- Теплоотдача радиаторов отопления таблица — Климат в доме
- Как правильно подключить радиатор отопления
- Эффективность теплоотдачи — как лучше подключить радиаторы отопления
- Однотрубная схема
- Двухтрубная схема
- Место установки
- Способы подключения радиаторов отопления
- Заключение по теме
- Способы и схемы подключения радиаторов отопления в общую отопительную цепь
- Какие виды отопительных систем бывают?
- Выбор места установки радиатора: в чем важность?
- Способы циркуляции теплоносителя
- Видео инструктаж с советами от специалиста
- Возможные схемы подключения радиаторов отопления
- Виды систем отопления
- Где ставить радиаторы
- Схемы подключения радиаторов
- Энциклопедия сантехника Способы подключения радиаторов. Свойства и параметры.
- Расчет батарей отопления на площадь: методика + встроенный калькулятор
- Как подключить радиатор отопления с наибольшей эффективностью | моё
- Как подключить радиатор отопления с наибольшей эффективностью | полезные советы
- Как увеличить кпд батареи отопления: варианты эффективного увеличения показателя
Теплоотдача радиаторов отопления таблица — Климат в доме
Основными критериями выбора приборов для обогрева жилья является его теплоотдача.
Это коэффициент, определяющий количество выделенного тепла устройством.
Иными словами, чем выше теплоотдача, тем быстрее и качественнее будет осуществляться прогрев дома.
Сколько нужно тепла для отопления?
Для точного расчета необходимого количества тепла для помещения следует учитывать множество факторов: климатические особенности местности, кубатуру здания, возможные теплопотери жилья (количество окон и дверей, строительный материал, наличие утеплителя и др.). Данная система вычислений достаточно трудоемкая и применяется в редких случаях.
В основном, расчет тепла определяется на основании установленных ориентировочных коэффициентов:
К примеру, помещение, площадью 80 м2, для оптимального обогрева требует 8 КВт мощности. Для северных районов количество тепловой энергии возрастет до 10,4 КВт
Теплоотдача – ключевой показатель эффективности
Коэффициент теплоотдачи радиаторов – это показатель его мощности. Он определяет количество выделенного тепла за определенный промежуток времени. На мощность конвектора влияют: физические свойства прибора, его тип подключения, температура и скорость теплоносителя.
Мощность конвектора, указанная в его техпаспорте, обусловлена физическими свойствами материала, из которого изготовлен прибор, и зависит от его межосевого расстояния. Чтобы рассчитать необходимое количество секций радиатора для помещения, понадобится площадь жилья и коэффициент теплового потока прибора.
Вычисления производятся по формуле:
Количество секций = S/ 10 * коэффициент энергии (K) / величина теплового потока (Q)
Пример: Необходимо рассчитать количество секций алюминиевой батареи (Q = 0,18) для помещения, площадью 50 м2.
Расчет: 50 / 10 * 1 / 0,18 = 27,7. То есть, для обогрева помещения понадобится 28 секций. Для монолитных приборов, за место Q, ставим коэффициент теплоотдачи радиатора и в результате получаем необходимое количество батарей.
Если конвекторы будут установлены рядом с источниками, влияющими на теплопотери (окна, двери), то коэффициент энергии берется из расчета — 1.3.
Для отопления используются радиаторы: стальные, алюминиевые, медные, чугунные, биметаллические (сталь + алюминий), и все они имеют разную величину теплового потока, обусловленную свойствами металла.
Сравнение показателей: анализ и таблица
Помимо материала, из которого изготовлен прибор, на коэффициент мощности влияет межосевое расстояние – высота между осями верхнего и нижнего выходов. Также
Тип радиатора | Межосевое расстояние (мм) | Теплоотдача (КВт) | Температура теплоносителя (0С) |
Алюминиевые | 350 | 0,139 | 130 |
500 | 0,183 | ||
Стальные | 500 | 0,150 | 120 |
Биметаллические | 350 | 0,136 | 135 |
500 | 0,2 | ||
Чугунные | 300 | 0,14 | 130 |
500 | 0,16 | ||
Медные | 500 | 0,38 | 150 |
Факторы, которые влияют на показатели
Материал изготовления
Наибольшей теплоотдачей обладают медные и алюминиевые конвекторы. Самый низкий коэффициент мощности наблюдается у чугунных батарей, но он компенсируется их способностью сохранять тепло длительное время.
На эффективность КПД влияет правильный монтаж теплоприборов:
- Оптимальное расстояние между полом и батареей – 70-120 мм, между подоконником – не менее 80 мм.
- Обязательно предусматривается установка воздуховыпускника (крана Маевского).
- Горизонтальное положение теплоприбора.
Радиаторы с лучшей теплоотдачей:
Материал | Модель, производитель | Номинальный тепловой поток (КВт) | Стоимость за секцию (руб) |
Алюминий | Royal Thermo Indigo 500 | 0,195 | 700,00 |
Rifar Alum 500 | 0,183 | 700,00 | |
Elsotherm AL N 500х85 | 0,181 | 500,00 | |
Чугун | STI Нова 500 (секционного типа) | 0,120 | 750,00 |
Биметалл | Rifar Base Ventil 500 | 0,204 | 1100,00 |
Royal Thermo PianoForte 500 | 0,185 | 1500,00 | |
Sira RS Bimetal 500 | 0,201 | 1000,00 | |
Сталь | Kermi FTV(FKV) 22 500 | 2,123 (панель) | 8200,00 (панель) |
Размещение радиаторов
Выделяют следующие типы подключения:
- Диагональное
- Боковое (одностороннее). Подающая и обратная труба крепятся к теплоприбору с одной стороны.
- Нижнее. Обе трубы подводятся к батарее снизу, с противоположных сторон.
- Верхнее. Трубы монтируются к верхним выходам теплоприбора, с обеих сторон.
Самым эффективным способом является диагональное подключение, которое позволяет равномерно нагреться прибору. При небольшом количестве секций, можно повысить мощность посредством бокового подключения.
Если секций одного радиатора более 15, то данная схема будет неэффективной
Как улучшить теплоотдачу
Указанный коэффициент мощности конвектора в его техпаспорте, имеет место быть, практически при идеальных условиях. На деле, величина теплового потока несколько снижена,и это обусловлено большими теплопотерями.
В первую очередь, для повышения коэффициента необходимо уменьшить потерю тепла – провести работы по утеплению дома, особое внимание, уделив крыше, так как через нее уходит около 70% теплого воздуха и оконным и дверным проемам.
На стену за теплоприбором целесообразно установить отражающий материал, чтобы направить всю полезную энергию внутрь помещения.
При монтаже теплопровода, следует отдать предпочтение металлическим трубам, так как они также осуществляют теплообмен, соответственно КПД значительно увеличивается.
Подводя итоги, следует отметить, что лучшей теплоотдачей обладают медные, биметаллические и алюминиевые радиаторы. Первые отличаются довольно высокой стоимостью и используются крайне редко.
На основе заявленной мощности радиатора производителем, можно сделать вывод, что биметаллические теплоприборы превосходят алюминиевые
Однако, на практике больше тепла отдают приборы из алюминия, так как сталь, входящая в состав биметаллических конвекторов обладает высокой теплопроводностью, а значит остывает за более короткий промежуток времени.
Мы подобрали для Вас ещё восемь полезных статей, смотрите далее.
klimatlab.com
Как правильно подключить радиатор отопления
Эффективность теплоотдачи — как лучше подключить радиаторы отопления
Способы подключения радиаторов отопления
Комфорт, комфорт и еще раз комфорт. Эта мысль все время сопровождает нас, когда дело касается проживания в доме. Согласитесь — кто не хочет, чтобы в доме всегда было уютно и комфортно? Таких не найдется. А теперь второй вопрос — от чего зависит качество проживания? Критериев много, но один нас интересует в первую очередь — это тепло в доме. Оно обеспечивается грамотно созданной системой отопления, где немаловажную роль играет подключение радиаторов.
Именно об этом и пойдет разговор дальше. В первую очередь определимся, какие виды отопления сегодня используются. Их два:
Чем же они отличаются друг от друга? Количеством контуров, а, соответственно, и объемом используемых материалов.
Однотрубная схема
По сути, это кольцо из труб, где центром является отопительный котел. Это самая простая схема разводки, которую лучше всего использовать в одноэтажных строениях, где применяется система с естественной циркуляцией теплоносителя. Или в многоэтажных зданиях с принудительной циркуляцией.
Скажем прямо — эта схема не самая лучшая, хотя очень экономичная в плане затрачиваемых для ее сооружения материалов. Но у нее есть один большой недостаток — невозможность регулировать подачу тепла. Устанавливать в такую схему какие-то контролирующие проборы проблематично. Поэтому в домах, где смонтирована именно однотрубная схема развязки, показатель тепловой отдачи равен проектируемой. Вот почему так важно правильно рассчитать данный показатель.
Внимание! Однотрубное отопление допускает лишь последовательное подключение радиаторов. То есть теплоноситель проходит все радиаторы один за другим, отдавая тепло. И чем дальше прибор расположен в цепи, тем меньше тепла ему достается.
Двухтрубная схема
В этой схеме присутствует два контура — подача и обратка. По первому контуру теплоноситель поступает на радиаторы отопления (алюминиевые, биметаллические, чугунные или стальные), а по второму он отводится к котлу. Но что удивительно, теплоноситель равномерно распределяется по всем батареям, что и является огромным плюсом этой схемы подключения.
Немаловажный момент — с двухтрубным подключением появляется возможность регулировать температуру в каждом отдельном радиаторе путем открытия или закрытия прохода в него. Здесь устанавливается обычный отсекающий вентиль, который позволяет увеличивать или уменьшать объем теплоносителя в каждой батарее.
Место установки
Установка радиаторов отопления
Казалось бы, место установки радиатора отопления уже давно определено. Ведь его основная функция — это отдача тепла. Но давайте смотреть шире на поставленную задачу. Установка радиаторов — дело серьезное. С их помощью необходимо создать определенные температурные нормы, которые будут влиять на оптимальный режим в квартире. А значит, их лучше всего устанавливать под окнами, откуда проникает холодный воздух, или около входных дверей. То есть отсекать зону холодного воздуха — это еще одна их задача.
И опять возникает «НО». Просто так взять и установить радиатор отопления под окном — это полдела. Существуют определенные нормы, которые необходимо принять во внимание. Правильное подключение радиатора отопления зависит во многом и от этих норм.
Что они в себя включают?
- Во-первых, любые батареи — алюминиевые, биметаллические, стальные или чугунные — должны монтироваться горизонтально. Небольшое отклонение в 1 градус допустимо, но лучше выставить приборы точно по горизонтали.
- Во-вторых, расстояние от радиатора до подоконника должно быть в пределах 10–15 см.
- Практически то же расстояние должно быть от пола до батареи.
- От стены до радиатора оно не должно превышать 5 см.
Именно эти нормы определяют максимально правильную и эффективную теплоотдачу отопительных приборов. Поэтому принимайте их как руководство к действию.
Способы подключения радиаторов отопления
Теперь можно переходить к основной теме и рассматривать непосредственно подключение радиаторов отопления. Существует три способа, как правильно подключить отопительные батареи .
Способ №1 — боковое подключение
Боковое подключение радиаторов
Самый распространенный вид подключения, когда дело касается системы отопления в городской квартире. В многоквартирных домах трубная развязка сооружается вертикально из квартиры в квартиру по этажам. Поэтому вертикальные контуры подачи и обратки называются стояками.
К ним батареи подключаются сбоку, отсюда и название. Чаще всего подключение проводят по схеме:
- Подача — в верхний патрубок.
- Обратка — в нижний.
Хотя это не столь принципиально, если вопрос затрагивает схему с принудительной циркуляцией теплоносителя. Правда, специалисты утверждают, что данная схема была выбрана не зря. Если поменять местами патрубки на батареях, то эффективность и коэффициент полезного действия отопительного прибора снижается на 7%. Это существенный показатель, так что его придется учитывать при включении радиаторов в отопительную систему дома. В системе отопления вообще нет неважных показателей или моментов. Небольшое отклонение от нормы может привести к достаточно серьезным потерям и в тепле, и в топливе, а, соответственно, и в деньгах.
И еще один момент. Если количество секций в батарее РИФАР не превышает 12 штук, то боковое подключение к системе отопления оптимально. Если же количество секций больше, то применяется диагональное подключение, которое еще называют перекрестным.
Способ №2 — диагональное подключение
Специалисты считают, что диагональное подключение является идеальным. Для этого контуры отопления подсоединяются следующим образом:
- Подача — к верхнему патрубку батареи.
- Обратка — к нижнему, но с противоположной стороны прибора.
То есть оба контура соединяются между собой через радиатор по его диагонали. Отсюда и название. Преимущество этого соединения заключается в том, что теплоноситель внутри радиатора распределяется равномерно, за счет чего и происходит отдача тепла по всей площади прибора. Именно таким способом достигается существенная экономия топлива.
Способ №3 — нижнее подключение
Этот способ подсоединить радиаторы РИФАР к системе отопления встречается крайне редко. С нижним подключением много проблем, и особенно это касается равномерного распределения теплоносителя по всем радиаторам. Такой вид используется в однотрубной схеме подключения, где радиаторы установлены последовательно, и теплоноситель движется по цепочке от одного к другому.
Нижнее подключение радиатора
Кстати, схема «Ленинградка» — одна из самых распространенных, если говорить об отоплении одноэтажного дома. По сути, это закольцованная труба, в которую врезаны радиаторы. Подключить их довольно просто — для этого из нижних патрубков отводятся трубы, которые врезаются в сам контур. Получается, что теплоноситель, двигаясь в контуре по замкнутому циклу, поступает в каждый радиатор. Но при этом чем дальше отопительный прибор располагается по направлению движения горячей воды, тем меньше ему достается тепла.
Что делать? Есть два решения данной проблемы:
- Увеличить количество секций радиаторов, расположенных в дальних от котла комнатах.
- Установить циркуляционный насос, который создаст внутри отопления небольшое давление. Именно оно позволит равномерно распределить горячую воду по помещениям.
Кстати, циркуляционный насос сразу делает систему энергозависимой. В этом есть свой минус. Все дело в том, что отключение электричества во многих загородных поселках — дело обычное. Так что проблема с нижним подключением остается. Но чтобы движение теплоносителя было эффективным даже при выключенном насосе, необходимо позаботиться об установке байпаса.
Заключение по теме
Итак, вы смогли убедиться в том, что подключение радиаторов (РИФАР и других типов) — дело непростое и очень серьезное. Считается, что в городских квартирах оптимальный вариант — боковое соединение. Если дело касается частного домостроения, то диагональная схема подойдет лучше всего. С нижним подключением слишком много проблем. К тому же практика и тестирование показали, что этот вариант при неправильном подходе к организации монтажного процесса отличается слишком большими тепловыми потерями — до 40%.
Способы и схемы подключения радиаторов отопления в общую отопительную цепь
Какие виды отопительных систем бывают?
Для того чтобы понимать как подключить радиатор отопления, нужно четко осознавать в какую систему она будет интегрироваться. Даже если все работы будут выполнять мастера из специализированной фирмы, все равно хозяину дома нужно знать какая схема отопления у него в жилище будет реализовываться.
Однотрубное отопление
Основывается на подаче воды в радиаторы, установленные в многоэтажном строении (как правило, в многоэтажках). Такое подключение радиатора отопления является самым простым.
Однако при доступности монтажа такая схема имеет один серьезный недостаток – невозможно регулировать подачу тепла. Никаких специальных устройств такая система не предусматривает. Поэтому теплоотдача соответствует заложенной проектом расчетной норме.
Наглядные схемы подключения радиаторов для разных отопительных систем: однотрубной и двухтрубной
Двухтрубное отопление
Рассматривая варианты подключения радиаторов отопления, естественно стоит уделить внимание и двухтрубной отопительной системе. Ее функционирование базируется на подаче горячего теплоносителя по одной трубе, а отводу охлажденной воды в обратном направлении по второй трубе. Здесь реализуется параллельное подключение отопительных устройств. Достоинством такого подключения является равномерность нагрева всех батарей. Кроме того интенсивность теплоотдачи можно регулировать вентилем, который монтируется перед радиатором.
Важно! Правильное подключение радиаторов отопления подразумевает соблюдение требований главного нормативного документа – СНиП 3.05.01-85.
Выбор места установки радиатора: в чем важность?
Независимо от того реализовано последовательное подключение радиаторов отопления или параллельное функциональным предназначением этих приборов является не только обогрев помещения. Посредством батарей создается определенная защита (экран) от проникновения холода извне. Как раз этим и объясняется расположение батарей под подоконниками. При таком распределении радиаторов в местах наибольших потерь тепла, то есть в районе оконных проемов создается эффективная тепловая завеса.
В этом месте батареи не быть просто не может. С ее помощью холодному воздуху с улицы создается преграда
Прежде чем рассматривать способы подключения радиаторов отопления необходимо составить схему расположения этих приборов. При этом важно определить правильные монтажные расстояния радиаторов, что обеспечит их максимальную теплоотдачу. Итак, абсолютно правильно расположены отопительные батареи если:
- опущены от низа подоконника на 100 мм;
- от пола находятся на расстоянии 120 мм;
- отстоят от стены на расстоянии 20 мм.
Нарушать эти нормативы строго не рекомендуется.
Способы циркуляции теплоносителя
Как известно, вода, а обычно именно она заливается в отопительную систему, может циркулировать принудительно или естественно. Первый вариант подразумевает задействование специального водяного насоса, который проталкивает воду по системе. Естественно это элемент включается в общую отопительную схему. А устанавливается он в большинстве случаев или возле нагревательного котла, или уже является его конструкционным элементом.
Система с естественной циркуляцией очень актуальна в тех местах, где случаются частые перебои с электроэнергией. В схеме не предусмотрен насос, а сам нагревательный котел является энергонезависимым. Вода по системе движется за счет того, что нагретым столбом воды вытесняется холодный теплоноситель. Каким образом будет реализовано подключение радиаторов при таких обстоятельствах, зависит от многих факторов, в том числе нужно учитывать особенности прохождения теплотрассы и ее протяженность.
Любой из четырех способов подключения может быть реализован при наличии в отопительной системе циркуляционного насоса
Итак, разберем эти варианты более подробно.
Способ № 1 — одностороннее подключение
Такое подключение батареи предполагает монтаж подводящей трубы (подачи) и отводящей (обратки) к одной и той же секции радиатора:
Таким образом, обеспечивается равномерный нагрев всех секция каждой отдельно взятой батареи. Односторонняя система отопления является рациональным решением в одноэтажных домах, если предполагается монтаж радиаторов с большим количеством секций (порядка 15). Однако, если гармошка имеет больше включение секций, то будут иметь место значительный теплопотери, а значит стоит рассмотреть другой вариант подключения.
Способ № 2 — нижнее и седельное подключение
Актуально в тех системах, где трубопровод отопления спрятан под пол. В этом случае и подводящая теплоноситель труба, и отводящая монтируются к нижним патрубкам противолежащих секций. У такого подключения батарей «слабым» местом является низкая эффективность, поскольку в процентном измерении теплопотери могут достигать 15%. По логике вещей в верхней части радиаторы нагреваются неравномерно.
Способ № 3 — перекрестное (диагональное) подключение
Этот вариант рассчитан на подключение к отопительной системе батарей с большим количеством секций. Благодаря специальной конструкции теплоноситель равномерно распределяется внутри радиатора, что обеспечивает максимальную теплоотдачу.
Направление движения теплоносителя при перекрестном подключении (1-кран Маевского; 2-заглушка; 3- радиатор отопления; 4- направленное движение теплоносителя)
Ответ на вопрос о том, как правильно подключить батарею отопления в такой ситуации, предельно прост: подвод – сверху, обратка – снизу, но с разных сторон. При диагональном подключении радиаторов теплопотери не превышают 2%.
Мы постарались раскрыть тему возможных схем подключения отопительных радиаторов максимально подробно. Надеемся, вы сможете оценить все плюсы и минусы каждого из описанных вариантов, и выберете наиболее актуальный в вашем конкретном случае.
Видео инструктаж с советами от специалиста
Здравствуйте! У меня такие проблемы с теплом: 1) В угловой квартире в детской комнате проходят две трубы подача и обратка. На подаче труба огненная на обратке в раза холоднее. Радиаторы подключены к обратке это правильно или нет. Могу ли я дополнительно к подаче подсоединить еще радиаторы и пустить их по холодной уличной стене? 2) В туалете нет радиатора и трубы вообще, хотя стена так же холодная (уличная). 3) В спальной комнате имеется только труба (обратка) к ней подключена радиаторная батарея, а через стену у нас на кухне идет подача. Можно как-то объединить две комнаты и установить в двух комнатах с трубы-подачи?
У нас в 9-ти этажном доме система отопления построена так: одна труба на подающем идет снизу вверх. К ней на всех этажах подключены радиаторы параллельно с перемычками. Теплоноситель попадает в радиатор снизу, а верхний выход с радиатора, подключен к этой же трубе. Прогревается только часть радиатора. Как правильно подключить радиатор, чтобы он прогревался полностью?
Добрый день. В девятиэтажном доме двухтрубная система отопления в каждой комнате. В одной комнате труба подачи отопления проходит наверх мимо всех радиаторов. Соответственно все радиаторы с девятого этажа подключены на обратке, и у меня на втором этаже батарея вообще почти холодная. Подскажите закономерно ли такое подключение, либо это просто ошибка слесарей?
Здравствуйте! Подскажите пожалуйста насколько верны ваши данные, по определению эффективного метода подключения радиатора? И на какие источники Вы можете сослаться, для получения вышеуказанных данных? Всем заранее спасибо!
Врезать вентиль в перемычку (что не совсем законно, если стоят вентили на радиатор) или переподключить радиатор по диагональной схеме. На пропилене – это элементарно и быстро, компактно и достаточно эстетично. Верхняя врезка (выход) переносится вместо верхней заглушки напротив. Не забывайте, направление резьбы у пробок взаимно противоположное.
Очевидно у вас в доме однотрубная система отопления, при которой одни комнаты подключены к напорной магистрали, а другие комнаты сидят на обратной. Это дебильная советская система – обратная вода идет уже остывшая и не может нагреть комнату. Но за установку дополнительных батарей вас могут оштрафовать, т.к. такая переделка проекта не разрешается 🙂
Возможные схемы подключения радиаторов отопления
Чтобы в доме было тепло, важно правильно разработать схему отопления. Одна из составляющих ее эффективности — подключение радиаторов отопления. Неважно чугунные, алюминиевые, биметаллические или стальные радиаторы вы собрались ставить, важно выбрать правильный способ их подключения.
Способ подключения радиатора влияет на его теплоотдачу
Виды систем отопления
Количество тепла, которое будет излучать радиатор отопления, не в последнюю очередь зависит от вида системы отопления и выбранного типа подключения. Чтобы выбрать оптимальный вариант, надо сначала разобраться с тем, какие именно системы отопления бывают и чем они отличаются.
Однотрубные
Однотрубная система отопления — наиболее экономичный вариант с точки зрения затрат при монтаже. Потому именно такой тип разводки предпочитают в многоэтажных домах, хотя и в частных такая система далеко не редкость. При такой схеме радиаторы включены в магистраль последовательно и теплоноситель проходит сначала через один отопительный пробор, затем поступает на вход второго и так далее. Выход последнего радиатора подключается ко входу котла отопления или к стояку в многоэтажках.
Пример однотрубной системы
Недостаток такого способа разводки — невозможность регулировки теплоотдачи радиаторов. Установив регулятор на любом из радиаторов, вы будете регулировать всю остальную систему. Второй значительный недостаток — разная температура теплоносителя на различных радиаторов. Те, которые находятся ближе к котлу, греются очень хорошо, которые дальше — становятся все холоднее. Это — следствие последовательного подключения радиаторов отопления.
Двухтрубная разводка
Двухтрубная система отопления отличается тем, что в ней имеется две нитки трубопровода — подающий и обратный. Каждый радиатор подключен к обеим, то есть получается, что все радиаторы подключены к системе параллельно. Это хорошо тем, что на вход каждого из них поступает теплоноситель одной температуры. Второй положительный момент — на каждый из радиаторов можно установить терморегулятор и с его помощью изменять количество тепла, которое он выделяет.
Недостаток такой системы — количество труб при разводке системы больше почти в два раза. Зато систему легко можно сбалансировать.
Где ставить радиаторы
Традиционно радиаторы отопления ставят под окнами и это не случайно. Восходящий поток теплого воздуха отсекает холодный, который поступает от окон. Кроме того теплый воздух обогревает стекла, не давая образовываться на них конденсату. Только для этого необходимо чтобы радиатор занимал не менее 70% ширины оконного проема. Только так окно не будет запотевать. Поэтому, При выборе мощности радиаторов, подбирайте ее так, чтобы ширина всей батареи отопления была не менее заданной величины.
Как расположить радиатор под окном
Кроме того необходимо правильно выбрать высоту радиатора и место для его размещения под окном. Его надо разместить так, чтобы расстояние до пола было в районе 8-12 см. Если опустить ниже, неудобно будет убирать, если поднять выше — ногам будет холодно. Также регламентировано расстояние до подоконника — оно должно быть 10-12 см. В этом случает теплый воздух свободно обогнет преграду — подоконник — и поднимется вдоль оконного стекла.
И последнее расстояние, которое надо выдержать при подключении радиаторов отопления — расстояние до стены. Оно должно быть 3-5 см. В таком случае вдоль задней стенки радиатора будут подниматься восходящие потоки теплого воздуха, скорость обогрева помещения улучшится.
Схемы подключения радиаторов
Насколько хорошо будут греться радиаторы зависит от того, как в них подавать теплоноситель. Есть более и менее эффективные варианты.
Радиаторы с нижним подключением
Все радиаторы отопления имеют два типа подключения — боковое и нижнее. С нижним подключением никаких разночтений быть не может. Есть всего два патрубка — входной и выходной. Соответственно, с одной стороны в радиатор подается теплоноситель, с другой отводится.
Нижнее подключение радиаторов отопления при однотрубной и двухтрубной системе отопления
Конкретно, куда подключать подающий, а куда обратный написано в инструкции по монтажу, которая обязательно должна быть в наличии.
Батареи отопления с боковым подключением
При боковом подключении вариантов намного больше: тут подающий и обратный трубопровод можно подсоединить в два патрубка, соответственно, вариантов четыре.
Вариант №1. Диагональное подключение
Такое подключение радиаторов отопления считают наиболее эффективным, его берут за эталон и именно так испытывают производители свои отопительные приборы и данные в паспорте по тепловой мощности — для такой подводки. Все остальные типы подключения менее эффективно отдают тепло.
Диагональная схема подключения радиаторов отопления при двухтрубной и однотрубной системе
Все потому, что при диагональном подключении батарей горячий теплоноситель подается на верхний вход с одной стороны, проходит через весь радиатор и выходит с противоположной, нижней стороны.
Вариант №2. Одностороннее
Как понятно из названия, подключаются трубопроводы с одной стороны — подача сверху, обратка — снизу. Этот вариант удобен, когда стояк проходит сбоку от отопительного прибора, что часто бывает в квартирах, потому именно такой тип подключения обычно и преобладает. Когда теплоноситель подводится снизу, такая схема используется нечасто — не очень удобно располагать трубы.
Боковое подключение для двухтрубной и однотрубной системы
При таком подключении радиаторов эффективность нагрева только чуть ниже — на 2 %. Но это только если секций в радиаторах немного — не более 10. При более длинной батарее ее дальний от край будет плохо греться или вообще останется холодным. В панельных радиаторах для решения проблемы ставят удлинители потока — трубки, которые доводят теплоноситель чуть дальше середины. Такие же устройства можно устанавливать в алюминиевые или биметаллические радиаторы, улучшая при этом теплоотдачу.
Вариант №3. Нижнее или седельное подключение
Из всех вариантов седельное подключение радиаторов отопления самое малоэффективное. Потери составляют примерно 12-14%. Но данный вариант самый незаметный — трубы обычно укладываются по полу или под ним и такой способ наиболее оптимальный с точки зрения эстетики. А чтобы потери не влияли на температуру в помещении, можно радиатор взять чуть более мощный чем требуется.
Седельное подключение радиаторов отопления
В системах с естественной циркуляцией такой тип подключения делать не стоит, а вот при наличии насоса работает она неплохо. В некоторых случаях даже не хуже бокового. Просто при какой-то скорости движения теплоносителя возникают вихревые потоки, вся поверхность разогревается, повышается теплоотдача. Данные явления пока не изучены до конца, потому спрогнозировать поведение теплоносителя пока невозможно.
Источники: http://gidotopleniya.ru/radiatory-otopleniya/kak-luchshe-podkljuchit-radiatory-otoplenija-effektivnost-teplootdachi-7933, http://aqua-rmnt.com/otoplenie/radiatory/podklyuchenie-radiatorov-otopleniya.html, http://stroychik.ru/otoplenie/shemy-podklyucheniya-radiatorov
teplosten24.ru
Энциклопедия сантехника Способы подключения радиаторов. Свойства и параметры.
Радиаторы отопления. Способы подключения радиаторов. Свойства и параметры.
В этой статье Вы узнаете:
Какими бывают радиаторы отопления? |
Поехали…
При виде различных радиаторов разбегаются глаза…
Я Вам помогу быстро разобраться с видами радиаторов и расскажу о способах подключения отдельных видов радиаторов.Конвекторы и чугунные радиаторы мы рассматривать не будем…
О них Вы можете узнать из этой статьи:
Радиаторы. Свойства и виды отопительных приборов.
Продолжаем…
На сегодняшний день самые популярные радиаторы — это секционные радиаторы: Алюминиевые и биметаллические.
Алюминиевые радиаторы
Рабочее давление до 16 Bar.
Биметаллические радиаторы
Рабочее давление до 20-40 Bar.
В чем различие между алюминиевыми радиаторами и биметаллическими?
Некоторые биметаллические радиаторы по внешнему виду очень похожи на алюминиевые радиаторы.
Так как в биметаллических радиаторах скрыт стальной трубопровод, покрытый алюминиевой оболочкой.
Биметаллические радиаторы более тяжелые в отличие от алюминиевых радиаторов.
Биметаллические радиаторы стали альтернативой алюминиевых радиаторов. Во-первых, они выдерживают большое давление, во-вторых, основным желанием сделать стальной сердечник в алюминиевом радиаторе, послужила нестойкость алюминиевых радиаторов к разрушению от щелочи в системах центрального отопления.
На втором месте по популярности стоят панельные стальные радиаторы.
Недостаток стальных панельных радиаторов в том, что они рассчитаны на маленькое давление системы отопления. Сталь подвержена коррозии. Такие радиаторы подойдут для частного жилого дома с давлением системы отопления не выше 3 атмосфер (3 Bar).
Толщина стенки таких панельных радиаторов от 1,25 — 2,5мм. Не факт, что они долго продержаться от коррозии. Рабочее давление до 10 Bar. Такие радиаторы стоят дешево.
Каковы различия между секционными радиаторами и панельными стальными?
Секционные радиаторы более универсальные. Секционные радиаторы состоят из секций.
Можно сделать секционный радиатор любой длинны. В зависимости от необходимой мощности по тепловым потерям.
Каждая секция радиатора соединяется специальным ниппелем. Между секциями устанавливается прокладка:
Соединительный ниппель такого радиатора имеет две резьбы разной направленности. Прокладки бывают из различных материалов.
Максимальное количество секций радиатора?
В среднем, максимальное количество секций достигает 14-ти, далее КПД радиатора падает. Имеется в виду, не снижение мощности радиатора, а теплопотери одной секции. То есть, экономически не целесообразно делать большое количество секций радиатора, если есть подозрение, что расход теплоносителя через радиатор будет мал.
О том, как рассчитать расход и теплопотери радиатора, в зависимости от количества секций, описано тут:
Расчет потерь тепла через радиатор
Многие пишут в своих статьях, что больше 10 секций устанавливать нет смысла, я же говорю обратное. Смысл есть, теплоотдача от радиатора с большим количеством секций намного больше. Закон теплотехники.
Законы переноса тепла по трубам
20 секционный радиатор. Пример из жизни! Греет прекрасно!
Если Вы решили поставить до 20 секций, то обратите внимание на крепежные элементы, четырех может быть недостаточно. Существуют в природе два вида креплений радиаторов:
1. Угловой кронштейн
2. Штыревой кронштейн
Угловой кронштейн подходит для ровных отштукатуренных стен.
Штыревой кронштейн — для любых стен. Единственный недостаток в том, что штыревой кронштейн будет плохо держаться в пустотелом кирпиче.
Самый лучший угловой кронштейн тот, на котором стенка с креплением самая большая по площади. Такой угловой кронштейн лучше держит горизонтальное положение, не деформируясь на изгиб вниз.
Из штыревых кронштейнов лучше те, у которых толще диаметр штыря, и в пробке лучше распирающий. На данный момент мне нравится от фирмы «Omec».
Способы подключения радиаторов.
Рассмотрим различное множество подключений. Ниже рассмотрим, какое подключение подходит для различных схем. Например, для многоквартирных домов с однотрубными системами и с двухтрубными системами.
Рейтинг подключения в плане КПД радиаторов. Первое место занимает перекрестное соединение (соединение по диагонали).
Достоинства и недостатки каждой схемы.
1 место. Подключение по диагонали. Самый эффективный способ, при котором происходит максимальное потребление тепловой энергии от теплоносителя. Недостаток в отсутствии возможности изменения количества секций радиатора.
2. место. Боковое подключение. Не сильно проигрывает в плане КПД от диагонального подключения. Если стоит вопрос между вариантами 1 и 2, я выбираю боковое подключение. Так как если, по каким либо причинам, меня не устроит мощность радиатора, то можно добавить (или уменьшить) количество секций без переделок по узлам подключения.
3 место. Нижнее подключение. Тут много ходит мифов по данному подключению. И сейчас я скажу недостаток данного подключения.
Недостаток. Для частного дома. Когда вы начинаете заливать в систему отопления незамерзающую жидкость, не перемешав капитально с долей дистиллированной воды, возникает прослойка по высоте (вода/незамерзайка). И, так как, незамерзающая жидкость тяжелее воды, то она находиться ниже обычной воды. Поэтому возникает слоеный пирог в радиаторе по массе в виде двух разных сред: воды и незамерзайки. Данный, не размешанный слоеный пирог препятствует естественной циркуляции внутри радиатора. Это явление похоже на то, как вы пытаетесь перемешать масло с водой и, естественно, из-за разной плотности, эти две среды (вода и масло) будут находиться друг на другом.
Входящая незамерзающая жидкость в радиаторе не может подниматься вверх и перемешиваться с водой, так как, идет по прямой. Смотри изображение:
Очень часто, я, лично, сталкивался с такой проблемой, что верхняя часть радиатора оставалась холодной. Даже остывшая на 100 градусов вода не станет тяжелее незамерзайки.
Устраняется данная проблема следующим образом.
Через кран Маевского нужно вылить всю верхнюю (легкую) воду. И, в самом конце, Вы увидите, когда пойдет незамерзайка специфичного для нее цвета (синий, розовый или зеленый).
Что касается плавного обогрева в радиаторе с таким подключением, то это полнейший бред. И не стоит заострять на этом внимание.
Подключение радиатора сверху вниз
Это лучшее что может быть для системы отопления. Уж поверьте моему опыту, как гидравлику и теплотехнику.
Достоинство подключения радиатора «сверху вниз» заключается в том, что создается полезный гравитационный напор, который идет только на пользу такому подключению. Остывший теплоноситель тяжелее и стремится вниз, к выходу из радиатора, а нагретый теплоноситель идет вверх и остается там до тех пор, пока не поделиться своей тепловой энергией и не остынет.
4 место. Одноточечное подключение. Вообще самое худшее, что может быть для системы отопления. Одно достоинство данной схемы в том, что у него одно подключение. Одна точка. Смотри фото:
Расход через такое соединение явно будет меньше. Так как создается достаточно большое местное сопротивление вследствие сужения прохода.
Смотрим еще одно фото:
Не стоит полагать, что некоторые стальные панельные радиаторы, имеющие вид нижнего подключения, являются типом одноточечного подключения. В данном радиаторе подключение идет снизу, а вот подающая труба поднимается вверх до термоклапана, и после клапана теплоноситель попадает в верхнюю точку радиатора. В данном виде, радиатор подключен как бы «сверху вниз». Трубопровод, поднимающийся вверх, спрятан внутри конструкции.
Про квартирную разводку
В квартирах обычно существуют два вида систем отопления:
Однотрубная система отопления и двухтрубная:
Запрещено на перемычках ставить вентиля! Запрещено на стояках ставить вентиля!
Радиаторы для центрального отопления лучше ставить или чугунные или биметаллические. Они выдерживают достаточно большое давление, которое может возникать вследствие непредвиденных гидравлических ударов.
Алюминиевые радиаторы в контакте с водой выделяют водород. С незамерзающей жидкостью это выделение меньше. Но в биметалле есть сталь, которая коррозирует с кислородом.
На сегодняшний день для системы центрального отопления лучше поставить биметалл или чугун, а для частного дома — лучше алюминиевые радиаторы. Для частного дома, любая сталь в системе отопления приводит к ухудшению теплоносителя, отложению на стенках ржавчины, отложению отходов коррозии стали и тому подобное.
Какой трубопровод использовать для центрального отопления?
Для системы центрального отопления нужно использовать только стальной трубопровод.
В нашей фирме, когда дело доходило до прокладки систем центрального отопления, мы использовали для обвязки только стальной трубопровод. И это не обсуждалось, так как закладываются риски.
Достоинство стального трубопровода для центрального отопления.
Для тех, кто не в курсе. Стальной трубопровод это обычная железная труба. Существует оцинкованная труба — это стальная (железная) труба, покрытая снаружи тонким слоем цинка. Цинк вреден для системы водоснабжения, то есть для нашего здоровья. Цинк защищает сталь от коррозии, но даже на цинке существуют отложения. Существуют химические промывки для удаления отложений.
1. Стальной трубопровод выдерживает большое давление до 40 Bar |
Попробуйте найти пластиковый трубопровод с такими параметрами!
А в системах центрального отопления могут случаться такие коллапсы, как:
1. Высокая температура 95 градусов. |
Поэтому для систем центрального отопления нужно ставить стальной трубопровод.
Пластик не любит температур уже выше 80 градусов. Полипропилен тем более. Кстати сшитый полиэтилен рекордсмен по стойкости к высоким температурам. Можно конечно выбрать медь, но с медью тоже случались проблемы. Медь может разрушаться от блуждающих токов в трубопроводе с прикосновением некоторых металлов. Примером может служить стальная арматура в стене. Контакт меди с алюминием и сталью тоже вреден. Оловянный припой на стыках не любит щелочь, которая присутствует в системах центрального отопления. На практике случались вещи, когда в медном трубопроводе образовывались отверстия вследствие прикосновения медной трубы со стальной арматурой. Поэтому как не крути, а стальной трубопровод лучше подходит для центрального отопления. К тому же он дешевле.
Для того, чтобы не было отложений в стальном трубопроводе, добавляют различные присадки.
Но все не так страшно как кажется!!!
Выше я рассказал байку обо всех достоинствах стального трубопровода.
Для систем центрального отопления можно использовать металлопластик, сшитый полиэтилен, полипропилен, медь. Однако нужно знать их особенности в полной мере.
Существуют дома, в которых есть свои котельные с личной замкнутой системой отопления. Поэтому, если вы решились на пластиковый трубопровод или медь, то необходимо проконсультироваться с жилищно-управляющей компанией. К тому же, во многих котельных стоит автоматика, которая не допустит высоких температур и высокого давления в системе отопления.
Жизнь не стоит на месте, и автоматика упрощает нам жизнь. Но всегда остается риск, что автоматика не сработает.
Поэтому, монтируя пластик в систему отопления, вы действуете на свой страх и риск. Хотя, с каждым десятилетием эти риски становятся все меньше и постепенно сводятся к нулю.
Как поменять старый радиатор на новый в системах центрального отопления?
Если это однотрубная система, то стояк с перемычкой лучше не трогать и оставить как есть!
На идущие стальные трубопроводы от стояка после перемычки, нужно поставить ремонтные вентиля для ремонта радиатора. Это могут быть обычные шаровые краны. После кранов продолжить стальными или иными трубопроводами до радиатора. На радиатор лучше поставить термостатические вентиля для регулировки температуры в комнате.
Термостатический клапан на радиаторе.
Термостатический клапан с термоголовкой осуществляет климат контроль в помещение. То есть, сама термоголовка, чувствуя температуру в помещение, меняет положение штока у термостатического клапана, шток, в свою очередь, закрывает или открывает проход клапана. Если становиться жарко, то клапан закрывает проход теплоносителю. Если холодно — клапан открывает проход для впуска теплоносителя.
В системах центрального отопления при первом пуске теплоноситель может загнать грязь в Ваш радиатор. Могут засоряться термостатические клапана. В моем опыте это часто случалось. Так бывает не всегда, но в некоторых системах отопления бывает часто. В этом случае, я устанавливаю фильтры-грязевики на подаче и на обратке. Симптомом засора клапана является то, что клапан не может закрыть проход. В узкий проход попадает крупная крошка или осколок стали. Там, где такое происходит, ставьте фильтр-грязевик. На каждые 5 радиаторов попадается один, в который попадает крошка мусора.
Что еще нужно знать?
Сам по себе термостатический клапан имеет сужение прохода. Там имеются и повороты течения теплоносителя. Все это создает местное сопротивление. Возможно при установке такого термоклапана, у вас уменьшиться расход через радиатор, что повлечет за собой маленький его прогрев. Но этот феномен бывает мало заметен, если с системой отопления все в порядке.
Но скажу, что расход уменьшиться, но не сильно. Все зависит от вашей системы отопления данного дома.Существуют термостатические клапаны с хорошей проходимостью, которые заметно проигрывают обычным:
В них находится более широкий клапан, который создает большую площадь проходимости, в отличии от таких:
Существуют и рекордсмены по проходимости об этом можно узнать, поискав клапана с большими диаметрами по подключению. Например, существуют клапан с дюймовыми резьбовыми соединениями.
Если у Вас алюминиевый радиатор, то краны на летнее время нельзя перекрывать полностью и на обратке и на подаче. У меня был случай, когда на летнее время на три месяца я закрыл краны. У меня вследствие выделения водорода, от большого давления лопнули металлопластиковые трубы. Если бы у меня были стальные трубы, то лопнул бы радиатор.
Монтаж радиатора
Что касается установки радиатора, то минимальным расстоянием от пола по стандарту от 10-12см.
От стены 2-3 см.
Все эти зазоры влияют на тепловыделение тепла от радиатора. Чем дальше от стены, тем больше тепла. Если Вы радиатор утопите в пол, то это также уменьшит тепловыделение радиатора. Минимальное расстояние от пола должно быть 10 см. Максимально — 15 см. Также, от верха радиатора до подоконника должен быть проем для вентиляции.
И не нужно задвигать кресло и кровати со спинкой на сам радиатор — это уменьшает тепловыделение.
Если у Вас дома холодно, то в вашем случае закрывать радиатор декоративными решетками противопоказано.
Даже шторы, нависшие возле радиатора, уменьшают теплоотдачу.
Для лучшего обогрева помещения радиатор должен быть полностью открыт и за радиатором на стене можно поклеить фольгированный теплоизолятор для того, чтобы не обогревать холодную стену. Особенно тепло уходит в не утепленных домах. Где стена является сплошным кирпичом или блоком без наружного утепления.
Вот так уходит тепло на улицу.
А теперь рассмотрим системы отопления для частного дома.
Существует самая распространенная схема двухтрубная тупиковая. В такой схеме лучше использовать подключение сверху вниз.
В каждом радиаторе по такой схеме создается маленький гравитационный напор. То есть это сила, создаваемая остывшим теплоносителем по отношению к нагретому. Проще говоря, холодная вода давит вниз. Эта сила очень маленькая, но все же заметная! И идет системе отопления — только на пользу!
Приведу пример! Например, сделайте двухтрубную тупиковую систему с 50 радиаторами по схеме сверху вниз и другую систему, тоже двухтрубную тупиковую, но по схеме нижнего подключения.
Пример,
И вы увидите разницу, что схему с нижним подключением требует большего участия по балансировке системы отопления и использования ресурса насоса на 100%.
Радиатор, подключенный по схеме сверху вниз, создает маленький полезный гравитационный напор, для увеличения расхода через себя.
Что касается однотрубной системы (по ленинградке)
То к однотрубной системе правила те же. Но однотрубная система с подключением сверху вниз дает очень полезный эффект. То есть последний радиатор будет теплее чем, по схеме с нижним подключением.
Двух трубная попутная система отопления
Расчет сложной попутной системы отопления
Данная система создает равную длину трубопровода до радиатора. Это условие помогает создать равномерное распределение расхода между радиаторами.
Дело в том, что существуют сопротивления по длине трубопровода, которые влияют на расход.
Если Вы хотите глубже понять, что такое сопротивление в системе отопления, то Вам следует познакомиться с такими разделами как:
Конструктор водяного отопления
Гидравлика и теплотехника для сантехников
Сборник фотографий для размышления:
Все схемы рабочие, есть некоторые недостатки. Данные схемы только для размышления…
Если Вы желаете получать уведомления о новых полезных статьях из раздела: Сантехника, водоснабжение, отопление, то оставте Ваше Имя и Email. | ||
Все о дачном доме
Водоснабжение
Обучающий курс. Автоматическое водоснабжение своими руками. Для чайников.
Неисправности скважинной автоматической системы водоснабжения.
Водозаборные скважины
Ремонт скважины? Узнайте нужен ли он!
Где бурить скважину — снаружи или внутри?
В каких случаях очистка скважины не имеет смысла
Почему в скважинах застревают насосы и как это предотвратить
Прокладка трубопровода от скважины до дома
100% Защита насоса от сухого хода
Отопление
Обучающий курс. Водяной теплый пол своими руками. Для чайников.
Теплый водяной пол под ламинат
Обучающий Видеокурс: По ГИДРАВЛИЧЕСКИМ И ТЕПЛОВЫМ РАСЧЕТАМ
Водяное отопление
Виды отопления
Отопительные системы
Отопительное оборудование, отопительные батареи
Система теплых полов
Личная статья теплых полов
Принцип работы и схема работы теплого водяного пола
Проектирование и монтаж теплого пола
Водяной теплый пол своими руками
Основные материалы для теплого водяного пола
Технология монтажа водяного теплого пола
Система теплых полов
Шаг укладки и способы укладки теплого пола
Типы водных теплых полов
Все о теплоносителях
Антифриз или вода?
Виды теплоносителей (антифризов для отопления)
Антифриз для отопления
Как правильно разбавлять антифриз для системы отопления?
Обнаружение и последствия протечек теплоносителей
Как правильно выбрать отопительный котел
Тепловой насос
Особенности теплового насоса
Тепловой насос принцип работы
Про радиаторы отопления
Способы подключения радиаторов. Свойства и параметры.
Как рассчитать колличество секций радиатора?
Рассчет тепловой мощности и количество радиаторов
Виды радиаторов и их особенности
Автономное водоснабжение
Схема автономного водоснабжения
Устройство скважины Очистка скважины своими руками
Опыт сантехника
Подключение стиральной машины
Полезные материалы
Редуктор давления воды
Гидроаккумулятор. Принцип работы, назначение и настройка.
Автоматический клапан для выпуска воздуха
Балансировочный клапан
Перепускной клапан
Трехходовой клапан
Трехходовой клапан с сервоприводом ESBE
Терморегулятор на радиатор
Сервопривод коллекторный. Выбор и правила подключения.
Виды водяных фильтров. Как подобрать водяной фильтр для воды.
Обратный осмос
Фильтр грязевик
Обратный клапан
Предохранительный клапан
Смесительный узел. Принцип работы. Назначение и расчеты.
Расчет смесительного узла CombiMix
Гидрострелка. Принцип работы, назначение и расчеты.
Бойлер косвенного нагрева накопительный. Принцип работы.
Расчет пластинчатого теплообменника
Рекомендации по подбору ПТО при проектировании объектов теплоснабжения
О загрязнение теплообменников
Водонагреватель косвенного нагрева воды
Магнитный фильтр — защита от накипи
Инфракрасные обогреватели
Радиаторы. Свойства и виды отопительных приборов.
Виды труб и их свойства
Незаменимые инструменты сантехника
Интересные рассказы
Страшная сказка о черном монтажнике
Технологии очистки воды
Как выбрать фильтр для очистки воды
Поразмышляем о канализации
Очистные сооружения сельского дома
Советы сантехнику
Как оценить качество Вашей отопительной и водопроводной системы?
Профрекомендации
Как подобрать насос для скважины
Как правильно оборудовать скважину
Водопровод на огород
Как выбрать водонагреватель
Пример установки оборудования для скважины
Рекомендации по комплектации и монтажу погружных насосов
Какой тип гидроаккумулятора водоснабжения выбрать?
Круговорот воды в квартире
фановая труба
Удаление воздуха из системы отопления
Гидравлика и теплотехника
Введение
Что такое гидравлический расчет?
Физические свойства жидкостей
Гидростатическое давление
Поговорим о сопротивлениях прохождении жидкости в трубах
Режимы движения жидкости (ламинарный и турбулентный)
Гидравлический расчет на потерю напора или как рассчитать потери давления в трубе
Местные гидравлические сопротивления
Профессиональный расчет диаметра трубы по формулам для водоснабжения
Как подобрать насос по техническим параметрам
Профессиональный расчет систем водяного отопления. Расчет теплопотерь водяного контура.
Гидравлические потери в гофрированной трубе
Теплотехника. Речь автора. Вступление
Процессы теплообмена
Тплопроводность материалов и потеря тепла через стену
Как мы теряем тепло обычным воздухом?
Законы теплового излучения. Лучистое тепло.
Законы теплового излучения. Страница 2.
Потеря тепла через окно
Факторы теплопотерь дома
Начни свое дело в сфере систем водоснабжения и отопления
Вопрос по расчету гидравлики
Конструктор водяного отопления
Диаметр трубопроводов, скорость течения и расход теплоносителя.
Вычисляем диаметр трубы для отопления
Расчет потерь тепла через радиатор
Мощность радиатора отопления
Расчет мощности радиаторов. Стандарты EN 442 и DIN 4704
Расчет теплопотерь через ограждающие конструкции
Найти теплопотери через чердак и узнать температуру на чердаке
Подбираем циркуляционный насос для отопления
Перенос тепловой энергии по трубам
Расчет гидравлического сопротивления в системе отопления
Распределение расхода и тепла по трубам. Абсолютные схемы.
Расчет сложной попутной системы отопления
Расчет отопления. Популярный миф
Расчет отопления одной ветки по длине и КМС
Расчет отопления. Подбор насоса и диаметров
Расчет отопления. Двухтрубная тупиковая
Расчет отопления. Однотрубная последовательная
Расчет отопления. Двухтрубная попутная
Расчет естественной циркуляции. Гравитационный напор
Расчет гидравлического удара
Сколько выделяется тепла трубами?
Собираем котельную от А до Я…
Система отопления расчет
Онлайн калькулятор Программа расчет Теплопотерь помещения
Гидравлический расчет трубопроводов
История и возможности программы — введение
Как в программе сделать расчет одной ветки
Расчет угла КМС отвода
Расчет КМС систем отопления и водоснабжения
Разветвление трубопровода – расчет
Как в программе рассчитать однотрубную систему отопления
Как в программе рассчитать двухтрубную систему отопления
Как в программе рассчитать расход радиатора в системе отопления
Перерасчет мощности радиаторов
Как в программе рассчитать двухтрубную попутную систему отопления. Петля Тихельмана
Расчет гидравлического разделителя (гидрострелка) в программе
Расчет комбинированной цепи систем отопления и водоснабжения
Расчет теплопотерь через ограждающие конструкции
Гидравлические потери в гофрированной трубе
Гидравлический расчет в трехмерном пространстве
Интерфейс и управление в программе
Три закона/фактора по подбору диаметров и насосов
Расчет водоснабжения с самовсасывающим насосом
Расчет диаметров от центрального водоснабжения
Расчет водоснабжения частного дома
Расчет гидрострелки и коллектора
Расчет Гидрострелки со множеством соединений
Расчет двух котлов в системе отопления
Расчет однотрубной системы отопления
Расчет двухтрубной системы отопления
Расчет петли Тихельмана
Расчет двухтрубной лучевой разводки
Расчет двухтрубной вертикальной системы отопления
Расчет однотрубной вертикальной системы отопления
Расчет теплого водяного пола и смесительных узлов
Рециркуляция горячего водоснабжения
Балансировочная настройка радиаторов
Расчет отопления с естественной циркуляцией
Лучевая разводка системы отопления
Петля Тихельмана – двухтрубная попутная
Гидравлический расчет двух котлов с гидрострелкой
Система отопления (не Стандарт) — Другая схема обвязки
Гидравлический расчет многопатрубковых гидрострелок
Радиаторная смешенная система отопления — попутная с тупиков
Терморегуляция систем отопления
Разветвление трубопровода – расчет
Гидравлический расчет по разветвлению трубопровода
Расчет насоса для водоснабжения
Расчет контуров теплого водяного пола
Гидравлический расчет отопления. Однотрубная система
Гидравлический расчет отопления. Двухтрубная тупиковая
Бюджетный вариант однотрубной системы отопления частного дома
Расчет дроссельной шайбы
Что такое КМС?
Конструктор технических проблем
Температурное расширение и удлинение трубопровода из различных материалов
Требования СНиП ГОСТы
Требования к котельному помещению
Вопрос слесарю-сантехнику
Полезные ссылки сантехнику
—
Сантехник — ОТВЕЧАЕТ!!!
Жилищно коммунальные проблемы
Монтажные работы: Проекты, схемы, чертежи, фото, описание.
Если надоело читать, можно посмотреть полезный видео сборник по системам водоснабжения и отопления
infobos.ru
Расчет батарей отопления на площадь: методика + встроенный калькулятор
Один из наиболее важных вопросов создания комфортных условий проживания в доме или квартире – это надежная, правильно рассчитанная и смонтированная, хорошо сбалансированная система отопления. Именно поэтому создание такой системы – главнейшая задача при организации строительства собственного дома или при проведении капитального ремонта в квартире многоэтажки.
Несмотря на современное разнообразие систем отопления различных типов, лидером по популярности все же остается проверенная схема: контуры труб с циркулирующим по ним теплоносителем, и приборы теплообмена – радиаторы, установленные в помещениях. Казалось бы – все просто, батареи стоят под окнами и обеспечивают требуемый нагрев… Однако, необходимо знать, что теплоотдача от радиаторов должна соответствовать и площади помещения, и целому ряду других специфических критериев. Теплотехнические расчеты, основанные на требованиях СНиП – достаточно сложная процедура, выполняемая специалистами. Тем не менее, можно выполнить ее и своими силами, естественно, с допустимым упрощением. В настоящей публикации будет рассказано, как самостоятельно провести расчет батарей отопления на площадь обогреваемого помещения с учетом различных нюансов.
Расчет батарей отопления на площадь
Но, для начала, нужно хотя бы бегло ознакомиться с существующими радиаторами отопления – от их параметров во многом будут зависеть и результаты проводимых расчетов.
Кратко о существующих типах радиаторов отопления
Содержание статьи
Современный ассортимент радиаторов, представленных в продаже, включает следующие их виды:
- Стальные радиаторы панельной или трубчатой конструкции.
- Чугунные батареи.
- Алюминиевые радиаторы нескольких модификаций.
- Биметаллические радиаторы.
Стальные радиаторы
Этот тип радиаторов не снискал себе особой популярности, несмотря на то, что некоторым моделям придается весьма элегантное дизайнерское оформление. Проблема в том, что недостатки таких приборов теплообмена существенно превышают их достоинства – невысокую цену¸ относительно небольшую массу и простоту монтажа.
Стальные радиаторы отопления имеют немало недостатков
Тонкие стальные стенки таких радиаторов недостаточно теплоёмки – быстро нагреваются, но и столь же стремительно остывают. Могут возникнуть проблемы и при гидравлических ударах – сварные соединения листов иногда дают при этом течь. Кроме того, недорогие модели, не имеющие специального покрытия, подвержены коррозии, и срок службы таких батарей невелик – обычно производители дают им довольно небольшую по длительности эксплуатации гарантию.
В подавляющем большинстве случаев стальные радиаторы представляют собой цельную конструкцию, и варьировать теплоотдачу изменением числа секций не позволяют. Они имеют паспортную тепловую мощность, которую сразу же нужно выбирать, исходя из площади и особенностей помещения, где они планируются к установке. Исключение – некоторые трубчатые радиаторы имеют возможность изменения количества секций, но это обычно делается под заказ, при изготовлении, а не в домашних условиях.
Чугунные радиаторы
Представители этого типа батарей наверняка знакомы каждому еще с раннего детства – именно такие гармошки устанавливались ранее буквально повсеместно.
Знакомый всем с детских лет чугунный радиатор МС-140-500
Возможно, такие батареи МС-140—500 и не отличались особым изяществом, но зато верно служили не одному поколению жильцов. Каждая секция подобного радиатора обеспечивала теплоотдачу в 160 Вт. Радиатор сборный, и количество секций, в принципе, ничем не ограничивалось.
Современные чугунные батареи отопления
В настоящее время в продаже немало современных чугунных радиаторов. Их уже отличает более элегантный внешний вид, ровные гладкие наружные поверхности, которые облегчают уборку. Выпускаются и эксклюзивные варианты, с интересным рельефным рисунком чугунного литься.
При всем этом, такие модели в полной мере сохраняют основные достоинства чугунных батарей:
- Высокая теплоемкость чугуна и массивность батарей способствуют длительному сохранению и высокой отдаче тепла.
- Чугунные батареи, при правильной сборке и качественном уплотнении соединений, не боятся гидроударов, перепадов температур.
- Толстые чугунные стенки мало восприимчивы к коррозии и к абразивному износу. Может использоваться практически любой теплоноситель, так что такие батареи одинаково хороши и для автономной, и для центральной систем отопления.
Если не принимать в расчёт внешние данные старых чугунных батарей, то из недостатков можно отметить хрупкость металла (недопустимы акцентированные удары), относительную сложность монтажа, связанную в больше мере с массивностью. Кроме того, далеко не любые стеновые перегородки смогут выдержать вес таких радиаторов.
Алюминиевые радиаторы
Алюминиевые радиаторы, появившись сравнительно недавно, очень быстро завоевали популярность. Они относительно недороги, имеют современный, достаточно элегантный внешний вид, обладают отменной теплоотдачей.
При выборе алюминиевых радиаторов нужно учитывать некоторые важные нюансы
Качественные алюминиевые батареи способны выдерживать давление в 15 и более атмосфер, высокую температуру теплоносителя – порядка 100 градусов. При этом тепловая отдача от одной секции у некоторых моделей достигает порой 200 Вт. Но при этом они небольшой массой (вес секции – обычно до 2 кг) и не требуют большого объема теплоносителя (емкость – не более 500 мл).
Алюминиевые радиаторы представлены в продаже как наборными батареями, с возможностью изменения количества секций, так и цельными изделиями, рассчитанными на определенную мощность.
Недостатки алюминиевых радиаторов:
- Некоторые типы весьма подвержены кислородной коррозии алюминия, с высоким риском газообразования при этом. Это предъявляет особы требования к качеству теплоносителя, поэтому такие батареи обычно устанавливают в автономных системах отопления.
- Некоторые алюминиевые радиаторы неразборной конструкции, секции которых изготавливаются по технологии экструзии, могут при определенных неблагоприятных условиях дать течь на соединениях. При этом провести ремонт – попросту невозможно, и придется менять всю батарею в целом.
Изо всех алюминиевых батарей самые качественные – изготовленные с применением анодного оксидирования металла. Этим изделиям практически не страшна кислородная коррозия.
Внешне все алюминиевые радиаторы примерно похожи, поэтому необходимо очень внимательно читать техническую документацию, делая выбор.
Биметаллические радиаторы отопления
Подобные радиаторы по своей надежности оспаривают первенство с чугунными, а по тепловой отдаче – с алюминиевыми. Причина тому заключается в их особой конструкции.
Строение биметаллического радиатора отопления
Каждая из секций состоит из двух, верхнего и нижнего, стальных горизонтальных коллекторов (поз. 1), соединенных таким же стальным вертикальным каналом (поз.2). Соединение в единую батарею производится высококачественными резьбовыми муфтами (поз. 3). Высокая теплоотдача обеспечивается наружной алюминиевой оболочкой.
Стальные внутренние трубы выполнены из металла, которые не подвержен коррозии или имеет защитное полимерное покрытие. Ну а алюминиевый теплообменник ни при каких обстоятельствах не контактирует с теплоносителем, и коррозия ему абсолютно не страшна.
Таким образом, получается сочетание высокой прочности и износоустойчивости с отличными теплотехническими показателями.
Цены на популярные радиаторы отопления
Такие батареи не боятся даже очень больших скачков давления, высоких температур. Они, по сути, универсальны, и подходят для любых систем отопления, правда, наилучшие эксплуатационные характеристики они все же показывают в условиях высокого давления центральной системы – для контуров с естественной циркуляцией они малопригодны.
Пожалуй, единственных их недостаток – высокая цена по сравнению с любыми другими радиаторами.
Для удобства восприятия размещена таблица, в которой приведены сравнительные характеристики радиаторов. Условные обозначения в ней:
- ТС – трубчатые стальные;
- Чг – чугунные;
- Ал – алюминиевые обычные;
- АА – алюминиевые анодированные;
- БМ – биметаллические.
Чг | ТС | Ал | АА | БМ | |
---|---|---|---|---|---|
Давление максимальное (атмосфер) | |||||
рабочее | 6-9 | 6-12 | 10-20 | 15-40 | 35 |
опрессовочное | 12-15 | 9 | 15-30 | 25-75 | 57 |
разрушения | 20-25 | 18-25 | 30-50 | 100 | 75 |
Ограничение по рН (водородному показателю) | 6,5-9 | 6,5-9 | 7-8 | 6,5-9 | 6,5-9 |
Подверженность коррозии под воздействием: | |||||
кислорода | нет | да | нет | нет | да |
блуждающих токов | нет | да | да | нет | да |
электролитических пар | нет | слабое | да | нет | слабое |
Мощность секции при h=500 мм; Dt=70 ° , Вт | 160 | 85 | 175-200 | 216,3 | до 200 |
Гарантия, лет | 10 | 1 | 3-10 | 30 | 3-10 |
Видео: рекомендации по выбору радиаторов отопления
Возможно, вас заинтересует информация о том, что собой представляет батарея биметаллическая
Как рассчитать нужное количество секций радиатора отопления
Понятно, что установленный в помещении радиатор (один или несколько) должен обеспечить прогрев до комфортной температуры и компенсировать неизбежные теплопотери, независимо от погоды на улице.
Базовой величиной для вычислений всегда выступает площадь или объем комнаты. Сами по себе профессиональные расчеты – весьма сложны, и учитывают очень большое число критериев. Но для бытовых нужд можно воспользоваться упрощенными методиками.
Самые простые способы расчета
Принято считать, что для создания нормальных условий в стандартном жилом помещении достаточно 100 Вт на квадратный метр площади. Таким образом, следует всего лишь вычислить площадь комнаты и умножить ее на 100.
Q = S × 100
Q– требуемая теплоотдача от радиаторов отопления.
S– площадь обогреваемого помещения.
Если планируется установка неразборного радиатора, то это значение и станет ориентиром для подбора необходимой модели. В случае, когда будут устанавливаться батареи, допускающие изменение количества секций, следует провести еще один подсчет:
N = Q/ Qус
N– рассчитываемое количество секций.
Qус – удельная тепловая мощность одной секции. Эта величина в обязательном порядке указывается в техническом паспорте изделия.
Как видите, расчеты эти чрезвычайно просты, и не требуют каких-либо особых знаний математики – достаточно рулетки чтобы измерить комнату и листка бумаги для вычислений. Кроме того, можно воспользоваться и таблицей, расположенной ниже – там приведены уже рассчитанные значения для комнат различной площади и определённых мощностей обогревательных секций.
Таблица секции
Однако, нужно помнить, что эти значения – для стандартной высоты потолка (2,7 м) многоэтажки. Если высота комнаты иная, то лучше просчитать количество секций батареи, исходя из объема помещения. Для этого применяется усредненный показатель – 41 Вт тепловой мощности на 1 м³ объема в панельном доме, или 34 Вт – в кирпичном.
Q = S × h× 40 (34)
где h – высота потолка над уровнем пола.
Дальнейший расчет – ничем не отличается от представленного выше.
Подробный расчет с учетом особенностей помещения
А теперь перейдем к более серьезным расчетам. Упрощенная методика вычисления, приведенная выше, может преподнести хозяевам дома или квартиры «сюрприз». Когда установленные радиаторы не будут создавать в жилых помещениях требуемого комфортного микроклимата. И причина тому – целый перечень нюансов, которых рассмотренный метод просто не учитывает. А между тем, подобные нюансы могут иметь весьма важное значение.
Итак, за основу вновь берется площадь помещения и всё те же 100 Вт на м². Но сама формула уже выглядит несколько иначе:
Q = S × 100 × А × В × С × D× Е × F× G× H× I× J
Буквами от А до J условно обозначены коэффициенты, учитывающие особенности помещения и установки в нем радиаторов. Рассмотрим их по порядку:
А – количество внешних стен в помещении.
Понятно, что чем выше площадь контакта помещения с улицей, то есть, чем больше в комнате внешних стен, тем выше общие теплопотери. Эту зависимость учитывает коэффициент А:
- Одна внешняя стена – А = 1,0
- Две внешних стены – А = 1,2
- Три внешний стены – А = 1,3
- Все четыре стены внешние – А = 1,4
В – ориентация помещения по сторонам света.
Максимальные теплопотери всегда в комнатах, в которые не поступает прямого солнечного света. Это, безусловно, северная сторона дома, и сюда же можно отнести восточную – лучи Солнца здесь бывают только по утрам, когда светило еще «не вышло на полную мощность».
Прогреваемость помещений во многом зависит от их расположения относительно сторон света
Южная и западная стороны дома всегда прогреваются Солнцем значительно сильнее.
Отсюда – значения коэффициента В:
- Комната выходит на север или восток – В = 1,1
- Южная или западная комнаты – В = 1, то есть, может не учитываться.
С – коэффициент, учитывающий степень утепленности стен.
Понятно, что теплопотери из отапливаемого помещения будут зависеть от качества термоизоляции внешних стен. Значение коэффициента С принимают равным:
- Средний уровень — стены выложены в два кирпича, или предусмотрено их поверхностное утепление другим материалом – С = 1,0
- Внешние стены не утеплены – С = 1,27
- Высокий уровень утепления на основе теплотехнических расчетов – С = 0,85.
D – особенности климатических условий региона.
Естественно, что нельзя равнять все базовые показатели требуемой мощности обогрева «под одну гребенку» — они зависят и от уровня зимних отрицательных температур, характерного для конкретной местности. Это учитывает коэффициент D. Для его выбора берутся средние температуры самой холодной декады января – обычно это значение несложно уточнить в местной гидрометеорологической службе.
- — 35 °С и ниже – D= 1,5
- — 25 ÷ — 35 °С – D= 1,3
- до – 20 °С – D= 1,1
- не ниже – 15 °С – D= 0,9
- не ниже – 10 °С – D= 0,7
Е – коэффициент высоты потолков помещения.
Как уже говорилось, 100 Вт/м² — это усредненное значение для стандартной высоты потолков. Если она отличается, следует ввести поправочный коэффициент Е:
- До 2,7 м – Е = 1,0
- 2,8 – 3,0 м – Е = 1,05
- 3,1 – 3,5 м – Е = 1,1
- 3,6 – 4,0 м – Е = 1,15
- Более 4,1 м – Е = 1,2
F– коэффициент, учитывающий тип помещения, расположенного выше
Устраивать систему отопления в помещениях с холодным полом – бессмысленное занятие, и хозяева всегда в этом вопросе принимают меры. А вот тип помещения, расположенного выше, часто от них никак не зависит. А между тем, если сверху жилое или утепленное помещение, то общая потребность в тепловой энергии значительно снизится:
- холодный чердак или неотапливаемое помещение – F= 1,0
- утепленный чердак (в том числе – и утепленная кровля) – F= 0,9
- отапливаемое помещение – F= 0,8
G– коэффициент учета типа установленных окон.
Различные оконные конструкции подвержены теплопотерям неодинаково. Это учитывает коэффициент G:
- обычные деревянные рамы с двойным остеклением – G= 1,27
- окна оснащены однокамерным стеклопакетом (2 стекла) – G= 1,0
- однокамерный стеклопакет с аргоновым заполнением или двойной стеклопакет (3 стекла) — G= 0,85
Н – коэффициент площади остекления помещения.
Общее количество теплопотерь зависит и от суммарной площади окон, установленных в помещении. Эта величина рассчитывается на основании отношения площади окон к площади помещения. В зависимости от полученного результата находим коэффициент Н:
- Отношение менее 0,1 – Н = 0,8
- 0,11 ÷ 0,2 – Н = 0,9
- 0,21 ÷ 0,3 – Н = 1,0
- 0,31÷ 0,4 – Н = 1,1
- 0,41 ÷ 0,5 – Н = 1,2
I– коэффициент, учитывающий схему подключения радиаторов.
От того, как подключены радиаторы к трубам подачи и обратки, зависит их теплоотдача. Это тоже следует учесть при планировании установки и определения нужного количества секций:
Схемы врезки радиаторов в контур отопления
- а – диагональное подключение, подача сверху, обратка снизу – I = 1,0
- б – одностороннее подключение, подача сверху, обратка снизу – I = 1,03
- в – двустороннее подключение, и подача, и обратка снизу – I = 1,13
- г – диагональное подключение, подача снизу, обратка сверху – I = 1,25
- д – одностороннее подключение, подача снизу, обратка сверху – I = 1,28
- е – одностороннее нижнее подключение обратки и подачи – I = 1,28
J– коэффициент, учитывающий степень открытости установленных радиаторов.
Многое зависит и от того, насколько установленные батареи открыты для свободного теплообмена с воздухом помещения. Имеющиеся или искусственно созданные преграды способны существенно снизить теплоотдачу радиатора. Это учитывает коэффициент J:
На теплоотдачу батарей влияет место и способ их установки в помещении
а – радиатор расположен открыто на стене или не прикрыт подоконником – J= 0,9
б – радиатор прикрыт сверху подоконником или полкой – J= 1,0
в – радиатор прикрыт сверху горизонтальным выступом стеновой ниши – J= 1,07
г – радиатор сверху прикрыт подоконником, а с фронтальной стороны — частично прикрыт декоративным кожухом – J= 1,12
д – радиатор полностью прикрыт декоративным кожухом – J= 1,2
⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰
Ну вот, наконец, и все. Теперь можно подставлять в формулу нужные значения и соответствующие условиям коэффициенты, и на выходе получится требуемая тепловая мощность для надежного обогрева помещения, с учетом все нюансов.
После этого останется или подобрать неразборный радиатор с нужной тепловой отдачей, или же разделить вычисленное значение на удельную тепловую мощность одной секции батареи выбранной модели.
Наверняка, многим такой подсчет покажется чрезмерно громоздким, в котором легко запутаться. Для облегчения проведения вычислений предлагаем воспользоваться специальным калькулятором – в него уже заложены все требуемые величины. Пользователю остается лишь ввести запрашиваемые исходные значения или выбрать из списков нужные позиции. Кнопка «рассчитать» сразу приведет к получению точного результата с округлением в большую сторону.
Калькулятор для точного расчета радиаторов отопления
Перейти к расчётам
Последовательно введите запрашиваемые значения или отметьте нужные варианты в предлагаемых списках
Установите ползунком значение площади помещения, м²
Сколько внешних стен в помещении?
однадветричетыре
В какую сторону света смотрят внешние стены
Север, Северо-Восток, ВостокЮг, Юго-Запад, Запад
Укажите степень утепленности внешних стен
Внешние стены не утепленыСредняя степень утепленияВнешние стены имеют качественное утепление
Укажите среднюю температуру воздуха в регионе в самую холодную декаду года
— 35 °С и нижеот — 25 °С до — 35 °Сдо — 20 °Сдо — 15 °Сне ниже — 10 °С
Укажите высоту потолка в помещении
до 2,7 м2,8 ÷ 3,0 м3,1 ÷ 3,5 м3,6 ÷ 4,0 мболее 4,1 м
Что располагается над помещением?
холодный чердак или неотапливаемое и не утепленное помещениеутепленные чердак или иное помещениеотапливаемое помещение
Укажите тип установленных окон
Обычные деревянные рамы с двойным остеклениемОкна с однокамерным (2 стекла) стеклопакетомОкна с двухкамерным (3 стекла) стеклопакетом или с аргоновым заполнением
Укажите количество окон в помещении
Укажите высоту окна, м
Укажите ширину окна, м
Выберите схему подключения батарей
Укажите особенности установки радиаторов
Радиатор располжен открыто на стене или не прикрыт подоконникомРадиатор полностью прикрыт сверху подоконником или полкойРадиатор установлен в стеновой нишеРадиатор частично прикрыт фронтальным декоративным экраномРадиатор полностью закрыт декоративным кожухом
Ниже будет предложено ввести паспортную мощность одной секции выбранной модели радиатора.
Если целью расчетов стоит определение потребной суммарной тепловой мощности для отопления комнаты (например, для выбора неразборных радиаторов) то оставьте поле пустым
Введите паспортную тепловую мощность одной секции выбранной модели радиатора
Автор публикации, и он же – составитель калькулятора, надеется, что посетитель нашего портала получил полноценную информацию и хорошее подспорье для самостоятельного расчета.
Возможно, вас заинтересует информация о том, как выбрать электрокотел
otoplenie-expert.com
Как подключить радиатор отопления с наибольшей эффективностью | моё
Текст из видео:
- 00:00: по эффективности использования радиатора при различных способах его подключения посмотрите если радиатор подключен к следующим образом то то есть давайте начнем с того что радиатор имеет четыре точки входа одну нору и третье и четвертое он то есть везде в этих четырех местах можно
- 00:31: подключить трубу либо прямую то есть прямая от к той которой идет от котла и обратную то-то который снова возвращается котла музыку ту часть самыми различными способами как показывают теории как подтверждает практика вот такой способ подключения является самым эффективным то есть его можно взять за основу его можно взять за способ со стопроцентной эффективности по теплообмену то есть получается что здесь туда поднимается уже горячий воздух
- 01:01: горячий воск в нагретый воздух и чтобы его еще подогреть и сказ получается 6 подходит как раз этот более горячий теплоноситель и дополнительно воздух имеет потому что нагреваться вот это считается за стопроцентный вариант самый лучший вариант по теплотехнике для подключения радиаторов батарей давайте сравним его с другими вот например другой способ этот способ показывает нам что можно подключить взгляд анны батареи с
- 01:31: одной стороны это одностороннюю схему подключения то есть вот сверху мы подключаем прямую сюда эти abs отек у насыпал носитель а здесь он вышел как видите эффективность уже не 100 процентов от 97 почему но видимо потому что в этих радиаторах этих секциях больше поток а в этих а меньше поэтому не вся площадь радиатора
- 02:02: используется со стопроцентной эффективности кроме того про такую одностороннюю схему подключения можно сказать следующее что здесь есть ограничения по количеству подключения радиаторов допустим больше 20 секции алюминиевого радиатора подключать не рекомендуется иначе здесь будет уже такой маленький такая маленькая циркуляция что это часть для тары будет очень слабо
- 02:33: грезили практически не греть поэтому если у нас такой длинный радиатор или два радиатора друг за друга то нужно подключаться по этой же схеме здесь мы вошли а здесь вышли помните об этом когда будет подключать длинные радиаторы либо на сцепку из нескольких таких вот радиатора теперь подключение нижняя очень часто
- 03:03: используются нижнее подключение обычно особенно в тех случаях когда у нас разводка по полу когда на скрытая разводка или разводка от коллектора еще называют лучевой мы ее очень внимательно рассмотрим от начала до конца вы и научились и сделать абсолютно полностью вот но видите как получается она удобна тем что допустим вот здесь у нас пол и спала вышли две трубы подсоединились к
- 03:33: радиатору удобно эстетично она эффективность падает со 100 процентов до 88 то есть 90 центов и эффективности теплообмена здесь теряется на следующий способ способ похожий на 1 но прямая ветка доходит снизу а обратно и выходит сверху и эффективность всего лишь только
- 04:04: восемьдесят процентов вот ведь как то есть получается так что здесь краситель уже слегка охладился перед тем как выходить из радиатора а воздух а радиатор уже нагрелся поэтому в этой части не такая уральцы не такая большая разница температур между радиатором и окружающим воздухом поэтому эффективность с теряются при чем в этом случае эффективность подключения для дам теряются рейтинг эффективности
- 04:34: теплоотдачи радиатора теряется аж на 20 процентов поэтому я вам рекомендую если есть возможность подключать так как прямую учить сперму обратную снизу то подключаете так обычно такая возможность есть всегда и подключая тот поэтому способом что я вам здесь сейчас только что показал получаю подключая только потому что перепутываю прямую и обратную ветку все работает радиатор греет и какой-то на
- 05:05: ощупь различия не заметно но если считать святой эффективность этой системы то она получается а 20 процентов ниже если радиатор подключен наоборот то есть когда прямо я внесу а обратка наверху теперь схема похоже вот на эту верхнюю но опять же прямая у нас не ну а обратка наверху эффективность
- 05:37: становится еще меньше становится 78 процентов то есть мы 22 процента эффективности радиатора потеряли о чём это говорит катя говорит о том что это мы подключили по этой схеме например то мы могли бы использовать радиатор от 20 процентов короче и получили бы точно такой же тепла съел понимает о чем и говорю поэтому важно все-таки вам при монтаже для себя
- 06:07: как-то обозначать что вот эта труба у меня прямая пирс она идет от котла нагреты классики пойдет по этой трубе а вот по этой будет возвращаться уже охлажденный теплоноситель обратно и подключать и вот то так стараясь стучаться так на первый взгляд не заметна разница но к эффективности все-таки она заметно особенно морозах теперь такое вот и нижнее подключение односторонний линии подключения нельзя конечно сказать что
- 06:38: вот здесь в pacific зашел круто носа и тут же вышел обратно нет конечно обычно здесь как происходит здесь такая длинная рапира она вкручивается все себе радиатор да отсюда уже выходит этот типа властитель а забирается он вокруг считают рапиру выходит вот щель между этой тут трубкой и остальным крепежом очень часто применяется со статистической точки
- 07:09: зрения применяется такой вид подключение но опять же он теряет 22 процента от эффективности радиатора то есть чтобы делать возмещение такое приходится делать радиатор по длине и пищевые чтобы увеличить получите плащом и и компенсировать ей вот это вот неправильное распределение температур по радиатора теперь рассмотрим как влияет способ установки на эффективность работы с радиатора вам часто
- 07:39: будет приходиться монтировать видео тары во всяких разных условиях и вы должны понимать что от того как установлен радиатор в каких условиях он стоит он будет иметь разную эффективность своей работы чаще всего радиаторы устанавливаются под окном а именно под подоконником если бы радиатор стоял просто на стене без подоконника то ему ничего не мешало отдавать свое тепло и
- 08:09: боль баку ничего не мешало подниматься вертикально вверх при этом было бы стопроцентно эффективность использования радиатора весь воздух снизу подходит к радиатору нагревается расширяется становится легче и поднимается вверх и здесь препятствием этот подоконник и он меняет траекторию движения воздуха и меняет скорость движения воздуха и сиси с этим уменьшает теплоотдачу на 3 4
- 08:39: процента вроде бы не много но тем не менее это есть другой случай когда и не подоконник а уже ниши ниша увеличивает потери при теплоотдачи по теплоотдаче на 7 примерно процентов то есть такой радиатор отдает тепла примерно на 7 раз меньше чем если бы он работал не в нише я стоял просто на стене далее теперь вот
- 09:11: такой экран декоративный часто использует здесь вот отверстие в этом экране не всем нравится чтобы были видны регуляторы из-за это как-то раз хотят облагородить вот опять же вот здесь есть отверстие здесь снизу подходит этот воздух нагревается и выходит здесь наверху то тоже как бы все хорошо работает короба какие страны ставят вполне возможно и все будет работать но здесь очень важный элемент
- 09:42: посмотрите вот этот это щель здесь место для прохода воздуха если какой-то ошибки здесь не будет этого прохода то эффективность радиатора сразу падает на 20 25 процентов потому что ну очень трудно здесь воздуху циркулировать как он был здесь циркулирует это чтобы здесь как ты зашел сюда воздух как опустился вниз нагрелся поднялся обратно вот такие
- 10:13: короба конечно они очень вредят и получается что греть не сам браузер огреет короб который будет греть вот этот вот радиатор то есть здесь этот короб является как бы тепло защитой наоборот и плохо передает тепло поэтому таких коробов лучше избежать и если вам же будет участвовал в манш приз участвовать в данные там предчистовой отделке то обратите внимание заказчика если короба
- 10:43: будут мастерить вокруг ваших радиаторов вот такие
postila.ru
Как подключить радиатор отопления с наибольшей эффективностью | полезные советы
Текст из видео:
- 00:00: по эффективности использования радиатора при различных способах его подключения посмотрите если радиатор подключен к следующим образом то то есть давайте начнем с того что радиатор имеет четыре точки входа одну нору и третье и четвертое он то есть везде в этих четырех местах можно
- 00:31: подключить трубу либо прямую то есть прямая от к той которой идет от котла и обратную то-то который снова возвращается котла музыку ту часть самыми различными способами как показывают теории как подтверждает практика вот такой способ подключения является самым эффективным то есть его можно взять за основу его можно взять за способ со стопроцентной эффективности по теплообмену то есть получается что здесь туда поднимается уже горячий воздух
- 01:01: горячий воск в нагретый воздух и чтобы его еще подогреть и сказ получается 6 подходит как раз этот более горячий теплоноситель и дополнительно воздух имеет потому что нагреваться вот это считается за стопроцентный вариант самый лучший вариант по теплотехнике для подключения радиаторов батарей давайте сравним его с другими вот например другой способ этот способ показывает нам что можно подключить взгляд анны батареи с
- 01:31: одной стороны это одностороннюю схему подключения то есть вот сверху мы подключаем прямую сюда эти abs отек у насыпал носитель а здесь он вышел как видите эффективность уже не 100 процентов от 97 почему но видимо потому что в этих радиаторах этих секциях больше поток а в этих а меньше поэтому не вся площадь радиатора
- 02:02: используется со стопроцентной эффективности кроме того про такую одностороннюю схему подключения можно сказать следующее что здесь есть ограничения по количеству подключения радиаторов допустим больше 20 секции алюминиевого радиатора подключать не рекомендуется иначе здесь будет уже такой маленький такая маленькая циркуляция что это часть для тары будет очень слабо
- 02:33: грезили практически не греть поэтому если у нас такой длинный радиатор или два радиатора друг за друга то нужно подключаться по этой же схеме здесь мы вошли а здесь вышли помните об этом когда будет подключать длинные радиаторы либо на сцепку из нескольких таких вот радиатора теперь подключение нижняя очень часто
- 03:03: используются нижнее подключение обычно особенно в тех случаях когда у нас разводка по полу когда на скрытая разводка или разводка от коллектора еще называют лучевой мы ее очень внимательно рассмотрим от начала до конца вы и научились и сделать абсолютно полностью вот но видите как получается она удобна тем что допустим вот здесь у нас пол и спала вышли две трубы подсоединились к
- 03:33: радиатору удобно эстетично она эффективность падает со 100 процентов до 88 то есть 90 центов и эффективности теплообмена здесь теряется на следующий способ способ похожий на 1 но прямая ветка доходит снизу а обратно и выходит сверху и эффективность всего лишь только
- 04:04: восемьдесят процентов вот ведь как то есть получается так что здесь краситель уже слегка охладился перед тем как выходить из радиатора а воздух а радиатор уже нагрелся поэтому в этой части не такая уральцы не такая большая разница температур между радиатором и окружающим воздухом поэтому эффективность с теряются при чем в этом случае эффективность подключения для дам теряются рейтинг эффективности
- 04:34: теплоотдачи радиатора теряется аж на 20 процентов поэтому я вам рекомендую если есть возможность подключать так как прямую учить сперму обратную снизу то подключаете так обычно такая возможность есть всегда и подключая тот поэтому способом что я вам здесь сейчас только что показал получаю подключая только потому что перепутываю прямую и обратную ветку все работает радиатор греет и какой-то на
- 05:05: ощупь различия не заметно но если считать святой эффективность этой системы то она получается а 20 процентов ниже если радиатор подключен наоборот то есть когда прямо я внесу а обратка наверху теперь схема похоже вот на эту верхнюю но опять же прямая у нас не ну а обратка наверху эффективность
- 05:37: становится еще меньше становится 78 процентов то есть мы 22 процента эффективности радиатора потеряли о чём это говорит катя говорит о том что это мы подключили по этой схеме например то мы могли бы использовать радиатор от 20 процентов короче и получили бы точно такой же тепла съел понимает о чем и говорю поэтому важно все-таки вам при монтаже для себя
- 06:07: как-то обозначать что вот эта труба у меня прямая пирс она идет от котла нагреты классики пойдет по этой трубе а вот по этой будет возвращаться уже охлажденный теплоноситель обратно и подключать и вот то так стараясь стучаться так на первый взгляд не заметна разница но к эффективности все-таки она заметно особенно морозах теперь такое вот и нижнее подключение односторонний линии подключения нельзя конечно сказать что
- 06:38: вот здесь в pacific зашел круто носа и тут же вышел обратно нет конечно обычно здесь как происходит здесь такая длинная рапира она вкручивается все себе радиатор да отсюда уже выходит этот типа властитель а забирается он вокруг считают рапиру выходит вот щель между этой тут трубкой и остальным крепежом очень часто применяется со статистической точки
- 07:09: зрения применяется такой вид подключение но опять же он теряет 22 процента от эффективности радиатора то есть чтобы делать возмещение такое приходится делать радиатор по длине и пищевые чтобы увеличить получите плащом и и компенсировать ей вот это вот неправильное распределение температур по радиатора теперь рассмотрим как влияет способ установки на эффективность работы с радиатора вам часто
- 07:39: будет приходиться монтировать видео тары во всяких разных условиях и вы должны понимать что от того как установлен радиатор в каких условиях он стоит он будет иметь разную эффективность своей работы чаще всего радиаторы устанавливаются под окном а именно под подоконником если бы радиатор стоял просто на стене без подоконника то ему ничего не мешало отдавать свое тепло и
- 08:09: боль баку ничего не мешало подниматься вертикально вверх при этом было бы стопроцентно эффективность использования радиатора весь воздух снизу подходит к радиатору нагревается расширяется становится легче и поднимается вверх и здесь препятствием этот подоконник и он меняет траекторию движения воздуха и меняет скорость движения воздуха и сиси с этим уменьшает теплоотдачу на 3 4
- 08:39: процента вроде бы не много но тем не менее это есть другой случай когда и не подоконник а уже ниши ниша увеличивает потери при теплоотдачи по теплоотдаче на 7 примерно процентов то есть такой радиатор отдает тепла примерно на 7 раз меньше чем если бы он работал не в нише я стоял просто на стене далее теперь вот
- 09:11: такой экран декоративный часто использует здесь вот отверстие в этом экране не всем нравится чтобы были видны регуляторы из-за это как-то раз хотят облагородить вот опять же вот здесь есть отверстие здесь снизу подходит этот воздух нагревается и выходит здесь наверху то тоже как бы все хорошо работает короба какие страны ставят вполне возможно и все будет работать но здесь очень важный элемент
- 09:42: посмотрите вот этот это щель здесь место для прохода воздуха если какой-то ошибки здесь не будет этого прохода то эффективность радиатора сразу падает на 20 25 процентов потому что ну очень трудно здесь воздуху циркулировать как он был здесь циркулирует это чтобы здесь как ты зашел сюда воздух как опустился вниз нагрелся поднялся обратно вот такие
- 10:13: короба конечно они очень вредят и получается что греть не сам браузер огреет короб который будет греть вот этот вот радиатор то есть здесь этот короб является как бы тепло защитой наоборот и плохо передает тепло поэтому таких коробов лучше избежать и если вам же будет участвовал в манш приз участвовать в данные там предчистовой отделке то обратите внимание заказчика если короба
- 10:43: будут мастерить вокруг ваших радиаторов вот такие
postila.ru
Как увеличить кпд батареи отопления: варианты эффективного увеличения показателя
Основная задача любого вида батарей отопления – максимально возможный обогрев помещения. Параметром, определяющим, насколько прибор соответствует поставленным задачам, является их теплоотдача. Но не только это может повлиять на часто возникающую проблему, которая заключается в том, как увеличить кпд батареи отопления. Справиться с потерями тепла можно достаточно простыми средствами, но перед этим необходимо выяснить, что может повлиять на процесс передачи тепла в окружающее пространство. Рассмотрим основные факторы, влияющие на кпд отопительных приборов:
- Модель радиатора, количество секций и размер самой батареи;
- Тип подключения радиатора к сети теплоснабжения;
- Размещение батареи отопления в помещении;
- Материал, из которого изготовлена батарея.
Все эти факторы являются основополагающими в эффективности обогрева помещения с помощью радиаторов. Однако, указанный изготовителем кпд радиаторов отопления можно изменить в лучшую сторону, если использовать несколько хитростей при их выборе и установке. Для этого в первую очередь необходимо разобраться в том, что такое коэффициент полезного действия батарей отопления, как его рассчитать и какие показатели могут на него повлиять. (См. также: Схема водяного отопления частного дома)
Что такое кпд и как его рассчитать
Теплоотдача приборов отопления, к которым относятся батареи или радиаторы, складывается из количественного показателя тепла, которое передано батареей за определённый промежуток времени и измеряется в Ваттах. Процесс теплоотдачи батареями проходит в результате процессов, которые известны как конвекция, излучение и теплообмен. Любой радиатор использует эти три вида теплообмена. В процентном соотношении эти виды передачи тепла могут варьироваться у различных типов батарей.
Каким будет кпд обогревателей, в подавляющем большинстве случаев зависит от материала, из которого они изготовлены. Рассмотрим, какими преимуществами и недостатками обладают радиаторы, изготовленные из разных видов материала.
- Чугун обладает сравнительно низкой теплопроводностью, поэтому батареи из этого материала не являются лучшим вариантом. К тому же небольшая поверхность этих приборов отопления значительно снижает теплоотдачу и происходит за счёт излучения. В обычных условиях квартиры мощность батареи из чугуна составляет не более 60 Вт.
- Сталь несколько выше чугунных. Более активная теплоотдача происходит из-за наличия дополнительных рёбер, которые увеличивают площадь излучения тепла. Теплоотдача происходит в результате конвекции, мощность составляет примерно 100 Вт.
- Алюминий обладает наибольшей из всех предыдущих вариантов теплопроводностью, мощность их составляет около 200 Вт.
(См. также: Какой лучше выбрать радиатор отопления)
Кроме того, для наиболее эффективного обогрева необходимо учесть, какая мощность может потребоваться. При расчёте необходимой для помещения мощности обогревательных приборов используется количество стен, выходящих на улицу и окон. На каждые 10 м2 пола при наличии 1 наружной стены и окна требуется около 1 Квт тепловой мощности батареи. Если наружных стен 2, то требуемая мощность составляет уже 1,3 кВт. (См. также: Печи с водяным отоплением)
Немаловажную роль в увеличении кпд батарей отопления играет способ подключения, который должен соответствовать типу батареи и материалу, из которого она изготовлена. Прямое одностороннее подключение имеет самые высокие показатели по эффективности теплоотдачи и самые низкие по потере тепла. Диагональное подключение используется в случае наличия большого количества секций и существенно снижает возможные потери тепла.
Нижнее подключение используется в том случае, если теплопроводные трубы скрыты под стяжкой пола и не исключает потерю тепла в количестве до 10% от исходного значения. Наименее эффективным считается однотрубное подключение, так как потеря мощности обогревательного прибора при этом способе может достигать 45%.
5 способов увеличения кпд отопительной системы
Существует несколько простых способов, как повысить кпд батареи отопления без особых материальных и трудовых затрат. Рассмотрим их подробно. (См. также: Автономные системы отопления)
- Поддержание поверхности отопительных приборов в чистоте.
Каким бы невероятным не казалось это утверждение, но даже тонкий слой пыли на радиаторах ведёт к понижению теплоотдачи. Например, кпд алюминиевых радиаторов, загрязнённых слоем пыли, может понизиться на 20–25%. Кроме того, в регулярной очистке нуждается и внутренняя часть батареи. С первой проблемой можно справиться самостоятельно путём обычной влажной уборки, а вот для второго придётся обратиться к квалифицированному специалисту. Сантехники имеют на вооружении знания и навыки, которые помогут в короткие сроки очистить радиатор от накипи и других загрязнений, скопившихся в процессе эксплуатации.
- Окрашивание радиаторов соответствующей их назначению краской.
Во-первых, для окрашивания необходимо подбирать краску тёмных расцветок. Благодаря этому удастся добиться не только хорошего нагрева батарей, но и значительного повышения теплоотдачи. Во-вторых, необходимо выбрать для окрашивания подходящую краску. В качестве покрытия для чугунных радиаторов отопления лучше использовать известные всем эмали, а для алюминиевых и стальных батарей больше подойдут акриловые, алкидные и акрилатные эмали.
Почему вопрос с покраской стоит так, а не иначе, можно объяснить достаточно просто: чугунные радиаторы достаточно легко поддаются окраске любыми видами эмали ввиду своего строения. Тонкие пластины алюминиевых радиаторов могут быть забиты слишком толстым слоем краски. В заводских условиях радиаторы с тонким корпусом и множеством пластин окрашивают порошковыми красками, которые не представляют угрозы для качественных характеристик радиатора и не изменяют вид его теплоотдачи. Окраска батареи в тёмный цвет позволяет повысить кпд отопительных элементов до 15% от обычного значения. (См. также: Сравнение систем отопления)
- Использование отражающих экранов.
Тепло, которое излучает батарея, распространяется во все стороны. Поэтому как минимум половина полезного теплового излучения уходит в стену, расположенную за приборами отопления. Уменьшить напрасные потери тепла можно, расположив за радиатором экран, например, из обычной фольги или готовый, купленный в магазине. При использовании даже самодельного экрана из тонкого металлического листа не только прекращается нагрев стены, но и создаётся дополнительный источник тепла, так как, нагреваясь, экран сам начинает отдавать тепло в помещение. При использовании отражающего экрана, кпд чугунных батарей, да и многих других, можно повысить до 10–15%.
- Увеличение площади поверхности батарей.
Между площадью поверхности, которая излучает тепло, и количеством этого тепла есть самая прямая зависимость. Для увеличения теплоотдачи радиаторов можно использовать дополнительный кожух. Материал, из которого он будет изготовлен, необходимо тщательно выдирать. Например, наибольшей теплоотдачей обладают кожухи из алюминия. Их используют в качестве дополнения к чугунным радиаторам. При частых перебоях в работе отопительных систем стоит подумать о приобретении стальных кожухов, которые очень долго сохраняют полученное от радиаторов тепло. Соответственно, этот тип кожухов для батарей отдаёт тепло в окружающее пространство намного дольше других.
- Создать дополнительные потоки воздуха в помещении.
Если направить на приборы отопления поток воздуха, например, с помощью обычного бытового вентилятора, то нагрев воздуха в помещении будет происходить значительно быстрее. При этом стоит учитывать, что направление воздушного потока должно быть вертикальным и направленным снизу вверх. При таком способе повышение кпд радиаторов может достигать 5–10%.
Используя даже один способ улучшения теплоотдачи батарей, можно значительно повысить температуру в помещении и снизить затраты на дополнительный обогрев. Перед тем, как вы приступите к улучшению характеристик радиаторов, убедитесь в правильности их подключения к теплосети и в том, что регуляторы подачи тепла на приборах последнего поколения установлены на необходимое значение. Кроме того, при постоянной проблеме с теплоснабжением, нужно уделить внимание теплоизоляции стен и окон, через которые обычно и уходит тепло. Утеплять нужно не только наружные стены, но и те, которые выходят на лестничную клетку.
otopimdom.ru