с волновой теорией света — от длины световой волны зависит то, какой цвет будет воспринят человеческим глазом. Границы видимого диапазона светового спектра — от 380 нм (фиолетовый цвет) до 750 нм (красный цвет)

Цвет свечения светодиода определяется типом полупроводника, используемого в светодиоде, а также, для светодиода белого цвета, наличием люминофора.

Светодиоды, выпускаемые на одном оборудовании в одной партии могут незначительно отличаться по цвету свечения, т.к. изготовление светодиодов с фиксированной длиной волны для каждого цвета может оказаться не рентабельно, а иногда и невозможно. На каждый цвет отведен диапазон значений длины световой волны.

Красный светодиод — длина волны 640-660 нм — эти светодиоды обычно не выпускаются яркими.

Красно-оранжевый светодиод — длина волны 630-640 нм — именно эти светодиоды в ярких конструкциях называются яркими красными. Такие светодиоды мы используем при производстве табло высокой яркости, например табло для АЗС.

Оранжевый светодиод — длина волны 620-630 нм — могут выпускаться различной яркости, хотя и не имеют широкого распространения.

Желтый светодиод — 600-620 нм — также выпускаются различной яркости.

Желто-зеленый (590-600 нм) и чисто зеленый (550-580 нм) светодиод — в рекламных конструкциях обычно применяются, как неяркие и яркие светодиоды.

Синий светодиод — 450-510 нм — яркость зависит от длины волны — 450-480 — неяркие светодиоды, 490-510 — яркие.

Почему светодиод светится разными цветами?

Смотрите также обзоры и статьи:

Что влияет на цвет светодиода?

От чего зависит цвет светодиода? Может от цвета пластиковой оболочки? А как тогда обстоят дела с SMD светодиодами, у которых кристалл можно увидеть невооруженным глазом и там уж точно никакой цветной оболочки нет. Давайте же узнаем, почему светодиод светится разными цветами и от чего это зависит?

Начнем с самого простого варианта. Различный цвет свечения светодиода можно получить, просто окрасив его оболочку в тот или иной цвет. Такие светодиоды встречаются довольно часто, а в их основе находиться обычный белый светодиод. Таким нехитрым образом можно получить самые разные цвета свечения.

Кстати, устройство обычного белого светодиода не такое уж и простое. В основе таких диодов находиться бирюзовые или ультрафиолетовые светодиоды, в которых для белого свечения применяют специальный состав — люминофор.

Из чего состоят кристаллы?

А как быть со светодиодами, у которых прозрачная оболочка, или же с SMD светодиодами? В таких светодиодах применяются особые материалы для создания светоизлучающего кристалла.

Наиболее распространенным материалом для производства кристаллов являются различные соединения Галлия. В основном используются соединения Галлий Фосфида трехвалентного, в которые добавляют различные примеси. С помощью этих соединений получают светодиоды со свечением красного, оранжевого желтого и зеленого цвета. Но из текста мало понятно, давайте рассмотрим графические материалы.

Как видим, для обеспечения определенного свечения светодиодов используются различные соединения химических материалов. Обратите внимание, некоторые соединения применяются в светодиодах с различным цветом светимости. Это означает, что в таких светодиодах материал-основа дополнительно обрабатывается различными химическими соединениями.

Цвет получаемый совмещением.

Несколько иначе обстоят дела с инфракрасными и ультрафиолетовыми диодами, так как они излучают свет соответственно в инфракрасном и ультрафиолетовом спектрах. А вот бирюзовый светодиод состоит из двух светодиодных кристаллов — синего и красного, которые вместе дают такой цвет.

Кстати, двух и трехцветные светодиоды довольно распространены. Зачем изобретать новые материалы дающие определенное свечение, если можно просто подобрать несколько цветных диодов, дающих нужный цвет и объединить их в одном корпусе! Таким образом устроены RGB светодиоды. Вот только в них применяется сразу три светодиодных кристалла — красный, синий и зеленый соответственно.

Теперь вы знаете, почему светодиоды могут давать различное свечение. Как видим, все довольно просто — есть несколько основных видов светодиодов, которые дают основные цвета, а уже с их помощью различных комбинаций этих кристаллов можно получить новый, определенный цвет свечения.

Поделиться в соцсетях

Цветовые оттенки светодиодов и светодиодных ламп

Какой цвет излучает светодиод?

На этот вопрос можно услышать разные ответы. Можно услышать, что светодиод излучает красный, голубой, белый цвет. А ещё синий, зелёный…

Все ответы и правильны и неправильны. Правильны они потому, что полупроводниковый источник света действительно «умеет» излучать некоторые из перечисленных цветов. А неправильны потому… Впрочем, по порядку.

Чтобы разобраться с этим хитрым вопросом, надо вернуться на несколько десятков лет назад. В 1907 году исследователь Генри Раунд обнаружил свечение при прохождении тока в паре металл — карбид кремния. Особого значения обнаруженному эффекту Раунд не придал и полученный результат был благополучно забыт. Зато в 1927 году советский учёный Лосев подробно исследовал свечение полупроводника и получил патент на своё открытие. Долгие годы учёные всего мира называли полученный им эффект «свечением Лосева». Справедливо полагать, что это и было началом эпохи полупроводниковых источников света.

Исследования Лосева настолько опередили время, что лишь 40 лет спустя были возобновлены работы по созданию светодиодов. Первый светодиод красного свечения был создан в 1962 году. За ним последовали светодиоды, способные излучать зелёный и жёлтый цвета. Были исследованы различные материалы для использования в полупроводниковых источниках света. Именно их комбинация и позволяет получать различные цвета излучения. Так, например, для получения светодиода красного света используется фосфид галлия, а фиолетовый цвет получается при использовании нитрида индия-галлия. Сегодня светодиоды способны излучать все цвета радуги. Кроме того, созданы светодиоды, работающие в инфракрасном и ультрафиолетовом диапазоне. Наше зрение неспособно увидеть это излучение, однако такие источники света незаменимы при использовании в специальной аппаратуре, в устройствах автоматики. Широкое применение находят и светодиоды, создающие когерентный поток света, то есть лазерные светодиоды.

А какие светодиоды применяются в светодиодных светильниках? Светодиоды белого излучения? Нет. На сегодняшний день не существует полупроводникового источника, способного излучать белый цвет.

Чтобы получить белый цвет, приходится применять особенные технические решения. Самое простое решение — смешать три основных цвета. Этот принцип положен в основу создания RGB светодиода. В едином корпусе размещены три светодиода, излучающие красный (R), зелёный (G) и синий (B) цвета. Одновременное излучение трёх цветов воспринимается человеческим глазом, как белый цвет. Недостатком такой технологии является нестабильность спектральной характеристики, поскольку каждый из трёх интегрированных светодиодов имеет разброс параметров. Тем не менее, такие источники света находят применение там, где спектральный состав не имеет большого значения. Кстати, существуют не только трёх, но и двухкомпонентные светодиодные излучатели, позволяющие смешением цветов получать различные оттенки.

Более прогрессивной технологией для получения белого цвета является технология с применением люминофоров. Светодиодный чип излучает синий цвет, а слой люминофора преобразует его в белый цвет. Таким образом в светодиодном светильнике мы наблюдаем переизлучённый свет. Такая технология применяется в подавляющем большинстве современных светодиодных источниках света. На сегодняшний день это самая недорогая и самая стабильная технология.

Исследовательские работы по созданию различных типов светодиодов постоянно ведутся и в России и за рубежом. Несомненно, что полупроводниковые источники света ещё не раз удивят мир своими безграничными возможностями.

Светодиодные лампы LTC имеют следующие цветовые температуры:

  • холодный цвет (5000-6500 К)
  • нейтральный цвет (3500-5000 К)
  • теплый цвет (2700-3500 К)

Влияет ли цветовая температура на экономичность светодиодной лампы?

Цветовая температура светильника никак не влияет на экономичность. Не влияет и на световой поток, хотя визуально кажется, что холодный свет светит ярче чем теплый (это связанно с тем что, человеческий глаз сильнее улавливает спектр холодного света) и имеет только визуальные различия.

СВЕТОДИОДЫ. ЦВЕТА СВЕТОДИОДОВ

 

Так как же получаются цвета светодиодов? В отличии от  обычных диодов, светодиоды производятся из «экзотических» полупроводниковых материалов – Арсенид Галлия ( GaAs ), фосфид галлия (GaP ), Фосфид Арсенид Галлия ( GaAsP ), Карбид Кремния ( SiC ), Индий Галлий Азотный ( GaInN ). Эти материалы, смешиваясь в различных пропорциях дают разнообразные

цвета светодиодов. Т.о. можно считать, что цвет светодиодов определяется длиной волны излучаемого света, который в свою очередь зависит от смеси полупроводников, которые используются в формировании точки PN во время производства светодиодов, а НЕ окраской самого корпуса светодиода. Естественно цвет светодиода ( вернее его корпус ) тоже окрашивается, но только для того, чтобы понять, каким будет цвет светодиодов, когда они будут работать. Цвет светодиодов достаточно широк – красный, янтарный, желтый и зеленый. И такой спектр цветов светодиодов дает возможность использования их во многих дисплеях, индикаторах.

Не стоит забывать и о том, что цвет светодиодов может быть и синим и белым. Но как правило, такой цвет светодиодов дает более дорогой по выпуску светодиод. Эта дороговизна обусловлена тем, что производство таких цветов светодиодов – достаточно дорого. Так как надо точно смешать несколько цветов, чтобы получить данный цвет светодиода. Это проблематично.

Главным компонентом в цвете светодиодов ( как видим ) – является Галлий ( Ga ) и Мышьяк ( As )/

Так, чтобы получить хороший инфракрасный цвет светодиода – для пультов, используется смесь GaAs, она не подходит для точечных указателей красного цвета светодиодов, ведь у него малая яркость инфракрасного излучения. Тут нам на помощь идет Фосфор, который добавляя в эту смесь, мы получим видимый для глаза инфракрасный цвет светодиода. И теперь этот красный цвет светодиода мы можем увидеть. Дальнейшее смешивание компонентов даст нам следующие цвета светодиодов:

Характеристики цветных светодиодов
Полупроводники Длина волны Цвет VF @ 20mA
GaAs 850-940nm Infra-Red 1.2v
GaAsP 630-660nm Red 1.8v
GaAsP 605-620nm Amber 2.0v
GaAsP:N 585-595nm Yellow 2.2v
AlGaP 550-570nm Green 3.5v
SiC 430-505nm Blue 3.6v
GaInN 450nm White 4.0v

 

·         Арсенид Галлия (GaAs) — инфракрасное излучение

·         Фосфид Арсенида Галлия (GaAsP) — красный к инфракрасному излучению, апельсину

·         Алюминиевый Фосфид Арсенида Галлия (AlGaAsP) — высокая яркость, красная, оранжево-красная, оранжевая, и желтый цвет светодиода

·         Фосфид Галлия (Искровой промежуток) — красный, желтый и зеленый цвет светодиода

·         Алюминиевый Фосфид Галлия (AlGaP) — зеленый цвет светодиода

·         Галлий Азотирует (GaN) — зеленый, изумрудный зеленый цвет светодиода

·         Индий Галлия Азотирует (GaInN) — рядом ультрафиолетовый, синевато-зеленый и синий цвет светодиода

·         Кремниевый Карбид (Так) — синий как основание цвет светодиода

·         Цинковый Селенид (ZnSe) — синий цвет светодиода

·         Алюминиевый Галлий Азотирует (AlGaN) – ультрафиолетовый цвет светодиода 

На последок – никогда не подключайте цветные светодиоды ( да и любые ) непосредственно к источнику питания. Следует подключать цветные светодиоды только через сопротивление. Каждый цвет светодиода будет работать только на определенном токе.

 

Интересное о LED » Какие бывают светодиоды?

Все светодиоды можно классифицировать по определенным признакам – назначению, мощности, цветности и т.д. Предлагаем рассмотреть каждую классификацию в отдельности.

По типу применения

Все светодиоды по типу применения можно разделить на 2 большие группы – индикаторные и осветительные, а также лазерные.

  1. Индикаторные. Используются в качестве индикаторов, которые встраиваются в габаритные огни автомобилей, светофоры, LED-ленты, гирлянды, электронные устройства и т.д. Эти светодиоды подразделяются на такие виды: DIP, «Пиранья», Strow Hat, SMD.
  2. Осветительные. Их применяют для создания светодиодных светильников разного типа – для улиц, жилых и общественных помещений. Например, модель LeDron 9073-A создана для эксплуатации в сухих помещениях. Из осветительных диодов можно назвать: SMD LED, COB, Filament LED.
  3. Лазерные. Это малая группа светодиодов, которые нельзя отнести ни к осветительным, ни к индикаторным. По конструкции это полупроводниковые элементы, обработанные особым образом так, чтобы генерировать сверхузкий луч света. Используются в устройствах для нанесения точной разметки, лазерных указках, компьютерных мышах и т.д.

Каких цветов бывают светодиоды?

Различие диодов по цветам излучения – первое, что приходит на ум. Действительно, это самая заметная разница между полупроводниковыми элементами. Цвет свечения будет зависеть от длины волны излучения.

Самый распространенный цвет свечения светодиодов – белый. В зависимости от цветовой температуры (измеряется в Кельвинах) он может быть нейтральным, теплым или холодным. Также встречаются зеленый оттенок свечения светодиодов, синий, красный, желтый, оранжевый и белый.

Это все касалось только монохромных оттенков свечения. Но есть и формат RGB, когда светодиодное устройство (например, RGB LED лента) может воспроизводить разноцветный спектр излучения. Фактически это достигается установкой монохромных диодов вместе. Это полупроводниковые кристаллы с красным излучением (R – “red”), зеленым (G – “green”) и синим (B – “blue”).

При подключении контроллера к осветительному прибору начинается воспроизведение свечения кристаллов в заданном порядке, что и создает светодинамический эффект многоцветного излучения.

Какой мощности бывают светодиоды?

Еще одна характеристика, по которой различают полупроводниковые элементы – мощность. Мощность диода, как правило, напрямую связана с его яркостью – чем мощнее элемент, тем более яркий поток света он создает. При этом он будет и потреблять больше электроэнергии, и требовать более эффективного отвода тепла в корпусе осветительного прибора.

Светодиоды с самой малой мощностью – индикаторные, а также диоды поверхностной установки (SMD). В среднем, показатель их мощности равен 0,06-0,2 Ватт. К мощным моделям будут относиться брендовые полупроводниковые кристаллы (таких производителей, как CREE, Osram и других). Показатель их мощности будет достигать значения в 2,6 Ватт.

На какое напряжение бывают светодиоды?

Как такового понятия напряжения у светодиодов нет. Фактически определяется лишь величина напряжения на выходе диода после прохождение через него номинального тока, а через эту величину определяется напряжение на самом кристалле.

Зависит это напряжение от цвета излучения LED-элемента. К примеру, для красных и желтых диодов напряжение будет варьироваться от 1,8 до 2,4 вольт, а для белых, синих и зеленых будет доходить до 3 вольт.

Какой формы и размеров бывают диоды?

Также LED-элементы можно разделять по формам и размерам. Они могут иметь различную форму:

  • Цилиндрическую;
  • Квадратную;
  • Прямоугольную.

Размеры будут определяться в миллиметрах. Для цилиндрических диодов указываются размеры высоты и диаметра, для квадратных и прямоугольных – размеры сторон. Например, распространенный ЧИП-светодиод SMD 3528 имеет размеры сторон 3,5 x 2,8 мм.

Все светодиоды имеют свое предназначение и могут использоваться в разных сферах – в конструкциях светильников для жилых помещений (к примеру, в модели LeDron SCOPE B), в светодиодных лентах разного назначения, в прожекторной подсветке и т.д.

Чтобы подробнее узнать про конструкцию светодиодов, их составные части и устройство, советуем прочитать статью «Как делают светодиоды».

Как с помощью светодиодов получают разные цвета. Статьи компании «LED DANCE!»

В первых светодиодах использовались такие материалы, как фосфид галлия (GaP), тройное соединение AIGaAs и тройное соединение GaAsP. Они создавали излучение от красного до желто-зеленого цвета. В настоящее время GaP, AIGaAs и GaAsP используются только для изготовления индикаторных светодиодов, так как большие токи, необходимые для получения излучения, и большое тепло, выделяющееся при работе светодиодов, изготовленных из этих материалов, значительно сокращают срок их службы.

Для производства осветительных светодиодов используются новые материалы, способные выдерживать необходимые уровни тока, высокий нагрев и высокую влажность. В красных и янтарных светодиодах высокой яркости применяются полупроводники алюминий – индий – галлий (AllnGaP),  в синих, зеленых и голубых – индий – нитрид галлия (InGaN).

Светодиоды, изготовленные из AllnGaP и InGaN, в совокупности перекрывают почти всю область спектра видимого излучения с промежутком в области зелено-желтого и желтого цветов. Корпоративные цвета с применением желтого (например, Shell или McDonald’s) трудно получить с помощью одноцветных светодиодов.

Одним из способов получения «сложных» цветов является совместное использование в одном осветительном приборе светодиодов разных типов.

Миллионы цветовых оттенков

Производители светодиодов обычно предлагают светодиоды различных цветов – синий, голубой, зеленый, янтарный, красно-оранжевый, красный и т. д. Самостоятельно светодиод может излучать свет только одного цвета, который определяется используемым в нем полупроводниковым материалом. Настоящее волшебство начинается тогда, когда в одном приборе объединяются светодиоды разного цвета.

Именно объединение светодиодов разного цвета в одном световом приборе, таком как светильник или многокристальный светодиод, и управление интенсивностью излучения светодиодов разного цвета и обеспечивает получение миллионов оттенков. Подобно телевизионному экрану или компьютерному монитору, полноцветный светодиодный прибор реализует цветовую модель RGB (R – красный, G – зеленый, B – синий). Цветовая модель RGB – это модель аддитивного смешения цветов, которая применяется для света, непосредственно излучаемого его источниками. (Модель субтрактивного смешения цветов применяется к отражающим поверхностям, таким как поверхности, покрытые красками или чернилами.)

На диаграмме показано цветовое пространство МКО 1931, разработанное в 1931 г. Международной комиссией по освещению (МКО) для определения всего диапазона, или гаммы цветов, видимых стандартным наблюдателем. Ни одно из устройств – телевизионный экран, монитор компьютера, светодиодный световой прибор и другие трехцветные устройства – не может воспроизвести все цвета, различимые глазом человека. Гамма цветов, которую можно получить с помощью светодиодного светового прибора или многокристального светодиода, зависит от цветов отдельных красных, зеленых и синих светодиодов, используемых в них.

На диаграмме точки трех цветов отдельных светодиодов, используемых в трехцветном световом приборе, соответствуют вершинам треугольника. Теоретически прибор может воспроизвести любой цвет, соответствующей точкам внутри этого треугольника. На практике трехцветный светодиодный световой прибор обычно управляется цифровым контроллером и может воспроизвести определенное количество возможных цветов внутри треугольника.

С помощью 8-битного трехцветного светодиодного прибора можно получить приблизительно 16,7 млн цветов (2563 цветов) – однако это количество уже превышает число цветов, которые человек способен различить в пределах данного цветового треугольника. (Цвета, лежащие вне границ цветового треугольника, могут быть различимы глазом человека, но световой прибор не сможет их воспроизвести.)

Способность полноцветных светодиодных световых приборов излучать свет любого цвета без использования светофильтров и других внешних устройств в корне отличает светодиоды от других источников света. Совместное использование таких светодиодных источников света с контроллерами освещения позволяет создавать как простые цветовые эффекты, так и полноцветные световые шоу и даже крупномасштабные видеодисплеи.

Создание белого света с помощью светодиодов

Существует два способа получения белого света с помощью светодиодов:

•  Согласно цветовой модели RGB, белый цвет получается с помощью пропорционального смешивания красного, зеленого и синего цветов. При использовании метода RGB белый свет получается при объединении излучения красного, зеленого и синего светодиодов.

•  Люминофорные технологии получения белого света предполагают использование одного светодиода коротковолнового излучения, например, синего или ультрафиолетового, в комбинации с желтым люминофорным покрытием. Фотоны синего или ультрафиолетового излучения, генерируемые светодиодом, либо проходят через слой люминофора без изменения, либо преобразуются в нем в фотоны желтого света. Комбинация фотонов синего и желтого цвета создает белый свет.

Метод RGB дает возможность создавать белый свет точного оттенка, имеющий способность подчеркивать освещаемые цвета. Однако для создания белого цвета RGB требуется сравнительно сложное оборудование, так как в одном источнике необходимо использовать сразу три светодиода. При этом получаемый свет неестественно передает пастельные тона, что является основным следствием низкого индекса цветопередачи белого света, полученного методом RGB. (Индекс цветопередачи светодиодов подробно описан в главе 3, раздел «Качество света».)

Белые люминофорные светодиоды обеспечивают лучшую цветопередачу, чем белые RGB-светодиоды, в большинстве случаев сравнимую с люминесцентными источниками света. От белых RGB-источников света они также отличаются высокой энергоэффективностью. Именно высокая энергоэффективность и хорошая цветопередача делают люминофорные технологии предпочтительным способом получения белого света.

В процессе производства белых светодиодов на светодиодный кристалл наносится слой люминофора. Оттенок или цветовая температура белого света, излучаемого светодиодом, определяется длиной волны света, испускаемого синим светодиодом и составом люминофора.

Цветовая температура излучения светодиода зависит от толщины слоя люминофора. Производители стараются минимизировать цветовые вариации с помощью строгого контроля толщины и состава слоя люминофора. Компания Philips Lumileds использует защищенный патентом процесс изготовления светодиодов Philips LUXEON, излучающих холодный и нейтральный белый свет с высоким постоянством цвета.

В настраиваемых световых приборах, позволяющих получать белый свет из определенного диапазона цветовых температур, используется принцип смешивания трех цветов. Эти приборы обычно содержат светодиоды холодного и теплого белого света, индивидуально управляемые по принципу, применяемому в полноцветных источниках света RGB. Регулирование относительной интенсивности холодного и теплого белого света изменяет цветовую температуру настраиваемого светового прибора по тому же принципу, как регулируется интенсивность излучения красных, зеленых и синих светодиодов полноцветного (RGB).

Проблемы, теория и реальность светодиодов для современных систем отображения информации высшего качества — Компоненты и технологии

Результатом интенсивного развития технологий в области производства оптоэлектронных приборов на основе полупроводниковых светоизлучающих кристаллов стало широкое использование светодиодов в системах отображения информации и световой сигнализации. Большой выбор цветов свечения, комбинация мощного излучения с любой формой пространственного распределения и возможность получения любого оттенка в широком динамическом диапазоне яркостей открывают огромные перспективы использования светодиодов в качестве источников света для этих устройств.

Реализация таких возможностей в этой области применения светодиодов достигается решением ряда технических задач, возникающих в процессе разработки конструкции светодиода. Анализу проблем конструкций светодиодов и кристаллов, оценке результатов собственных исследований характеристик и прогнозу тенденций повышения качества светодиодов посвящена данная статья.

Полупроводниковые источники света

Когда-то задача высечь огонь из чего бы то ни было была самой актуальной для человечества. На определенном этапе огню, полученному с помощью кремния, «было поручено» большое количество функций, одной из которых является его важная составляющая — свет. По-разному решалась эта задача в прежние века, но здесь речь пойдет о самом современном способе получения света из камня.

Основой для построения современных полупроводниковых источников света служит излучающий кванты света p-n-переход. Существует множество вариантов его создания в полупроводнике, но мы остановимся только на тех структурах, которые способны излучать кванты электромагнитного излучения при протекании через них электрического тока. Это гетероструктуры с широкозонными p-n-переходами, ширина запрещенной зоны которых более 1,9 эВ. В настоящее время созданы структуры, способные излучать во всем видимом диапазоне, в ближнем ИК и ультрафиолете. Большой выбор цветов свечения, комбинация мощного излучения с любой формой пространственного распределения и возможность получения любого оттенка в широком динамическом диапазоне яркостей открывают огромные перспективы использования светодиодов в качестве различных источников света.

Светодиоды

Светодиод — это полупроводниковый прибор, преобразующий энергию электрического тока в световую, основой которого является излучающий кристалл. Излучение светодиода занимает достаточно узкою полосу (до 25–30 нм) шкалы спектрального распределения плотности энергетической яркости и поэтому носит характер квазимонохроматического излучения.

На основе вышеперечисленных полупроводниковых кристаллов с излучающими p-n-переходами создано огромное множество различных светоизлучающих светодиодов.

Конструкция светодиода определяет направление, пространственное распределение, интенсивность излучения, электрические, тепловые, энергетические и другие характеристики излучения от полупроводникового кристалла. И конечно, взаимное влияние всех этих параметров друг на друга. Детальное изучение информации о светодиодах различных конструкций и назначения и от различных производителей, сравнение ее с полученной в условиях лаборатории позволило сделать некоторые важные выводы о качестве и возможностях применения светодиодов.

В последнее время светодиоды все больше претендуют на использование их в освещении, художественной подсветке, сигнальной технике. Все это стало возможным благодаря достаточно быстрому росту энергетических показателей, надежности и долговечности квазимонохроматических источников излучения. Малое потребление электрической энергии, легкость формирования диаграммы направленности с помощью различной оптики, простота управления и, самое важное, специфическое восприятие излучения глазом делают светодиоды незаменимыми для создания полноцветных экранов, вывесок и других средств представления информации в виде динамического изображения. Однако это порождает особые требования к характеристикам светодиодов. Исследования, оценки и сравнения этих характеристик и стали предметом обсуждения в данной статье.

Теория светотехнических и электрических характеристик современных светодиодов и ее связь со спецификациями производителей

Самой распространенной и обобщающей единицей, характеризующей энергетические параметры светодиода, является осевая сила света [cd]. Однако эта величина абсолютно нечитаема, если не указать угол излучения Θ по некоторому уровню от Iνmax. Обычно говорится об угле излучения по уровню половины максимальной силы света — Θ0,5Iνmax, хотя иногда указывают и силу света по уровню 0,1IνmaxΘ0,1Iνmax. Совокупность двух параметров — угла излучения и осевой силы света — уже дает представление (хотя и очень грубое), в каком направлении распространяется и какой будет сила света при различных углах наблюдения. Для более точного определения величины силы света при любом угле наблюдения обычно приводится двухкоординатная плоская зависимость Iν(Θ), часто называемая индикатрисой излучения (рис. 1).

Индикатриса излучения светодиода с овальной линзой в полярных координатах. Изображены вертикальная (меньший угол) и горизонтальная (больший угол) плоскости излучения (Рис. 1)

Рис. 1. Индикатриса излучения светодиода с овальной линзой в полярных координатах. Изображены вертикальная (меньший угол) и горизонтальная (больший угол) плоскости излучения

Важной энергетической характеристикой излучения светодиода является световой поток F(lm), определяющийся как интеграл всей энергии, заключенной под пространственной индикатрисой излучения [1]. Именно этот параметр производители светодиодов часто указывают в спецификациях. Особенно это касается мощных приборов с большим углом излучения и равномерным пространственным распределением, стремящимся к ламбертовскому. Однако даже в этом случае невозможно достоверно оценить распределение светового потока внутри диаграммы и, соответственно, правильно оценить силу света светодиода. Подавляющее большинство простых математических пересчетов единиц, которыми пользуются потребители светодиодной продукции, оказываются абсолютно неверными и приводят к большой ошибке в проектировании энергетических характеристик устройств на светодиодах. Особенно это заметно при попытках пересчета несимметричных диаграмм направленности излучения (например, светодиодов с овальной оптикой) и индикатрис узконаправленных светодиодов. Поэтому стоит остановиться на некоторых методах определения светового потока и связи его с другими фотометрическими единицами, потому как только непосредственным измерением этой величины можно с большой точностью получить ее значение.

Методы определения светового потока на основе малых сферических интеграторов (радиус сферы составляет порядка 300–400 мм) широко используются в электронной промышленности. При этом светодиод располагается во входном окне сферы. При измерениях светодиодов с разным пространственным распределением силы излучения можно получить большие ошибки, так как геометрия распределения освещенности на внутренней поверхности интегратора будет различной.

Классический подход к измерениям полного светового потока с помощью сферического интегратора — это размещение источника излучения в центре сферы.

Но даже в этом случае связь с эталоном люмена, погрешности, связанные с неравномерностью спектральных и зонных характеристик внутренней поверхности сферы, требуют особого внимания. Поэтому наиболее перспективным с точки зрения точности и информативности является метод пространственного сканирования силы света — гониофотометрический метод. Используемые для этих целей приборы — гониометр с достаточным угловым разрешением и фотометрическая головка с известным коэффициентом преобразования. Суть этого метода основана на пошаговой фиксации значений силы света при повороте светодиода на известный угол. Уменьшение погрешности измерений и получение наиболее достоверного углового распределения возможно при минимальном значении шага угла поворота светодиода относительно фотометра (или наоборот). Современные гониофотометрические установки имеют шаг 3–10 угловых минут. Одновременно выполняются измерения осевой силы света и ее пространственное распределение. На основании этих данных рассчитывается световой поток.

Получение светового потока светодиода F с пространственным распределением силы света произвольной формы определяется с помощью индикатрис излучения большого числа плоскостей (nIν(Θ) при n ? ?) и последующим вычислением среднего значения F [2].

Распределение светового потока внутри диаграммы направленности позволяет судить о том, какая его часть попадет к наблюдателю в зависимости от угла его зрения. Следует напомнить, что МКО 1931 ггода регламентирует так называемого «стандартного колориметрического наблюдателя», угол зрения которого определен в 1 градус (рис. 2). Это обстоятельство учитывается при выборе данного параметра светоизлучающего светодиода в зависимости от его назначения. Однако часто пользуются лишь индикатрисой излучения, что не всегда верно при расчетах восприятия изображения, необходимой его интенсивности на разных расстояниях от источника и размеров самого источника излучения.

Элементарный световой поток, заключенный в телесном угле dΩ (Рис. 2)

Рис. 2. Элементарный световой поток, заключенный в телесном угле

Применительно к экрану, табло или бегущей строке как к источнику излучения совокупности светодиодов, площадью которого нельзя пренебречь по отношению к расстоянию l до наблюдателя, не выполняется закон «обратных квадратов» [3]; используется другая единица, с помощью которой характеризуется энергетика излучения такого протяженного источника — яркость Y [кд/м2].

Яркость определяется как сила света источника c произвольным распределением излучения по отношению к площади его излучающей поверхности [4].

Эффективность излучателя света характеризуется отношением светового потока (lm) к потребляемой электрической мощности (W). Эта величина, называемая светоотдачей, для светодиодов из материалов типа AIIIBV стала больше, чем у ламп накаливания во всех основных цветах видимого диапазона. Современные светодиоды имеют эффективность, достигающую 20–30 lm/W, а КПД колеблется от 9–16% в приборах на основе нитрида галлия и его твердых растворов (GaN, InxGa1–xN, AlxGa1–xN) и до 25–55% — у светодиодов на основе гетероструктур из твердых растворов (InyAlxGa1–x–yP).

Помимо энергетических, светодиоды характеризуются колориметрическими характеристиками. Знание этих параметров особенно важно при формировании правильной цветопередачи изображения в любом устройстве отображения информации, при использовании в светосигнальной технике, при проектировании оттенков подсветки в архитектуре и т. д.

МКО 1931 года установила трехкоординатную XYZ-систему обозначения цвета любого источника излучения (рис. 3). Как уже отмечалось, светодиоды являются достаточно узкополосными (квазимонохроматическими) излучателями, полуширина спектров которых составляет всего 15–30 нм, что соответствует средней тепловой энергии электронов, поэтому координаты цветности их излучения лежат практически на линии «чистых» цветов локуса МКО 1931 года. Однако имеется и более простая единица, характеризующая цвет, — доминирующая длина волны λdom, получаемая как результат пересечения прямой, проходящей через точку равноэнергетического источника типа «Е» и точку с координатами цветности данного светодиода и локуса МКО 1931 г. Именно ее указывают в технических характеристиках на светодиоды монохроматического излучения. Лишь отдельные фирмы, и NICHIA в их числе, указывают координаты цветности, что, по сути, правильнее. Но для устройств отображения информации, где важность цветопередачи изображения имеет очень высокий статус, этих характеристик зачастую оказывается недостаточно. Поэтому разработчики пользуются, как правило, спектральными характеристиками светодиодов, преобразования которых могут позволить получить ряд параметров спектрального распределения излучения, позволяющих детально оценить возможность использования конкретного светодиода в формировании необходимого оттенка или гаммы цветов. Спектр излучения характеризуется, помимо указанных, такими характеристиками, как центральная λc и максимальная λmax длины волн, полуширина спектра λ1/2, интегральный коэффициент K[Lm/Wopt] [5].

Цветовой график МКО 1931 года (Рис. 3)

Рис. 3. Цветовой график МКО 1931 года

Здесь E(λ) — относительное спектральное распределение светодиода, V(λ) — относительная спектральная световая эффективность.

Так, например, для получения высококачественного изображения на светодиодном экране, работающем по схеме формирования белого из трех основных цветов, — RGB необходимо, чтобы полуширина спектра источника каждого цвета была минимальна, что обеспечит высокую чистоту цвета поля изображения.

Не менее важными также являются электрические характеристики светодиодов. Это прямые и обратные вольт-амперные характеристики (рис. 4–6), зависимости прямого напряжения Uƒ и прямого тока Iƒ от температуры окружающей среды, люменамперные характеристики (зависимости интенсивности излучения от прямого тока через светодиод). По этим параметрам можно определить необходимые характеристики источников питания проектируемых устройств и рассчитать режимы оконечных устройств коммутации, нагрузкой которых будут используемые светодиоды.

Типичные прямые вольт-амперные характеристики светодиодов (Рис. 4)

Рис. 4. Типичные прямые вольт-амперные характеристики светодиодов

Зависимость потребляемой мощности Pdis от прямого тока Iƒ и динамическое сопротивление Rdin светодиодов. Зеленым цветом — на основе InGaN/AlGaN/GaN, красным — на основе AlInGaP/GaP (Рис. 5)

Рис. 5. Зависимость потребляемой мощности Pdis от прямого тока и динамическое сопротивление Rdin светодиодов. Зеленым цветом — на основе InGaN/AlGaN/GaN, красным — на основе AlInGaP/GaP

Типичные обратные вольт-амперные характеристики светодиодов (Рис. 6)

Рис. 6. Типичные обратные вольт-амперные характеристики светодиодов

Следует отметить, что все описанные выше характеристики светодиодов находятся в непосредственной зависимости друг от друга, поэтому, как правило, лишь их совокупность позволяет правильно судить о тех или иных параметрах светодиода. Однако наиболее точно определить соответствие заявленным производителем параметров светодиода, его качество и долговечность можно лишь проведя комплекс измерений и расчетов его характеристик.

Светоды. Основы полупроводниковой оптоэлектроники

Если в кристалле полупроводника создан p-n-переход, то есть граница между областями с дырочной (p-) и электронной (n-) проводимостью, то при положительной полярности внешнего источника тока на контакте к p-области (и отрицательной — на контакте к n-области) потенциальный барьер в p-n-переходе понижается и электроны из n-области инжектируются в р-область, а дырки из p-областив n-область. Инжектированные электроны и дырки рекомбинируют, передавая свою энергию либо квантам света (излучательная рекомбинация), либо, через дефекты и примеси, тепловым колебаниям решетки (безызлучательная рекомбинация). Вероятность излучательной рекомбинации пропорциональна концентрации электронно-дырочных пар, поэтому наряду с повышением концентраций основных носителей в p- и n-областях желательно уменьшать толщину активной области, в которой идет рекомбинация. Но в обычных p-n-переходах эта толщина не может быть меньше диффузионной длины — среднего расстояния, на которое диффундируют инжектированные носители заряда, пока не рекомбинируют.

Задача ограничения активной области рекомбинации решена в конце 60-х годов Алфёровым и его сотрудниками. Были предложены и практически изготовлены гетероструктуры, сначала на основе GaAs и его твердых растворов типа AlGaAs, а затем и на основе других полупроводниковых соединений (рис. 7).

Вид излучающего кристалла с гетероструктурой типа InGaN/AlGaN/GaN на подложке из Al2O3. Показана активная область (область p-n-перехода) и расположение омических контактов. (Рис. 7)

Рис. 7. Вид излучающего кристалла с гетероструктурой типа InGaN/AlGaN/GaN на подложке из Al2O3. Показана активная область (область p-n-перехода) и расположение омических контактов.

В гетероструктурах толщина активной области рекомбинации может быть много меньше диффузионной длины.

Рассмотрим энергетическую диаграмму гетероструктуры (рис. 8), в которой между внешними p- и n-областями полупроводника с большими величинами ширины запрещенной зоны Eg2, Eg3 расположен тонкий слой с меньшей шириной Eg*. Толщину этого слоя d можно сделать очень малой, порядка сотен или даже десятков атомных слоев. Помимо потенциального барьера обычного p-n-перехода на гетерограницах слоя образуются потенциальные барьеры для электронов ΔEc и дырок ΔEν. Если приложить к переходу прямое смещение, возникнет инжекция электронов и дырок с обеих сторон в узкозонный слой. Электроны будут стремиться занять положения с наименьшей энергией, спускаясь на дно потенциальной ямы в слое, дырки устремятся вверх — к краю валентной зоны в слое, где минимальны их энергии.

Энергетическая диаграмма p-n-гетероструктуры типа InGaN/AlGaN/GaN при прямом смещении Uƒ. (Рис. 8)

Рис. 8. Энергетическая диаграмма p-n-гетероструктуры типа InGaN/AlGaN/GaN при прямом смещении .

Широкозонные внешние части гетероперехода можно сильно легировать с обеих сторон, добиваясь больших концентраций в них равновесных носителей. И тогда, даже не легируя активную узкозонную область примесями, удается достичь при инжекции значительных концентраций неравновесных электронно-дырочных пар в слое. Отказ от легирования активной области принципиально важен, поскольку атомы примеси, как уже говорилось, могут служить центрами безызлучательной рекомбинации. Попав в яму, инжектированные электроны наталкиваются на потенциальный барьер ΔEc, дырки — на барьер ΔEν, поэтому и те и другие перестают диффундировать дальше и рекомбинируют в тонком активном слое с испусканием фотонов.

Применяемые материалы группы AIIIBV имеют диапазон ширины запрещенной зоны от 1,9 до 3,5 эВ (рис. 9). Твердые растворы AlGaInP на различных подложках излучают в диапазоне от 650 до 580 нм, структуры на основе GaN, InGaN имеют наибольший квантовый выход в пределах 540–400 нм.

Спектры электролюминесценции светодиодов на основе гетероструктур InGaN/AlGaN/GaN (сплошные линии) и AlInGaP/GaP (штриховые) (Рис. 9)

Рис. 9. Спектры электролюминесценции светодиодов на основе гетероструктур InGaN/AlGaN/GaN (сплошные линии) и AlInGaP/GaP (штриховые)

Рекомбинация электронно-дырочных пар в таких материалах происходит преимущественно с выделением кванта света. Энергия кванта пропорциональна ширине запрещенной зоны Eg — энергии, которую должен затратить заряд для прохода через эту зону. О вероятности излучательной рекомбинации в узкозонном слое говорит внутренний квантовый выход излучения ηi (число излучаемых фотонов на одну электронно-дырочную пару). В гетероструктурах величина i теоретически может быть близка к 100%.

Некоторые особенности конструкции и параметров светодиодов для систем отображения информации

Несмотря на большое количество модификаций конструкций излучающих кристаллов, нельзя однозначно отдать предпочтение какой-либо одной. Если не говорить о качестве самого производства кристалла и соблюдения технологических процессов при их производстве, то выбор определяется, как правило, исходя из идеи построения оптической системы светодиода, на которую работает излучающий кристалл, и задачи, которую впоследствии должен решать этот светодиод.

В устройствах отображения информации светодиоды собраны в группы (кластеры) и не работают поодиночке (рис. 10).

Фрагмент полноцветного кластерного экрана. Пиксели собраны из светодиодов основных цветов (Рис. 10)

Рис. 10. Фрагмент полноцветного кластерного экрана. Пиксели собраны из светодиодов основных цветов

Практически на всех режимах воспроизведения изображения в работе участвует подавляющее большинство светодиодов одновременно. И здесь самым важным условием выбора светодиодов для таких устройств является идентичность большого числа характеристик приборов всех используемых цветов (если речь идет о полноцветных системах) одновременно. Иначе будет нарушено условие правильной цветопередачи и линейности яркости устройства в зависимости от угла обзора.

В настоящее время одной из самых передовых является конструкция светодиода с применением овальных линз (рис. 11), формирующих пространственное распределение с существенной разницей в углах излучения в горизонтальной и вертикальной плоскостях.

Светодиоды фирмы «СОТСО» типа LO5SMQ __-BOG с овальной оптикой 110×50 град. (Рис. 11)

Рис. 11. Светодиоды фирмы «СОТСО» типа LO5SMQ __-BOG с овальной оптикой 110×50 град.

В некоторых случаях для достижения такого эффекта и для обеспечения максимальной равномерности диаграммы в материал линзы локально или по всему объему вводится диспергатор. В результате получается достаточно рациональная конструкция: с одной стороны, широкий (как правило, 110 градусов по уровню 0,5) угол в горизонтальной плоскости дает возможность построить экран, наблюдаемый под большими углами в этой плоскости без искажений, с другой стороны, небольшой вертикальный (30–50 градусов по уровню 0,5) ограничивает бесполезное распространение светового потока в пространство, где нет наблюдения. Таким образом, весь световой поток от кристалла равномерно направляется на наблюдателя. Сложность в том, что распределение светового потока внутри диаграммы направленности светодиодов разного цвета свечения редко бывают одинаковыме. Хотя угловые характеристики по уровню 0,5, указываемые в спецификациях, совпадают. Это связано с особенностью конструкций кристаллов, их геометрическими размерами, правильно подобранной оптикой, процентным содержанием диспергатора в материале линзы и т. д. Невыполнение этого условия и приводит к появлению описанных искажений изображения, сформированного кластером из таких светодиодов (рис. 12). Поэтому важно понимать, что построение качественного устройства воспроизведения полноцветного изображения, где имеет место смешение цветов и формирование оттенков, невозможно без учета характеристик распределения светового потока внутри диаграммы пространственного распределения излучения. Это условие касается также условия минимального разброса интенсивностей излучения (силы света) всех светодиодов одного цвета, невыполнение которого проявляется в виде неравномерной засветки поля светящегося полотна. Глаз способен различить разницу яркостей двух элементов, находящихся в пределах его разрешения и отличающихся друг от друга всего на несколько процентов (при условии нахождения в пределах насыщения). Как показывает практика, выполнение этого условия в начале эксплуатации светодиодного устройства вовсе не означает, что оно сохранится в процессе работы. Этот факт будет обсужден в следующем разделе статьи.

Относительная диаграмма пространственного распределения силы света кластера из трех светодиодов R, G, B фирмы Toyoda Gosei типа E1L4E-S с овальной оптикой и линейным расположением светодиодов в горизонтальной плоскости. Черным цветом обозначена диаграмма в режиме баланса белого, близкого к источнику D65, остальными цветами — соответствующие цвета светодиодов. Показаны расхождения в направленности излучения каждого светодиода относительно оптической оси кластера. (Рис. 12)

Рис. 12. Относительная диаграмма пространственного распределения силы света кластера из трех светодиодов R, G, B фирмы Toyoda Gosei типа E1L4E-S с овальной оптикой и линейным расположением светодиодов в горизонтальной плоскости. Черным цветом обозначена диаграмма в режиме баланса белого, близкого к источнику D65, остальными цветами — соответствующие цвета светодиодов. Показаны расхождения в направленности излучения каждого светодиода относительно оптической оси кластера.

Следующим важным параметром, идентичность которого должна быть соблюдена обязательно, является колориметрическая характеристика. Следствием невыполнения этого требования будет появление различных неоднородностей воспроизведения цвета. Система управления формированием цвета будет настроена на определенное соотношение интенсивностей основных цветов по формуле (7) исходя из спектральных параметров,

описанных в разделе 3 статьи, чтобы получить белый цвет с необходимыми координатами цветности. Однако достаточно отличающиеся по цветовым параметрам светодиоды будут выделяться и исказят цветопередачу. Этот дефект будет тем более заметен, чем меньше ширина спектрального распределения излучения светодиода. Стоит отметить, что глаз очень чувствителен к изменению цвета и способен различать квазимонохроматическое излучение с точностью до 1–2 нм.

Кроме идентичности параметров спектрального распределения необходимо остановиться на некоторых их значениях, требуемых для формирования правильной цветопередачи. МКО 1931 года рекомендует следующие координаты основных цветов (табл. 1).

Таблица 1

Следующим шагом в разработке конструкций светодиодов для систем отображения информации высокого качества стали многокристальные светодиоды с различным цветом излучения и полноцветный (RGB, Full сolor) прибор, содержащий три кристалла в одном корпусе (рис. 13), позволяющий формировать любой оттенок свечения (в том числе белый) как результат матрицирования трех цветов.

Полноцветные светодиоды для SMD-монтажа (Рис. 13)

Рис. 13. Полноцветные светодиоды для SMD-монтажа

Кристаллы расположены на одной общей подложке и находятся друг от друга на расстоянии, не превышающем 1–3 своих линейных размеров. Именно с использованием таких приборов стал возможен отказ от кластеров при изготовлении полноцветных экранов с высокой разрешающей способностью и яркостью до 2500 кд/м2. Размер пикселя при этом получается равным размеру одного светодиода, а смешение цветов вообще происходит в точке с размером примерно 0,8×0,3 мм. Более того, будучи расположенными на одном основании, все три кристалла имеют одинаковую температуру в любой момент времени, поэтому все тепловые уходы их параметров происходят одновременно, независимо от большой разницы прямых токов, и не влияют на результирующий цвет и интенсивность, сформированные в этот момент системой управления (в отличие от кластеров на дискретных светодиодах, где нет единой термостабилизации). Максимальный эффект этого свойства проявляется при формировании и воспроизведении белого цвета с большой частотой смены полей.

К достоинству описанной конструкции светодиода в части теплового режима стоит отнести и возможность использования его в импульсном режиме. Благодаря способности кристалла работать на больших (сотни МГц) частотах возможно получение импульсной оптической мощности, равной десяти номинальным долговременным, с сохранением фронтов до 10 нс (в зависимости от частоты повторения импульсов), при этом прямой ток через кристалл может достигать 100 мА.

Как правило, такие светодиоды исполняются в виде безвыводных элементов для SMD-монтажа и практически не имеют оптической системы, формирующей специфическую диаграмму направленности, поэтому она приближается по форме к cosΘ. Однако взаимное геометрическое расположение кристаллов все же вносит искажения в равномерность смешения световых потоков (рис. 14).

Абсолютная (а) и относительная (б) диаграммы пространственного распределения силы света трехкристального RGB-SMD-светодиода LM1-TPP1-01 TTQ фирмы COTCO с дельтаобразным расположением кристаллов внутри корпуса. Черным цветом обозначена диаграмма в режиме баланса белого, близкого к источнику D65, остальными цветами — соответствующие цвета свечения кристаллов. Показаны расхождения в направленности излучения относительно оптической оси светодиода (Рис. 14)

Рис. 14. Абсолютная (а) и относительная (б) диаграммы пространственного распределения силы света трехкристального RGB-SMD-светодиода LM1-TPP1-01 TTQ фирмы COTCO с дельтаобразным расположением кристаллов внутри корпуса. Черным цветом обозначена диаграмма в режиме баланса белого, близкого к источнику D65, остальными цветами — соответствующие цвета свечения кристаллов. Показаны расхождения в направленности излучения относительно оптической оси светодиода

Но по сравнению со светодиодами с овальной оптикой качество равномерности распределения намного выше на отдаленных от оптической оси углах, соответственно больше и угол наблюдения без искажений. Существуют и конструкции многокристальных светодиодов с различными оптическими системами, упорядочивающими смешение потоков кристаллов и формирующих подобие диаграммы направленности овальных светодиодов. Например, светодиоды фирмы «Корвет-Лайтс» (рис. 15), позволяющие использовать кристалл при повышенных плотностях тока — до 80 А/см2, и обладающих увеличенной по сравнению с другими конструкциями светоотдачей.

а — светодиод с оптикой Френеля на цилиндре, б — светодиод с обычной цилиндрической линзой (Рис. 15)

Рис. 15. а — светодиод с оптикой Френеля на цилиндре, б — светодиод с обычной цилиндрической линзой

Однако равномерного смешения световых потоков кристаллов при использовании оптической системы получить не удается, поэтому широкого распространения такие приборы не получили, несмотря на свои незаурядные энергетические характеристики, едва ли до сих пор кем-либо достигнутые.

Также в таких светодиодах существует проблема с упорядочением идентичности параметров кристаллов, о которой говорилось выше, — ведь необходимо, чтобы все три кристалла были по параметрам очень близки к соответствующим в других светодиодах. Добиться такого сочетания необходимо уже на уровне монтажа кристаллов в корпус, иначе выход приборов с близкими параметрами будет невысок относительно всей партии. Такое действие достаточно трудоемко с технологической точки зрения и приводит к удорожанию продукта. Как правило, за основу берут один параметр, который можно скорректировать уже в составе светодиода. Это сила света. Цветовые характеристики кристаллов тестируются и разделяются еще до монтажа. Впоследствии интенсивность свечения каждого кристалла каждого светодиода в составе табло, например, доводится до одинакового значения программными средствами либо коррекцией питания. Таким образом реализуется идентичность характеристик в трех кристальных светодиодах, используемых группами.

Подавляющее большинство систем управления интенсивностями свечения светодиодов реализовано на принципе широтно-импульсной модуляции (ШИМ) с большим количеством дискретов. Достоинства этого принципа управления, кроме удобства цифровой обработки данных сигнала, с точки зрения режимов работы светодиодов в том, что прямой ток через светодиод остается постоянным всегда, а изменяется лишь длительность импульса этого тока. Глаз интегрирует световой поток за период времени до следующего импульса, и получается, что время свечения светодиода, пропорциональное времени импульса, определяет интенсивность излучения. Это условие можно учесть программно и на самых малых уровнях интенсивности при самых коротких импульсах, когда интеграционная характеристика глаза приобретает функцию ех с большими значениями х, и на самых больших, когда наступает насыщение, сохраняя тем самым линейность яркостной характеристики. Постоянство прямого тока через светодиод определяет соответствующее постоянство большинства ключевых параметров светодиода, в основном зависящих прямо или косвенно только от тока (люмен-амперная характеристика, зависимость полуширины спектра излучения, вольт-амперная характеристика и т. д.). Таким образом, при использовании подобных систем управления устройством отображения информации проблемы уходов характеристик светодиодов сведены преимущественно только к температурным зависимостям. И хотя это также является довольно серьезной темой для обсуждения, стоит говорить об этом отдельно, чтобы рассмотреть все подробности.

Анализ параметров и прогноз качества светодиодов для систем отображения информации от различных производителей методом исследования деградационных характеристик

Ведущими в мире производителями полупроводниковых кристаллов считаются компании NICHIA, Toyoda Gosei, Hewlett-Packard, CREE, Osram, Lumileds, Epistar. Эти компании отличаются друг от друга не только количеством произведенной продукции, а, что самое важное, принципиально различными конструкциями кристаллов собственных разработок. Поэтому, исследуя конкретный светодиод, помимо его технических характеристик немаловажно знать, на основе кристалла какого производителя он изготовлен. Как правило, знание этого обстоятельства, сразу ответит на многие вопросы опытному пользователю светодиодами еще до рассмотрения им других данных. Однако любая наука базируется на исключительно объективных сведениях. Получить их — довольно непростое дело, но в этом разделе хотелось бы обсудить именно такие — объективные результаты исследований параметров кристаллов и светодиодов, полученные в результате многих тысяч измерений и расчетов их характеристик. Во внимание были взяты лишь физические величины, цифры, показания приборов и сравнительные характеристики на их основе.

Были досконально исследованы светодиоды более чем 20 фирм-производителей, в том числе использующих кристаллы указанных выше компаний-лидеров.

Самому детальному исследованию были подвергнуты светодиоды на основе кристаллов Lumileds, Epistar, CREE производства СОТСО, RETOP, ACOL, LASEMTECH, Inc., светодиоды на основе кристаллов Toyoda Gosei, NICHIA.

Параллельно исследовались светодиоды на основе кристаллов, произведенных в Юго-Восточной Азии. Это приборы фирм Brightek, ETR, GUANGYI, Lanbaoli elektroniks, Golden Valley Opto, Lite-Max optо, SINO, ULTRALIGHT electronic, Sitronics Co., LED YI LIU, КENA, Shuen, Ningbo Foryard Opt., SANDER, Ledman и др.

Все образцы исследовались по одинаковой методике. Исследования велись при одинаковых условиях и с максимально возможным количеством измеряемых параметров. Во время наработки каждый светодиод питался от отдельного индивидуального стабилизированного источника тока с точностью поддержания тока ±0,5 мА. Это исключает возможность появления деградации параметров из-за колебаний прямого тока через кристалл. Большинство выводов сделано на основе наблюдений за изменениями зависимостей параметров в течение не менее 10 тыс. часов непрерывной работы светодиодов.

Помимо величин, изменяющихся в зависимости от прямого тока через кристалл, поддающихся моделированию или измерению (световой поток или сила света — люмен-амперная характеристика, вольт-амперная характеристика, зависимость координат цветности от прямого тока и т. д.), есть и такие, как, например, срок службы, необратимая деградация и т. п., которые не могут быть достоверно установлены в зависимости от изменения вышеуказанного параметра. Значения этих характеристик можно косвенно предположить исходя из определения степени близости условий работы кристаллов при различных токах к условиям их работы на нормируемом производителем токе и нормируемого при этом токе срока службы. А также анализируя поведение спектральных и фотометрических характеристик излучения при больших токах, по которому можно достаточно точно судить о «здоровье» кристалла, светодиода в целом и его возможном потенциале.

Необходимость данных этого исследования возникает при моделировании новых конструкций светодиодных устройств, учитывающих возможность работы кристаллов при больших плотностях тока, прогнозов ухода параметров при колебаниях температуры окружающей среды, а также при конструировании устройств отображения информации и сигнализации высокой надежности.

К каждому типу исследуемых светодиодов обязательно применялся метод последовательных измерений большого количества параметров в зависимости от времени наработки (деградационные характеристики параметров — зависимости их значений от времени наработки), что в свою очередь подтвердило эффективность метода для определения качества светодиодов. Появилась возможность связать малые отклонения от типичных в характеристиках у светодиодов без времени наработки с характеристиками после некоторой наработки, приводящие впоследствии к выходу светодиода из строя. Это позволяет сделать достоверный прогноз качества, срока службы и поведения характеристик прибора в процессе всего времени эксплуатации, не прибегая к длительным испытаниям.

По поведению показателей наиболее важных параметров приборов различных конструкций и производителей в течение временной наработки все светодиоды были условно разделены на насколько групп по степени изменения характеристик и изначального (без наработки) соответствия значениям, обозначенным в спецификациях.

Группа 1.

Результаты исследований прежде всего выявили общее повышение энергетики выхода используемых кристаллов относительно прежних показателей. Наиболее продвинутой в плане освоения новых технологий в производстве светодиодов оказалась фирма СОТСО, которая применила в своих светодиодах новый тип кристалла на основе InGaN/GaN на подложке SiC. Это кристаллы серий CREE XBright™, CREE XThin™, устанавливаемые способом «flip-chip» на эвтектическую прослойку, нанесенную на рамку светодиода. Они стали удачным продолжением в усовершенствовании кристаллов MBright™ на подложке SiC, отличающейся лучшей, чем сапфир, совместимостью кристаллических решеток подложки и выращенной на ней структуры InGaN/GaN. Применение кристалла XBright™ позволило практически сравнять энергетические показатели светодиодов синего и зеленого цвета излучения со светодиодами фирмы NICHIA, не изменяя цены и, что самое важное, надежности светодиода. А светодиоды с кристаллом CREE XThin™ фирмы Ledman превзошли по энергетическим параметрам идентичные по характеристикам приборы лидера производства светодиодов. Например, высший ранг наиболее используемых в экранах светодиодов с овальной линзой и углом излучения 110×50 град. светодиодов фирмы NICHIA NSP_546 имеет осевую силу света до 2,4 кд (зеленый цвет), в то время как фирма СОТСО заявляет 2,3 кд у LO5SMQPG4-BOG-A1, что подтвердилось при исследованиях. Синий СОТСО LO5SMQBL4-BOG-A1 также с углом излучения 110×50 град. имеет осевую силу света до 0,75 кд (табл. 2). Световой поток кристаллов CREE представлен в таблице 3.

Таблица 2

Таблица 3

Световая отдача кристаллов CREE XThin™ достигает 35–40 lm/W за счет значительного уменьшения прямого падения напряжения Uƒ во всем диапазоне токов. На рис. 16, 17 показана эволюция вольт-амперных характеристик семейства кристаллов CREE, наглядно поясняющая это утверждение.

Прямые вольт-амперные характеристики кристаллов CREE (Рис. 16)

Рис. 16. Прямые вольт-амперные характеристики кристаллов CREE

Зависимость потребляемой мощности Pdis от прямого тока Iƒ и динамическое сопротивление Rdin кристаллов CREE (Рис. 17)

Рис. 17. Зависимость потребляемой мощности Pdis от прямого тока и динамическое сопротивление Rdin кристаллов CREE

Использование таких светодиодов позволяет формировать экраны и табло с шагом пикселей 22 мм и яркостью до 8000 кд/см2. При шаге пикселей 19 мм можно достичь яркости 10 тыс. кд/см2. При этом полностью сохраняется надежность и долговечность работы экрана.

В чем секрет этих светодиодов? Особая конструкция кристаллов CREE XBright™, CREE XThin™ (рис. 18) одновременно решает несколько задач:

Кристаллы фирмы CREE. а — MBright™, б — XBright™, высота 250 мкм, в — XThin™, высота 115 мкм (Рис. 18)

Рис. 18. Кристаллы фирмы CREE. а — MBright™, б — XBright™, высота 250 мкм, в — XThin™, высота 115 мкм

  • Великолепный отвод тепла от p-n-перехода (тепловое сопротивление «p-n-переход — кристаллодержатель» — всего 2–5 град./Вт), активная область расположена всего в 2–3 мкм от эвтектического слоя.
  • Выгодное с точки зрения хода оптических лучей расположение граней и распределение излучения внутри кристалла по всему объему. Поэтому выход квантов наблюдается по всей поверхности граней кристалла, а их площадь примерно в четыре раза больше, чем у кристалла на подложке из Al2O3 (рис. 19).
  • Кристалл на подложке из сапфира. Высота 110 мкм, тепловое сопротивление «p-n-переход — кристаллодержатель» 80–150 град/Вт (Рис. 19)

    Рис. 19. Кристалл на подложке из сапфира. Высота 110 мкм, тепловое сопротивление «p-n-переход — кристаллодержатель» 80–150 град/Вт

  • Площадь верхнего омического контакта, несмотря на маленький размер, не влияет на равномерность растекания тока, так как p-n-переход расположен в противоположной стороне от него, а распределение тока формируется толщей подложки SiC и специальным слоем AuSn. Нижний контакт занимает всю площадь нижней грани. Поэтому вся площадь активной области работает при одинаковой плотности тока и нет локализации излучения, находящейся в зависимости от расположения омического контакта.
  • Высокая механическая прочность эвтектического соединения кристалла с металлической рамкой светодиода. Устраняются проблемы разности коэффициентов линейного расширения кристалла и материала рамки (подложки) при увеличении температуры работающего кристалла.
  • Кристалл имеет большой динамический диапазон и запас по импульсным токовым нагрузкам. Линейность люмен-амперной характеристики сохраняется вплоть до тока 120 мА, что соответствует его плотности почти в 200 А/см2. Кристаллы конструкций на рис. 19 теряют линейность, едва достигая плотности тока 100–120 А/см2.

Технология посадки кристалла способом «flip-chip» встречается не впервые. Toyoda Gosei применяет эту технологию для кристаллов на подложках из Al2O3. Светодиоды фирмы отличаются высокой надежностью, которую, помимо конструкции кристалла, обеспечивает еще и смонтированный рядом с излучающим кристаллом быстродействующий диод Шоттки, включенный обратно и шунтирующий светодиод при подаче большого обратного напряжения. Однако светотехнические параметры этих светодиодов ниже, чем у СОТСО.

Группа 2.

Другая часть производителей, которые используют в производстве своих светодиодов кристаллы преимущественно конструкций—прототипов NICHIA, разделилась на несколько категорий по различным качественным показателям приборов на однотипных кристаллах. Но все они не достигли таких значений силы света и других энергетических показателей светодиодов, как у ведущих фирм. Часто реальные параметры светодиодов разнились с заявленными в спецификациях, обладая и по этим данным не самыми лучшими характеристиками. Делается это недобросовестным производителем исключительно для того, чтобы обозначить свою продукцию среди других на должном уровне и сделать ее продаваемой, потому как проверить истинность параметров потребителю в подавляющем большинстве случаев бывает невозможно, а по виртуальным, написанным на бумаге характеристикам светодиоды обладают неплохими параметрами. Но выясняется, что все далеко не так.

Группа 3.

Следующая категория — светодиоды с большим фактором деградации квантового выхода от времени наработки, связанного как с некачественным кристаллом, так и с нарушением технологии при сборке светодиода. В эту группу попали светодиоды фирм Lite-Max optо, SINO, ULTRALIGHT electronic, GUANGYI, Ningbo Foryard Opt., SANDER, использующие кристаллы неизвестных производителей из Юго-Восточной Азии. Подавляющее большинство этих кристаллов имеет широко известную структуру, представленную на рис. 19. Однако их характеристики не имеют ничего общего с такими же кристаллами производства NICHIA, по всей вероятности, из-за несовершенства оборудования и несоблюдения технологического процесса их выращивания. Детальные результаты измерения, получения и моделирования деградационных характеристик требуют более тщательного, чем просто ознакомительное, обсуждения из-за большого объема вплотную связанных друг с другом параметров и непременно станут темой будущих статей. Стоит привести здесь одну из самых наглядных диаграмм, иллюстрирующих процесс деградации наиболее важного параметра светодиода во времени— пространственного распределения силы света в зависимости от времени наработки Iν(T) (рис. 20). Возможно построение зависимости изменения светового потока от времени наработки (как наиболее корректной с точки зрения физики процесса), но наглядность этого графика для пользователя будет недостаточна для объяснения картины происходящих изменений в светотехнических параметрах, к которым привязано большинство спецификаций на светодиоды. «Интегральность» этого параметра не позволит проследить за изменениями угловых характеристик и значений силы света на разных участках диаграммы. Как видно из диаграммы, помимо значительного уменьшения осевой силы света , происходит одновременное уменьшение и перераспределение светового потока по углу излучения, изменение угловых характеристик светодиода по разным уровням и, как следствие, пропорциональное этому явлению изменение светотехнических характеристик устройства отображения информации в целом. Это наиболее заметно, если подобная деградация происходит лишь у части светодиодов, образуя пятна и области с нарушенной цветопередачей и разной яркостью. Однако протекание подобной деградации у светодиодов никогда не происходит равномерно у всех образцов из-за различия причин ее появления. А самое главное, что применяемые в кластере светодиоды, как говорилось ранее, выполнены на основе кристаллов разных структур, изменения параметров которых изначально не могут быть одинаковыми. Поэтому сам факт появления деградации, отличающейся по характеру от нормальной для этих материалов кристаллов, уже говорит о недопустимости его возникновения у светодиодов, составляющих полотно изображения устройства. Как правило, поведение именно этого графика (рис. 20) в первые несколько сотен часов работы может многое сказать об отклонении и других характеристик светодиода от нормы.

Рис. 20. Зависимость Iν(T) светодиода SF-5EDB24 110×50 фирмы SINO. Дана диаграмма углового распределения силы света в вертикальной плоскости излучения. Цифрами обозначено время наработки в часах (h). Цвет цифры соответствует цвету кривой на графике (Рис. 20)

Рис. 20. Зависимость Iν(T) светодиода SF-5EDB24 110×50 фирмы SINO. Дана диаграмма углового распределения силы света в вертикальной плоскости излучения. Цифрами обозначено время наработки в часах (h). Цвет цифры соответствует цвету кривой на графике

Группа 4.

Еще одну категорию составляют светодиоды (Sitronics Co., LED YI LIU и др.) с большим разбросом параметров (более ±50% по ) в партии из нескольких сотен штук, усугубляющимся деградацией и не позволяющим использовать их в аппаратуре, требующей единства характеристик всех светодиодов группы. Поэтому их детальное рассмотрение не приводится.

Исследования статистических данных производства больших партий (до 1 млн штук) некоторых производителей (например, СОТСО) показали, что вне зависимости от категории (группы светодиодов, разбитых по принципу идентичности или малого, до ±10%, разброса параметров) количество образцов, определенных описанным методом как неизбежно выходящих из строя, практически одинаково и составляет примерно 12–15%.

Некоторые данные о результатах этих исследований сведены в таблицу 4.

Таблица 4

Причем изначально эти светодиоды признаются годными, потому как действительно соответствуют всем параметрам производителя, указанным в спецификации. Конечно, приведенные цифры колеблются в зависимости от качества партии применяемых пластин кристаллов, соблюдения технологической дисциплины и т. д. Однако селекция потенциально неисправных образцов на производстве является продолжением и развитием описанной методики (с помощью деградационных характеристик) определения критериев, по которым необходимо проводить этот отбор. Таким образом удастся использовать качественные светодиоды, отсортированные по необходимым критериям, и быть уверенным в том, что их параметры не изменятся непредсказуемо непосредственно в проектируемом изделии.

Некоторые итоги исследований

Подытоживая сказанное, стоит заметить, что проводимые исследования и постоянный мониторинг новаций и разработок позволяют не только судить о состоянии рынка светодиодной продукции, но и принимать правильные решения в стратегии использования тех или иных светодиодов в устройствах на их основе. Нельзя не уделять внимание некоторым, принципиально разнящимся с классическими, разработкам в области создания новых средств для полупроводниковой оптоэлектроники. Именно такой подход требуется при проектировании современных устройств отображения информации и оправдан качеством и высокими параметрами производимых экранов и табло на светодиодах при устойчивой тенденции к снижению их стоимости.

Литература

  1. Sze S. M. Physics of Semiconductor devices. 1984.
  2. Moss T. S. Semiconductor Opto — Electronics. 1973.
  3. Абрамов В. С., Никифоров С. Г., Соболь П. А., Сушков В. П. Свойства зеленых и синих InGaN-светодиодов // «Светодиоды и лазеры» № 1, 2. 2002. С. 30–33.
  4. Агафонов Д. Р., Аникин П. П., Никифоров С. Г. Вопросы конструирования и производства светоизлучающих диодов и систем на их основе // «Светотехника» № 6. 2002. С. 6–11.

Разница между цветовыми температурами светодиодов

Разница между цветовыми температурами светодиодов — одна из самых важных вещей, которую нужно знать при установке новых светильников для дома или бизнеса. Давайте сначала выделим самый важный момент — лампы, которые имеют одинаковую мощность и одинаковое количество люменов, могут выглядят по-разному в зависимости от цветовой температуры. И это различие может распространяться на биологический уровень, поскольку наш мозг настроен на глубокую реакцию на определенные цвета света.Если, например, в спальне установлены неправильные приспособления, это может не дать кому-то заснуть до поздней ночи, даже если он захочет спать. То же самое можно сказать и о художественном освещении, освещении шкафов или даже встраиваемом общем освещении.

Очевидно, что цветовая температура имеет большое значение.

Итак, что же такое цветовая температура?

Во-первых, определение того, что такое цветовая температура. Хотя за этим термином существует давняя история, включая эксперименты физиков 18-го века, есть простой способ выразить его.

Представьте себе кусок черного металла, размер или форма не важны. Чтобы упростить задачу, рассмотрим металлическую нить накала внутри лампочки. Когда эта черная нить нагревается, она светится, а по мере повышения температуры она начинает светиться красным, оранжевым, желтым, белым и, наконец, синим при очень высоких температурах. Когда профессионалы по свету говорят о цветовой температуре, они на самом деле имеют в виду цвет, который этот кусок черного металла светится при заданной температуре (измеряется в Кельвинах).

Вот краткое изложение этих цветовых температур на шкале:

  1. 1700K — тусклое свечение пламени спички
  2. 1900K — ровный свет свечи
  3. 2700К — теплые, лампы накаливания
  4. 3000K — солнце на закате или восходе солнца
  5. 3500K — ярко-белый, установка для большинства люминесцентных светильников
  6. 5500К — дневной свет в солнечный день
  7. 6500K — дневной свет в пасмурный день, также настройка для большинства компьютерных мониторов
  8. 7500K — самая крутая настройка для большинства люминесцентных ламп

Чем ниже цветовая температура, тем теплее будет свет или тем он станет краснее.Чем выше температура, тем холоднее будет свет или тем он будет казаться голубее.

В мире жилого и коммерческого освещения почти все светильники имеют значение от 2000K до 6000K. Возможно, две наиболее распространенные цветовые температуры — 2700K и 3500K, поскольку в жилых помещениях преобладают теплые светильники. Но и у прикольных светильников есть свое предназначение, в первую очередь, в коммерческой и промышленной сферах. Причины этого носят эстетический и биологический характер.

Тепло или прохладно?

Нет особых разногласий по поводу того, какое приспособление и где следует использовать.Как правило, в большинстве жилых помещений предпочитают более теплые светильники, и большинство домовладельцев предпочитают их. В коммерческих и промышленных условиях холодильные устройства работают лучше, и рабочие, как правило, предпочитают их в этих условиях. Но почему теплые светильники лучше подходят для жилых помещений, а более прохладные — для коммерческих? Здесь биология играет важную роль.

В присутствии ярко-белых и прохладных светильников организм выделяет серотонин, нейромедиатор, который обычно заставляет людей чувствовать себя более внимательными.Этот ответ объясняет, почему солнечный свет может заставить кого-то чувствовать себя более бодрым и активным, и почему трудно заснуть после того, как некоторое время смотрел в монитор компьютера. Когда эти синие или белые оттенки отсутствуют, организм выделяет мелатонин, гормон, который помогает настроить циркадный ритм (естественный ритм бодрствования и сна в организме) и вызывает сонливость. Ночью и на закате отсутствует синий и яркий белый свет, что приводит тело в сонное состояние.

Есть несколько очевидных применений цветовой температуры, которые могут быть получены из биологии.Лампы накаливания или теплые светодиодные лампы способствуют выделению мелатонина, тогда как флуоресцентные или более холодные светодиодные лампы способствуют выделению серотонина.

Вот почему более теплые светильники предназначены для большинства жилых помещений, таких как спальня или гостиная. В таких условиях теплый свет помогает людям расслабиться и уснуть. Единственные места, где обычно предпочитают белый или более прохладный свет, — это кухня и ванная. Здесь люди ищут более высокий контраст и лучшую цветопередачу, которые предлагают нейтральные и классные светильники.Некоторые домовладельцы устанавливают прохладные светильники в своих спальнях, чтобы читать, так как прохладные светильники хорошо контрастируют с бумагой, используемой в книгах. Некоторые домовладельцы даже предпочитают более прохладные светодиодные светильники для общего освещения спальни, так как они помогают им просыпаться по утрам.

Теплые светильники по-прежнему предпочтительны в некоторых коммерческих помещениях, особенно в вестибюлях и приемных, а также для таких предприятий, как рестораны и отели. В общем, любой бизнес, который хочет, чтобы его клиенты чувствовали себя комфортно, в некоторых местах нуждается в теплом оборудовании.

Однако более холодные приспособления необходимы в любой обстановке, где требуются производительность и высокая контрастность. Самое большое применение холодных светодиодов — это офисные здания, где более синий свет может помочь повысить производительность труда.

Исследование 2016 года, опубликованное Американской академией медицины сна , подтверждает это. В этом исследовании исследователи подвергали испытуемых 30-минутному воздействию яркого синего света, а затем предлагали им пройти когнитивное тестирование. Исследователи обнаружили, что те, кто подвергался воздействию синего света, быстрее реагировали и получали более высокие баллы по тестам знаний.Короче говоря, синий свет — это стимулятор мозгов. И его эффект длится почти час после экспонирования, поэтому правильное приспособление в офисном здании может повысить производительность во всех отношениях.

Синий и ярко-белый свет почти всегда является стандартом в промышленных помещениях, таких как склады и производственные помещения. Отчасти это связано с тем, что работникам этих объектов необходимо постоянно сохранять бдительность. Другая причина заключается в том, что белый свет лучше всего создает контраст между цветами и передает цвет лучше, чем теплые светильники.Это не только из соображений продуктивности или эстетики. Это также может быть проблемой безопасности. Предупреждающие знаки и защитное снаряжение обычно окрашены в оранжевый цвет, а под теплыми светильниками их сложнее заметить. Благодаря ярким белым светильникам гораздо легче увидеть другого работника в оранжевом жилете безопасности или вывески, предупреждающей о находящихся поблизости рабочих бригадах.

Все зависит от выбора

В конце концов, последнее слово в выборе цветовой температуры остается за владельцами недвижимости. Ответ будет разным, в зависимости от того, какое настроение должны вызывать светильники и для какой цели они предназначены.И нет необходимости просто выбирать одну цветовую температуру для всего объекта. В одной комнате можно установить теплые светильники, а в другом — холодные.

А с появлением новых технологий освещения, таких как светодиоды, энергоэффективные варианты доступны во всем спектре. Все, что нужно владельцу дома или бизнеса, — это план получения желаемой конфигурации, и опытная светотехническая фирма может помочь с этим.

лучших цветов светодиодного освещения для различных ситуаций [Помещения — Цвета]

Знаете ли вы, что есть причина, по которой палаты в больницах часто бывают зелеными? Потому что зеленый цвет успокаивает и снимает стресс.

Художники и дизайнеры интерьеров давно поняли, что цвета могут влиять на наши чувства, эмоции и настроение.

Каждый цвет имеет значение и подсознательно влияет на нашу повседневную жизнь.

Вы можете легко изменить настроение и настроение в вашем доме в различных ситуациях с помощью правильных цветов светодиодного освещения.

Правильный цвет светодиода можно использовать для улучшения режима сна, лечения смены часовых поясов, поддержки заживления или повышения бодрости. Цветное освещение позволяет добиться наилучшего результата в любой ситуации в вашей жизни.

Исследования показали, что люди способны различать около 10 миллионов цветов.

Давайте рассмотрим основные и второстепенные цвета и их значение, а также то, где их можно использовать для достижения наилучших результатов.

Лучший цвет светодиодной лампы для различных мест и ситуаций


Основные цвета: синий, красный и желтый.

Дополнительные цвета: оранжевый, зеленый и фиолетовый.

Синий

Если вы хотите сосредоточиться на долгое время, явный победитель — синий цвет.

Во многих исследованиях было показано, что синий цвет нарушает циркадный ритм (внутренние естественные часы организма), вы становитесь более внимательными и не чувствуете сонливости.

Клетки вашего мозга более чувствительны к синему свету, чем к другим цветам, поэтому компании по всему миру вкладывают средства в синее интеллектуальное освещение, чтобы повысить эффективность работы сотрудников и повысить их концентрацию.

Если вам нужно выполнить какую-то работу, требующую полного сосредоточения, переключите свет на синий и раскройте свой творческий потенциал.

Красный

Красный свет имеет плохую репутацию, он связан с гневом, стрессом, опасностью, и многие кнопки аварийной сигнализации имеют красный мигающий свет.

Самое смешное, что с красными светодиодами все наоборот. Красный — успокаивающий и расслабляющий светлый цвет. Исследования показали, что у людей, которые подвергаются воздействию красного света, меньше нарушений сна и проблем с настроением по сравнению с другими цветами.

Желтый

Желтый — теплый цвет, который поднимает настроение. Он также привлекает внимание, поэтому это обычный цвет для такси.

Если вы хотите повысить творческий потенциал и общение, выберите желтый свет. Это распространенный выбор в офисах и на других рабочих местах.

Оранжевый

Вы не часто увидите оранжевые светодиодные фонари, но это очень приятный цвет.

Может стимулировать аппетит у детей.

Он создаст дружескую атмосферу при использовании, цвет также может увеличить приток кислорода к мозгу и повысить вашу умственную активность.

зеленый

Зеленый цвет светодиода — самый видимый цвет для человеческого глаза.

Он связан с лечебным и успокаивающим действием, и это наиболее используемый цвет в больницах.

Он также уменьшает блики и поэтому используется в операционных в больницах.

Школы могут иметь зеленый цвет, потому что это может помочь с обучением и концентрацией.

фиолетовый

Ночные клубы имеют пурпурное освещение, потому что оно создает ощущение волшебства и вдохновения.

Это также угрюмый цвет, придающий ощущение роскоши и богатства.

Если вы чувствуете себя немного сумасшедшим, сделайте снимок и попробуйте фиолетовый свет в своем доме.

Похожие сообщения

Как сделать самодельные цвета на светодиодной полосе с изменяющимся цветом

Почему светодиодная лента застревает на одном цвете?

Если при смене цвета светодиодные ленты застревают на одном цвете, это, вероятно, связано с тем, что вы нажимали кнопку того же цвета, которая достигает пикового значения.Попробуйте использовать кнопку реверса, чтобы отрегулировать его выше или ниже. Если все еще безрезультатно, проверьте контакт ваших контактов и подключите заново. Плохой контакт штифта может помешать полоскам полностью загореться. Кроме того, может выйти из строя пульт дистанционного управления, и вы сможете заменить батарею. В редких случаях контакт разъема может быть неисправен, поэтому мы должны устанавливать его осторожно, не прилагая особых усилий, чтобы избежать поломки контакта, что приведет к неисправности полосовых ламп.

Часть 1. Как сделать самодельные цвета на светодиодных лентах

Светодиодные ленты

можно разделить по цвету на одноцветные и многоцветные, последний из которых включает полосы RGB и dreamcolor.Полосы RGB относятся к тому факту, что каждый светодиодный индикатор на полосе состоит из красных, зеленых и синих микросхем, которые могут излучать красный, зеленый или синий свет сами по себе или светиться любым цветом, который вы хотите, когда две или три микросхемы объединить. Световые полоски Lepro MagicColor помещают микросхемы IC на шарики типа RGB, где каждая микросхема IC соответствует точке пикселя. Регулируя цвет или яркость каждой точки пикселя, можно добиться богатых анимационных эффектов, таких как бег лошади, водоток, хвост падающей звезды, сканирование и т. Д.Для сравнения, полосы RGB показывают один и тот же цвет в каждый момент и не могут создавать эффекты, такие как бег по воде или скачки.

Get RGBIC Magic Color LED Strip Lights

Как сделать самодельный цвет на светодиодной ленте

Как правило, хотя у разных производителей пульты дистанционного управления могут немного отличаться, в целом кнопки одинаковы. Здесь мы возьмем пульт дистанционного управления светодиодными лентами Lepro RGB в качестве примера, чтобы описать, как делать самодельные светодиодные фонари.После установки светодиодных лент выньте пульт и включите его. Вы можете увидеть 20 предустановленных цветов в статическом режиме и выбрать один для своих светодиодных лент.

В области кнопок режима «Сделай сам» нажимайте стрелки вверх и вниз, чтобы увеличить или уменьшить интенсивность красного, зеленого и синего основных цветов и отобразить более насыщенные цвета.

Как сделать персиковый цвет на светодиодных лентах

Если вы хотите, чтобы ваши фары отображали персиковый цвет, сначала нажмите «DIY1».

Затем нажмите кнопку регулировки.Нажмите красный, чтобы увеличить его на 7 секунд, зеленый, чтобы уменьшить его на 2 секунды, и синий, чтобы уменьшить его на 2 секунды. Это легко покажет персиковый цвет.

После этого снова нажмите «DIY1», чтобы пульт дистанционного управления автоматически сохранил настройку цвета в режиме «DIY1».

Разве это не просто? Если вы хотите больше цветов, выполните эти шаги и попробуйте много раз.

Кроме того, если вы приобрели интеллектуальную полосу RGB, сделать цвета светодиодной подсветки своими руками стало еще проще. Откройте приложение Lepro LampUX. Независимо от того, хотите ли вы сладкий персиковый цвет или романтический цвет лаванды, стандартная палитра может дать вам нужный цвет одним щелчком мыши, так что вы можете менять стиль и атмосферу комнаты по своему желанию.

Часть 2. Лучшие многоцветные светодиодные ленты

Светодиодные ленточные светильники Lepro RGB, так как они могут отображать множество разных цветов и атмосфер, являются фаворитом среди многих. Между тем, полоски DreamColor также популярны. После выбора режима флуоресценции на одной и той же полосе отображаются разные цвета с разными эффектами. Как правило, полоски dreamcolor больше используются в барах, KTV, сценах и т. Д. Их можно использовать и на домашней вечеринке. Но в качестве фоновой подсветки для зеркал для макияжа или вокруг кровати достаточно полос RGB.

Будь то полоски RGB или dreamcolor, они отлично подходят для создания атмосферы. Ваш выбор зависит от личных, практических потребностей. Прочтите здесь, чтобы узнать больше о светодиодных лентах.

Какой цвет светодиода (Кельвина) выбрать?

Выбор лучшего светодиодного светильника для вашего пространства выходит за рамки того, какой светильник или размер вам нужен: выбор наилучшей цветовой температуры (измеряется в Кельвинах или K) имеет важное значение для создания желаемой атмосферы и выполнения определенных функций.

Как правило, цветовая температура светодиодного освещения составляет от 2300К до 6000К. Несмотря на то, что вы можете предположить, источники света с более низким Кельвином дают самый теплый свет, а источники с более высоким Кельвином — самый яркий и самый холодный свет.

2300K (Amber Glow): Насыщенный и интимный, наш самый теплый цвет с янтарным оттенком. Эта температура лучше всего подходит для помещений с мебелью темных тонов, таких как домашние бары и притоны.

2700K (теплый белый): Комфортная оранжево-желтая температура, создающая уютную атмосферу.Этот цвет гармонирует с естественными тонами и деревянной мебелью.

3000K (Мягкое белое свечение): Хороший выбор как для дома, так и для бизнеса. 3000K — это привлекательный и приятный цвет, который хорошо сочетается с гостиной и обеденной зонами, такими как кафе, рестораны, лаунджи и бары.

4000K (дневное свечение): Чистый белый цвет, похожий на естественный дневной свет, лучше всего сочетается со светлыми цветами и минималистичным декором. Используйте эту температуру для таких приложений, как офисы, вестибюли, школы и гаражи.

5000K (кристально-белое свечение): Эта четкая и светящаяся сине-белая температура является вдохновляющим выбором для наружного охранного освещения и помещений, ориентированных на детали, таких как мастерские, фабрики и больницы.

6000K (суперяркий белый): Ультра-яркий с синим оттенком, 6000K — это интенсивный цвет светодиодного света, который может иметь футуристическое свечение. Этот цвет следует использовать в больших коммерческих и промышленных помещениях, требующих повышенной яркости, таких как уличные фонари и склады.

Для наглядности см. Следующие изображения, на которых показаны различные цветовые температуры в градусах Кельвина.

Если вы хотите понять, как работает CCT и почему это важно, ознакомьтесь с нашим руководством по CCT

Рекомендуемые светодиоды по цветовой температуре

Поиск подходящего света с правильной цветовой температурой может оказаться непростой задачей. Ниже вы найдете некоторых из наших бестселлеров, которые охватывают ряд CCT.

Некоторые из них даже регулируются, что означает, что вы можете изменять температуру в любое время.

Рекомендуемые лампы

Выбор температуры по Кельвину для внутри вашего дома, вероятно, является наиболее важным решением, когда дело доходит до освещения. Правильная температура создаст идеальную атмосферу, будь то спальня, кухня или гостиная.

Указанные ниже лампочки имеют широкий диапазон Кельвина (2700K, 3000K, 4000K и 5000K), и одна из них даже полностью регулируется

1426,1682,1592

Рекомендуемые потолочные светильники

Внутренние даунлайты часто используются для создания настроения или выделения определенных участков вашего дома.В зависимости от того, где вы устанавливаете встраиваемые светильники, вам нужна правильная цветовая температура.

Посмотрите наши самые продаваемые даунлайты размером 4 и 6 дюймов.

1413,1412,1651

Светоизлучающий диод | Типы, цвета и применение светодиодов

Светоизлучающий диод или просто светодиод — один из наиболее часто используемых источников света в наши дни. Будь то фары вашего автомобиля (или дневные ходовые огни) или освещение гостиной вашего дома, применения светодиодов бесчисленны.

В отличие от (почти) устаревших ламп накаливания, светодиоды (и люминесцентные лампы) нуждаются в специальной цепи для их работы. Их просто называют драйверами светодиодов (или балластом в случае люминесцентных ламп).

Поскольку светодиоды неизбежны в нашей жизни, заинтересованным людям (инженерам, разработчикам драйверов и т. Д.) Будет полезно познакомиться с основами работы со светоизлучающими диодами. Эта статья представляет собой краткое руководство по светодиодам, которое включает краткое введение, электрические обозначения светодиода, типы, конструкцию, характеристики, драйверы светодиодов и многое другое.

ПРИМЕЧАНИЕ: Существует более простая версия этой статьи « LED — Light Emitting Diode », которая дает более простой обзор светодиода, не вдаваясь в технические детали.

Введение

Двумя наиболее важными полупроводниковыми источниками излучения света, широко используемыми в различных приложениях, являются ЛАЗЕРНЫЕ диоды и светодиоды. Принцип работы ЛАЗЕРНЫХ диодов основан на вынужденном излучении, тогда как у светодиодов — на спонтанном излучении.

Самым распространенным источником света, используемым в электронных компонентах, являются светоизлучающие диоды. Например, они широко используются для отображения времени и многих других типов данных на экранах определенных устройств отображения. Светодиоды — это опто-полупроводниковые устройства, которые легко преобразуют электрический ток в освещение (или свет). Площадь светодиода обычно меньше 1, и многие интегрированные оптические компоненты могут использоваться при разработке его диаграммы направленности. Его главное преимущество — низкая стоимость производства и более длительный срок службы, чем у лазерного диода.Светоизлучающий диод состоит из двух основных полупроводниковых элементов. Это положительно заряженные дырки P-типа и отрицательно заряженные электроны N-типа.

Когда положительная сторона P диода подключена к источнику питания, а сторона N — к земле, то соединение считается прямым смещением, которое позволяет электрическому току проходить через диод. Основные и неосновные носители заряда на стороне P и стороне N объединяются друг с другом и нейтрализуют носители заряда в обедненном слое на PN-переходе.

Миграция электронов и дырок, в свою очередь, высвобождает некоторое количество фотонов, которые выделяют энергию в виде монохроматического света с постоянной длиной волны, обычно в нм, которая напоминает цвет светодиода. Цветовой спектр излучения светодиодов обычно чрезвычайно узок.

В общем, это может быть определено как определенный конкретный диапазон длин волн в электромагнитном спектре. Выбор цвета излучения светодиода довольно ограничен из-за природы полупроводника, используемого в производстве.Обычно доступные цвета светодиодов — красный, зеленый, синий, желтый, желтый и белый.

Свет красного, синего и зеленого цветов можно легко комбинировать для получения белого света с ограниченной яркостью. Рабочее напряжение красного, зеленого, желтого и желтого цветов составляет около 1,8 вольт. Фактический диапазон рабочего напряжения светодиода можно определить по напряжению пробоя полупроводникового материала, используемого в конструкции светодиода. Цвет излучаемого в светодиодах света определяется полупроводниковыми материалами, которые образуют PN-переход диода.

Это происходит из-за различий в структуре запрещенной зоны полупроводниковых материалов, поэтому разное количество фотонов испускается с разными частотами. Однако длина волны света зависит от ширины запрещенной зоны полупроводниковых материалов на стыке, а интенсивность света зависит от количества мощности или энергии, подаваемой через диод. Выходную длину волны можно поддерживать с помощью составных полупроводников, чтобы можно было наблюдать требуемый цвет, обеспечивая выход в видимом диапазоне.

Свет можно производить и управлять с помощью электронных средств разными способами. В светодиодах свет создается за счет электролюминесценции, которая представляет собой твердотельный процесс. При определенных условиях получения света твердотельные процедуры могут производить когерентный свет, как и в лазерных диодах.

ВЕРНУТЬСЯ В НАЧАЛО

Типы светодиодов

Светодиоды можно условно разделить на две основные категории светодиодов.Это

  • видимых светодиодов
  • невидимых светодиодов

видимых светодиодов в основном используются для переключателей, оптических дисплеев и для целей освещения без использования каких-либо фотодатчиков. Невидимые светодиоды используются в приложениях, включая оптические переключатели, анализ и оптическую связь и т. Д. С использованием фотодатчиков.

ВЕРНУТЬСЯ В ТОП

Эффективность

Рейтинг светодиодов определяется их световой отдачей.Он определяется как отношение светового потока к входной электрической мощности, подаваемой на диод, и может выражаться в люменах на ватт. Световой поток представляет собой реакцию глаза на световые волны различной длины.

222 645 9038
Цвет Длина волны (нм) Типичная эффективность (лм / Вт) Типичная эффективность (Вт / W)
9038
72 0.39
Зеленый 520-550 93 0,15
Синий 460-490 37 0,35
Голубой
Красный — Оранжевый 610-620 98 0,29

НАЗАД

Конструкция светодиода

Конструкция светоизлучающих диодов сильно отличается от конструкции светоизлучающих диодов обычный полупроводниковый сигнальный диод.Свет будет излучаться светодиодом, когда его PN-переход смещен в прямом направлении. PN-переход покрыт прозрачным твердым пластиковым корпусом полусферической формы из эпоксидной смолы, который защищает светодиод от атмосферных возмущений, вибраций и тепловых ударов. PN-переход формируется с использованием материалов с наименьшей шириной запрещенной зоны, таких как антимонид галлия, арсенид галлия, антимонид индия, арсенид индия и т.д. что фотоны света, излучаемые переходом, отражаются от окружающей основы подложки и фокусируются через куполообразную вершину светодиода, которая сама действует как линза, концентрирующая большее количество света.

Это причина, по которой излучаемый свет кажется самым ярким в верхней части светодиода.

Обычно светоизлучающие диоды, излучающие красный свет, являются фиктивными на подложке из арсенида галлия, а диоды, излучающие зеленый / желтый / оранжевый свет, являются фиктивными на подложке из фосфорида галлия. Для излучения красного цвета слой N-типа легирован териллием (Te), а слой P-типа — цинком. Контактные слои сформированы с использованием Al на стороне P и AlSn на стороне N соответственно.

Светодиоды предназначены для обеспечения максимальной рекомбинации носителей заряда на поверхности PN-перехода следующими способами.

  • При увеличении концентрации легирования подложки электроны дополнительных неосновных носителей заряда перемещаются к вершине структуры, рекомбинируют и излучают свет на поверхности светодиода.
  • Путем увеличения диффузионной длины носителей заряда, то есть L = √ Dτ, где D — коэффициент диффузии, а τ — время жизни носителей заряда.При превышении критического значения будет вероятность повторного поглощения выпущенных фотонов в устройство.

Когда диод подключен с прямым смещением, носители заряда приобретают достаточное количество энергии, чтобы преодолеть барьерный потенциал, существующий в PN-переходе. Когда применяется прямое смещение, неосновные носители заряда как P-типа, так и N-типа инжектируются через переход и рекомбинируют с основными носителями. Эта рекомбинация основных и неосновных носителей заряда может быть излучательной или безызлучательной.Излучательная рекомбинация излучает свет, а безызлучательная рекомбинация производит тепло.

ВЕРНУТЬСЯ В НАЧАЛО

Органические светоизлучающие диоды

В органических светодиодах сложный полупроводниковый материал, используемый при разработке светодиодов, имеет органическую природу. Органический полупроводниковый материал является электропроводным в какой-то части или во всей молекуле за счет сопряженного электрона; в результате это органический полупроводник. Материал может находиться в кристаллической фазе или в полимерных молекулах.Его преимущества заключаются в тонкой структуре, меньшей стоимости, низком напряжении для вождения, отличной диаграмме направленности, высокой яркости, максимальном контрасте и интенсивности.

ВЕРНУТЬСЯ В НАЧАЛО

Цвета светоизлучающих диодов

В отличие от обычных полупроводников, сигнальные диоды, которые используются для переключения схем, выпрямителей и схем силовой электроники, изготовленные из кремниевых или германиевых полупроводниковых материалов, светоизлучающие Диоды производятся из сложных полупроводниковых материалов, таких как арсенид галлия, фосфид арсенида галлия, карбид кремния и нитрид галлия-индия, смешанные вместе в различных соотношениях для получения уникальной отличительной длины волны цвета.

Различные полупроводниковые соединения излучают свет в определенных областях видимого светового спектра и, следовательно, создают свет с разными уровнями интенсивности. Выбор полупроводникового материала, используемого при производстве светодиода, будет определять длину волны излучения фотонов и результирующий цвет излучаемого света.

НАЗАД В начало

Диаграмма направленности

Определяется как угол излучения света по отношению к излучающей поверхности.Максимальное количество мощности, интенсивности или энергии будет получено в перпендикулярном направлении с излучающей поверхностью. Угол излучения света зависит от излучаемого цвета и обычно колеблется от 80 ° до 110 °.

9038

Все

Инфракрасный излучатель 9038

Фосфид галлия Индий Индий Фосфид индия Алюминий Индий Галлий Индий N Пурпурный
Цвет Длина волны (нм) Падение напряжения (В) Полупроводниковый материал
Алюминий Арсенид галлия
Красный 610-760 1.6 — 2,0 Алюминий арсенид галлия
Фосфид арсенида галлия
Алюминий галлий фосфид индия
Фосфид галлия
— 6
оранжевый
Алюминий Галлий фосфид индия
Фосфид галлия
Желтый 570-590 2.1 — 2,2 Фосфид арсенида галлия
Алюминий Галлий Фосфид индия
Фосфид галлия
Зеленый 500-570 Индий Фосфид Фосфид индия Фосфид 9037 Индий
Фосфид алюминия-галлия
Нитрид индия-галлия
Синий 450-500 2.5 — 3,7 Селенид цинка
Нитрид индия и галлия
Карбид кремния
Кремний
Фиолетовый 400 — 45055 Индий 400 — 450 Фиолетовый 400-450 Индий несколько типов 2,4 — 3,7 Двойные синие / красные светодиоды
Синий с красным люминофором
Белый с фиолетовым пластиком
ультрафиолетовый 3.1 — 4,4 Алмаз
Нитрид бора
Нитрид алюминия
Нитрид алюминия-галлия
Алюминий галлий Нитрид индия
Нитрид индия
синий
Желтый с красным, оранжевым или розовым фосфором
Белый с розовым пигментом
Белый Широкий спектр 3.5 Синий / УФ-диод с желтым люминофором

Цвет света, излучаемого светодиодом, не определяется цветом пластикового корпуса, в котором находится светодиод. Кожух используется как для усиления светового излучения, так и для обозначения его цвета, когда он не работает от источника питания. В последние годы также доступны синие и белые светодиоды, но они дороже обычных стандартных цветных светодиодов из-за производственных затрат на смешивание двух или более дополнительных цветов в точном соотношении в полупроводниковом соединении.

ВЕРНУТЬСЯ В НАЧАЛО

Общие характеристики источников света

Ток возбуждения против светового выхода

При высоких значениях прямого тока возбуждения температура PN перехода полупроводника увеличивается из-за значительного рассеивания мощности. Такое повышение температуры на переходе приводит к снижению эффективности излучательной рекомбинации. В результате плотность тока еще больше увеличивается; внутреннее последовательное сопротивление будет иметь тенденцию к снижению светоизлучающей эффективности любого источника света.

ВЕРНУТЬСЯ В НАЧАЛО

Квантовая эффективность

Квантовая эффективность любого источника света определяется как отношение скорости излучательной рекомбинации, которая излучает свет, к общей скорости рекомбинации, и дается как

η = Rr / Rt

ВЕРНУТЬСЯ В НАЧАЛО

Скорость переключения

Скорость переключения источника света похожа на то, как быстро источник света может включаться и выключаться с помощью приложенного электрического питания для создания соответствующей модели оптического выхода.Светодиоды имеют более низкую скорость переключения, чем обычные ЛАЗЕРНЫЕ диоды.

НАЗАД К НАЧАЛУ

Спектральная длина волны

Пиковая спектральная длина волны определяется как длина волны, при которой генерируется максимальная интенсивность света. Он определяется шириной запрещенной зоны полупроводникового материала, используемого в производстве светодиодов.

НАЗАД В начало

Спектральная ширина

Спектральная ширина источника света определяется как диапазон длин волн, в котором источник света излучает свет.Источник света должен излучать свет в пределах более узкой спектральной ширины.

ВЕРНУТЬСЯ В НАЧАЛО

Характеристики светодиода IV

Перед тем, как излучать свет от любого светодиода, через него должен протекать ток, поскольку светодиод является устройством, зависящим от тока, и его выходная интенсивность света прямо пропорциональна к прямому току, проходящему через светодиод.

Светоизлучающий диод должен быть подключен в комбинации с прямым смещением к источнику питания, и он должен быть ограничен по току с помощью резистора, подключенного последовательно, для защиты от избыточного тока.Светодиод не следует подключать напрямую к батарее или источнику питания, потому что через него будет протекать избыточный ток, и светодиод может повредиться.

Каждый светодиод имеет собственное индивидуальное прямое падение напряжения вдоль PN перехода, и этот параметр определяется полупроводниковым материалом, используемым при производстве светодиода для определенной величины тока прямой проводимости, обычно для прямого тока около 20 мА.

При низких прямых напряжениях в управляющем токе диода преобладает ток безызлучательной рекомбинации из-за рекомбинации носителей заряда по длине светодиодного кристалла.При более высоких прямых напряжениях в управляющем токе диода преобладает ток радиационной диффузии.

Даже при более высоких напряжениях, чем обычно, ток диода ограничен последовательным сопротивлением. Диод никогда не должен достигать обратного напряжения пробоя на короткое время, так как это может привести к необратимому повреждению диода. На рисунке ниже показаны ВАХ светодиодов разного цвета.

НАЗАД К НАЧАЛУ

Расчет сопротивления серии

Светоизлучающий диод хорошо работает, когда он включен последовательно с сопротивлением, в результате прямой ток, необходимый светодиоду, обеспечивается напряжением питания на комбинация.Значение сопротивления последовательного резистора можно рассчитать по следующей формуле. Обычно прямой ток нормального светодиода составляет 20 мА.

ВЕРНУТЬСЯ В НАЧАЛО

Многоцветный светоизлучающий диод

На рынке доступно большое количество светодиодов различных форм и размеров, разных цветов и различной интенсивности света. Красный светодиоды арсенида фосфида галлия диаметром 5 мм являются наиболее часто используемыми светодиодами, и их производство очень дешево.В настоящее время производятся светодиоды с многоцветным излучением, и они доступны во многих корпусах, большинство из которых представляют собой два-три светодиода в одном корпусе.

ВЕРНУТЬСЯ В НАЧАЛО

Двухцветные светодиоды

Двухцветные светодиоды представляют собой тип светодиодов, похожих на одноцветные светодиоды, только с одним дополнительным светодиодным чипом, заключенным в корпус. Двухцветные светодиоды могут иметь два или три вывода для подключения; это зависит от используемого метода.Обычно два вывода светодиода подключаются обратно параллельно. Анод одного светодиода соединен с катодом другого светодиода и наоборот. Когда питание подается на любой из анодов, светится только один светодиод. Мы также можем включить оба светодиода одновременно с динамическим переключением на высокой скорости.

ВЕРНУТЬСЯ В НАЧАЛО

Трехцветный светоизлучающий диод

Обычно трехжильный светодиод имеет общий катодный вывод, к которому оба других светодиодных чипа подключены внутри.Должен быть включен один или два светодиода, необходимо заземлить общий катод. Токоограничивающие резисторы подключены к обоим анодам для индивидуального управления током.

Для одно- или двухцветной светодиодной подсветки необходимо подключить источник питания к любому из анодов по отдельности или одновременно. Эти трехцветные светодиоды состоят из одиночных КРАСНЫХ и ЗЕЛЕНЫХ светодиодных чипов, подключенных к одному и тому же катоду. Этот тип диодов генерирует дополнительные оттенки основных цветов, включая два светодиода с разным соотношением прямого тока.

ВЕРНУТЬСЯ В НАЧАЛО

Схемы управления светодиодами

Интегральные схемы Для управления светодиодами можно использовать комбинационные или последовательные схемы. Светодиоды можно включать и выключать с помощью интегральных схем. Выходные каскады логических вентилей TTL или CMOS могут использоваться для управления светодиодами в качестве переключателей в двух режимах конфигурации. Это режимы конфигурации источника и приемника.

Выходной ток, выдаваемый интегральными схемами в конфигурации режима стока, может составлять около 50 мА, а в конфигурации режима источника прямой ток может составлять около 30 мА.Однако ток, подаваемый светоизлучающим диодом, должен ограничиваться последовательно подключенным резистором.

ВЕРНУТЬСЯ В НАЧАЛО

Управление светодиодом с использованием транзистора

Вместо использования интегральных схем, светодиоды могут управляться с помощью дискретных компонентов, таких как биполярные транзисторы PNP и NPN. Дискретные компоненты могут использоваться для управления более чем одним светодиодом, как в больших структурах светодиодной матрицы.

Меньшее количество приложений использует в своей работе только один светодиод.Переходные транзисторы используются для управления током через несколько светоизлучающих диодов таким образом, что прямой ток, возбуждаемый светодиодами, составляет около 10-20 мА. Если для управления светодиодом используется транзистор NPN, то последовательный резистор действует как источник тока. Если для управления светодиодами используется транзистор PNP, то последовательный резистор действует как приемник тока.

Приложения, такие как массив подсветки экрана, уличные фонари или в качестве замены люминесцентной лампы или лампы накаливания, для большинства приложений требуется более одного светодиода.Как правило, параллельное управление несколькими одиночными светодиодами вызывает неравномерное распределение тока между светодиодами; даже в этом случае все светодиоды рассчитаны на одинаковое прямое падение напряжения.

Если один светодиод не работает, последовательные светодиоды могут быть преодолены путем установки параллельных стабилитронов или кремниевых выпрямителей (SCR) на каждом отдельном светодиоде последовательно. SCR — это разумный выбор, потому что они рассеивают меньше энергии, если они должны работать вокруг вышедшего из строя светодиода.

В случае параллельной комбинации включение отдельного драйвера для каждой строки дороже, чем использование нескольких драйверов с соответствующей выходной мощностью.

ВЕРНУТЬСЯ В НАЧАЛО

Управление интенсивностью света светодиода с помощью ШИМ

Интенсивность света, излучаемого светодиодом, регулируется протекающим через него током. Поскольку ток через него меняется, яркость света можно регулировать. Если через диод пропускается большой ток, светодиодный свет светится намного лучше, чем обычно.

Если ток превышает максимальное значение, интенсивность света еще больше возрастает и светодиод рассеивает тепло.Предел прямого тока, установленный для проектирования светодиода, составляет от 10 до 40 мА. Когда требуемый ток очень меньше, может быть вероятность выключения светодиода.

В таких случаях для управления яркостью света и током, требуемым светодиодами, используется процесс, известный как широтно-импульсная модуляция, для многократного включения и выключения светодиода в зависимости от требуемой интенсивности света. Устройства линейного управления рассеивают избыточную энергию в виде тепла, в результате для передачи необходимого количества мощности используются драйверы PWM, поскольку они вообще не передают мощность.

Прежде всего, чтобы подавать импульсы ШИМ в схемы светодиодов, в первую очередь требуется генератор ШИМ. Есть разное количество генераторов ШИМ.

НАЗАД В начало

Светодиодные дисплеи

Одноцветные, двухцветные, многоцветные и несколько других светодиодов объединены в один корпус. Их можно использовать как подсветку, полосы и гистограммы. Одним из важнейших требований цифровых устройств отображения является визуальный числовой дисплей.Типичный пример такого единого пакета из нескольких светодиодов виден на семисегментных дисплеях.

Семисегментный дисплей, как следует из названия, состоит из семи светодиодов в одном корпусе дисплея. Его можно использовать для отображения информации.

Информация на дисплее может быть в виде цифровых данных, состоящих из цифр, букв, символов, а также буквенно-цифровых символов. Семисегментный дисплей обычно имеет восемь комбинаций входных соединений, по одной для каждого светодиода, а оставшийся — общая точка подключения для всех внутренних светодиодов.

Если катоды всех светодиодов соединены вместе и путем подачи логического ВЫСОКОГО сигнала, то загораются отдельные сегменты. Таким же образом, если аноды всех светодиодов соединены вместе и посредством подачи логического сигнала LOW, то отдельные сегменты подсвечиваются.

НАЗАД В начало

Преимущества, недостатки и применение светодиодов
Преимущества
  • Небольшой размер микросхемы и низкая стоимость.
  • Длительный срок службы.
  • Высокая энергоэффективность.
  • Низкая температура.
  • Гибкость дизайна.
  • Много цветов.
  • Экологичный.
  • Высокая скорость переключения.
  • Высокая сила света.
  • Предназначен для фокусировки света в определенном направлении.
  • Меньше подвержены повреждениям.
  • Меньше излучаемого тепла.
  • Повышенная устойчивость к тепловым ударам и вибрациям.
  • Отсутствие УФ-лучей.

ВЕРНУТЬСЯ В НАЧАЛО

Недостатки
  • Зависимость выходной мощности излучения и длины волны светодиода от температуры окружающей среды.
  • Чувствительность к повреждениям повышенным напряжением и / или током.
  • Теоретический общий КПД достигается только в особых холодных или импульсных условиях.

ВЕРНУТЬСЯ В ТОП

Применения
  • В автомобилях и велосипедных фарах.
  • В светофоре Указатели, знаки и сигналы.
  • В панелях отображения данных.
  • В медицине и игрушках
  • Невизуальные приложения.
  • В лампочках и многом другом.
  • Пульт дистанционного управления

НАЗАД

ПРЕДЫДУЩИЙ — ДИОД ЗЕНЕРА

СЛЕДУЮЩИЙ — СИЛОВЫЕ ДИОДЫ И ВЫПРЯМИТЕЛИ

Что такое цветовая температура? Выбор подходящей цветовой температуры — EarthLED.com

Цветовая температура — это описание тепла или холода источника света. Когда кусок металла нагревается, цвет излучаемого света изменится.Этот цвет начинается с красного по внешнему виду и переходит к оранжевому, желтому, белому, а затем сине-белому и к более глубоким цветам синего. Температура этого металла — физическая мера в градусах Кельвина или абсолютная температура. Хотя лампы, отличные от лампы накаливания, такие как светодиоды, не совсем точно имитируют светоотдачу этого куска металла, мы используем коррелированную цветовую температуру (или Кельвина) для описания внешнего вида этого источника света, поскольку он связан с внешним видом куска металла ( конкретно радиатор черный кузов).

По соглашению, желто-красные цвета (например, пламя огня) считаются теплыми, а сине-зеленые цвета (например, свет от пасмурного неба) считаются холодными. Как ни странно, более высокие температуры Кельвина (3600–5500 К) считаются холодными, а более низкие цветовые температуры (2700–3000 К) считаются теплыми. Холодный свет предпочтительнее для визуальных задач, потому что он дает более высокий контраст, чем теплый свет. Теплый свет предпочтительнее для жилых помещений, потому что он больше подходит к цвету кожи и одежде.Цветовая температура 2700–3600 K обычно рекомендуется для большинства применений общего и рабочего освещения внутри помещений. Цветовая температура не является показателем нагрева лампы.

Недавно созданные винтажные светодиодные лампы и лампы накаливания обеспечивают цветовую температуру ниже 2700K, а некоторые даже до 1900K! Эти цветовые температуры подходят для тех, кто хочет имитировать атмосферу, создаваемую традиционными лампами с углеродной нитью. Эти лампы производят меньшее количество люменов, чем традиционные лампы накаливания, как и их светодиодные аналоги.Выбирайте этот уровень цветовой температуры только в том случае, если вы готовы пожертвовать люменами в пользу большей атмосферы, которая требует чрезвычайно мягкого света, создаваемого этими лампами.

Нужна помощь? Мы подберем для вас подходящую светодиодную лампу!

Суперяркие цветные светодиодные фонари в 9 цветах

Иногда вам просто нужен полный контроль над автомобильным световым шоу, и лучший способ управлять автомобильным освещением — работать со светодиодами. Эти суперяркие светодиодные фонари доступны в 9 цветах, они невероятно недороги, их можно установить практически в любом месте вашего автомобиля, они потребляют крошечный заряд аккумулятора, служат годами и практически не нагреваются.Единственное, чего они не сделают, так это дать вам больше лошадиных сил!

Мы не знаем другой осветительной техники, которая могла бы похвастаться набором таких функций:

— Чрезвычайно низкое энергопотребление
— Чрезвычайно низкая тепловая мощность
— Может быть установлен практически в любом месте
— Прослужит до 100000 часов
— Доступен в 9 цветах (смешайте их, чтобы создать другие цвета)
— Низкая стоимость — менее доллара за штуку

Стоит ли удивляться, что традиционные осветительные компании переходят к внедрению светодиодных светильников в свою собственную линейку продуктов? Светодиодное освещение для всего быстро становится реальностью!

С тех пор, как мы добавили этот продукт в наш ассортимент, мы постоянно удивлялись творческим и изобретательным способам, которые наши клиенты находили для включения светодиодного освещения во внешний вид своих автомобилей — от решеток динамиков до подстаканников, под капотами, ниш для ног и т. Д. межкомнатные потолки и в приборной панели… действительно, нет предела тому, где можно поставить эти удивительно яркие, удивительно дешевые, удивительно сверхъяркие.

Фактически, один из таких клиентов, обнаружив, что свет на его камере слишком быстро разряжает батарею, использовал более 100 белых светодиодов, чтобы создать свой собственный свет для камеры, только чтобы обнаружить, что он действительно дает лучшие цвета для его фотографий.

Где можно использовать светодиоды? Отлично смотрятся на:

— Решетки динамиков
— Подстаканники
— Внутренний потолок
— Под капотом
— Под ногами колодцы
— В торпедо
— Купольные фары
— Карманы дверные
— Под сиденьями
— Бардачок
— Передние фары — Промышленное освещение

Полезные советы:

Сопротивление бесполезно! Но резисторы довольно удобны…
В зависимости от того, как вы планируете устанавливать светодиоды, вы можете рассмотреть вариант использования резисторов. Светодиоды рассчитаны на работу с напряжением от 2 до 4 вольт, которое ваш автомобильный аккумулятор на 12 вольт довольно быстро сожжет. Если вы пропустите через светодиоды слишком высокое напряжение, они либо быстро перегорят, либо, в крайнем случае, вообще перестанут работать.

К счастью, есть два простых и простых способа обойти эту проблему: один — установить светодиоды последовательно, а не параллельно.Этот метод требует некоторой базовой электротехнической математики, чтобы правильно определить количество светодиодов (в зависимости от цвета, напряжения и т. Д.) — мы бы рекомендовали это, только если вы знаете, как обращаться с паяльником.

Другой метод — установить резисторы на каждый светодиод, которые выровняют поток мощности и предотвратят проблему перегорания (если, конечно, вы не получите очень сильных скачков напряжения), а поскольку резисторы стоят всего 5 каждый, это действительно недорого. способ обеспечить окупаемость ваших инвестиций в светодиоды на долгие годы.

Увеличение дальности к вашим светодиодам: Если вам нравятся светодиоды, но вы хотите более широкое распространение света, просто срежьте изогнутую верхнюю часть пластмассового корпуса светодиода металлическим напильником или грубой наждачной бумагой.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *