Простая схема отопления: Страница не найдена

Содержание

Простая и эффективная система отопления для частного дома

Думаете что сделать простую, недорогую, компактную, но эффективную и надежную систему отопления в частном доме – это удел профессионалов и специалистов. Нет, это сможет создать в своем доме каждый!

Многие фирмы в своих рекламных проспектах обращают внимание на точный и обязательный расчет, с учетом площади помещения и обязательное привлечение специалистов. Но ни то ни другое не обязательно.
Для того, чтобы сделать эффективное отопление дома не обязательно быть профессионалом, достаточно иметь голову на плечах и руки растущие из того места.

Вы сами можете улучшить свой дом, сделав его уютным и комфортным за небольшие деньги, если сильно захотите и приложите к этому усилия. Все очень просто.

Преимущества самостоятельной сборки

Самостоятельная сборка имеет много плюсов. Во первых вы будите знать устройство своей системы – вам не страшны возможные отказы, поломки (главный разрушитель – время), отклонения от нормального функционирования или сбои в ее работе в любое время года.

Видео: Самая простая надежная схема отопления! Подробный разбор….

Во вторых – понимая устройство, вы сможете не только создать компактную систему, но и отрегулировать ее правильно, для достижения максимальной экономичности и эффективности.

Многие хозяева частных домов уже установили у себя отопление с использованием электрокотлов с автоматическим поддержанием заданной температуры воздуха, которые отлично и без перебоев работают много лет. Для резервного источника тепла можно использовать кирпичную печь или твердотопливный котел.

Считается, что электрическое отопление на сегодня одни из лучших. Они относительно недороги, просты в установке и надежны в работе, бесшумны в работе, есть возможность управления температурой в помещениях ( программирование на определенный промежуток времени, дня недели или по времени суток).

Принцип электрической системы такой – установил, включил, забыл.

Выбираем тип

Теперь поговорим о типах систем отопления применяемых в частных домах – однотрубные и двухтрубные (верхняя и нижняя разводка), с применением коллекторов, регистров и радиаторов. Все они имеют как достоинства, так и недостатки.

Нам же необходима такая, которая будет эффективно работать от электрокотлов и в случае отключения электроэнергии от обычной печки, или от котла и печки одновременно(при сильном морозе), что позволит сделать ее намного экономичней.

Наша система должна хорошо отапливать соответствующий объем помещения в любой мороз. Она должна бесперебойно работать: от электрокотла и печи одновременно, без принудительной циркуляции воды в системе( при отключении электроэнергии), для обеспечения нормальной температуры при очень сильных морозах.

Все это можно обеспечить последовательным подключением котла, печи и ТЭНа.

Работа автономных систем

В автономной системе с естественной циркуляцией теплоносителя внутреннее давление одинаково. При нагреве в котле, происходит расширение жидкости, которое приводит к увеличению давления.

Ввиду того, что жидкость не сжимается, давление передается в контур и начинается циркуляция воды. Так как давление передается во все стороны, и куда должен двигаться теплоноситель при первоначальном нагреве, может быть определено только построением правильной схемы.

Для этого трубопровод строят с таким учетом, чтобы направить более теплый теплоноситель(как более легкий) в точку поднятую на самый высокий уровень.

В этом случае нагретый теплоноситель двинется к верхней точке, а холодный займет его место (как более тяжелый), то есть начнется естественная циркуляция. Оптимальным считается расстояние 3 и более метров.

В таком случае вам будет гарантированна активная естественная циркуляция теплоносителя, эффективность и бесшумная работа.

Следующая статья про эффективное отопление.

Посмотрите видео: самая надежная и простая система отопления для Сибири

Схема отопления частного дома с газовым котлом

Самая простая и правильная схема отопления частного дома с газовым котлом представлена на этой странице. Поскольку именно для газовых котлов есть отличия по схеме от других видов теплогенераторов, мы с вами ее разберем немного подробнее.

Кроме того, схема отопления частного дома с газовым котлом в настенном или напольном исполнении также подразумевает некоторые отличия. Они касаются производства горячей воды для ГВС, о них чуть ниже.

И наконец, схема отопления частного дома с газовым котлом в отдельно стоящей котельной также привносит «разнообразие» в обустройство СО в нашем доме.

Итак, давайте по порядку.

Самая простая схема отопления с газовым котлом

Самая простая схема отопления дома с газовым котлом – это однозначно система отопления, запитанная от настенного котла.

Почему? Потому что обычно настенный котел уже включает в себя циркуляционный насос и расширительный бак – экспанзомат. Кроме того, современные котлы также уже содержат в комплекте группу безопасности.

Все эти устройства вместе с теплообменником котла и газовой горелкой объединяются в одном корпусе – получается современный газовый котел.

С одной стороны удобно. С другой стороны, схема с раздельными ЦН и расширительным баком гораздо более ремонтнопригодна.

Итак, что у нас включает простая схема:

 

  1. Газовый настенный котел в качестве телогенератора.
  2. Трубы подачи теплоносителя в СО.
  3. Радиаторы системы отопления или теплые жидкостные полы.
  4. Запорная арматура.

Фактически это все. В такой комплектации при наличии коаксиального дымохода можно вешать турбированный газовый котел на кухне при соблюдении требований газовой компании.

Схема с ГВС

Что касается производства горячей воды для ГВС. То если вы используете настенный двухконтурный котел, то больше в эту схему вы ничего не добавляете. Достаточно подвести подающий трубопровод с холодной водой ко второму контуру котла, ответственному за ГВС, и вы получает на выходе горячую воду. При помощи труб можно подавать ее к точкам разбора воды – в ванную, санузел, на кухню.

Если же у вас одноконтурный газовый котел, настенный или напольный, то чтобы получать горячую воду для ГВС, вам потребуется бойлер косвенного нагрева, который будет нагревать водопроводную воду благодаря снимаемому с подающего трубопровода СО теплу.

То есть, в нашей схеме появилась еще одна единица – бойлер косвенного нагрева или БКН.

Подключать его лучше ближе к потребителям, необязательно размещать БКН в котельной. Если же вы хотите максимально эффективно использовать тепло вашего котла, то потребуется обустроить систему подачи горячей воды с циркуляцией.

В противном случае водопроводная вода будет остывать в «тупиках» системы ГВС перед точками водоразбора, когда краны перекрыты. То есть, практически 90-95 процентов всего времени.

Газовый котел в отдельной котельной

Можно позволить себе разместить газовый котел в отдельной котельной. В этом случае к нашей схеме добавится тепломагистраль от котельной до дома. Естественно, тепловая магистраль должна быть утеплена – как подающая линия, так и обратка.

Делать котельную в доме или ставить котел в отдельно стоящей котельной? Тут надо считать, что выгоднее. Иногда дотянуть газовую трубу до самого дома дороже, чем тянуть на такое же расстояние тепломагистраль в утепленном виде. И это даже с учетом предстоящих в процессе эксплуатации неизбежных теплопотерь на теплотрассе.

Типовые схемы отопления частных домов с фото

Отопление одного и того же дома, можно сделать различными схемами и с помощью различных систем (напольное, радиаторное отопление). В данной статье мы хотим описать наиболее встречающиеся схемы отопления от простых, до сложных комбинированных систем. В наших примерах мы предполагаем применение только современных одно- или двухконтурных котлов с двухтрубной разводкой труб отопления. Хотим также заметить, что данные схемы не являются законченным проектом и служат только для общего представления состава системы отопления.

Двухконтурный котел + радиаторная система отопления

Одна из самых первых современных систем отопления и наиболее распространенная система отопления частного дома в настоящее время. В основе системы находятся стальные, алюминиевые, биметаллические или стальные радиаторы, соединенные в сеть трубопроводов по которым от котла течет теплоноситель.

Основные плюсы данной системы — простота, доступность и эффективность обогрева.

В такой, самой простой схеме, необходим котел, дополнительный расширительный бак на отопление, фильтр механической очистки и отсекающие краны, также желательно поставить дополнительные сливные краны. Все это подключается к трубам отопления и система готова к работе.

Двухконтурный котел + радиаторы + теплый пол

В самом простом случае (см. рисунок ниже), контур теплого пола подключается к трубам радиаторного отопления параллельно (т.е. с помощью тройников). Основной плюс данной схемы — простота и низкая стоимость. Насосно смесительный узел можно сделать в помещении котельной на базе термостатического вентиля ESBE VTA 322, а распределительный коллектор установить в любом удобном месте. Минусы схемы — гидравлическая неустойчивость, то есть может получиться так, что весь теплоноситель пойдет по контуру теплого пола, что приведет, к плохому нагреву радиаторов.

Лучшим вариантом для подключения нескольких контуров отопления к котлу (не важно, настенному, напольному, газовому или другому) — будет применение гидравлической стрелки и распределительных контуров. Такие схему всегда сбалансированы, котловой насос не перегружается, их всегда проще настроить. Однако для создания таких систем требуется большая квалификация рабочих и большие финансовые затраты.

Одноконтурный котел + отопление + бойлер косвенного нагрева

Для людей, которым необходима хорошая производительность по горячей воде или большая надежность, чем второй контур настенного котла или рециркуляция горячей воды — всегда выбирают схемы отопления с бойлером косвенного нагрева. Не правильное подключение бойлера приводит к длительному нагреву воды, при правильном же подключении вы практически ни когда не заметите перебоев в горячем водоснабжении.

При выборе схемы отопления с бойлером косвенного нагрева, нужно помнить два основных правила — для нагрева бойлера должна использоваться вся мощность котла и нагрев бойлера должен осуществляться в приоретете над другим отоплением (т.е. пока нагревается бойлер, другие контура отопления не должны работать).

Для настенных котлов наиболее популярным решением, при подключении бойлера косвенного нагрева к системе отопления, является трех-ходовой вентиль. При остывании питьевой воды в бойлере вентиль направляет весть поток теплоносителя через бойлер, при этом на нагрев радиаторов теплоноситель не подается. Многие производители настенных котлов закладывают возможность управления трех-ходовым клапаном с помощью собственной автоматики котла. В одноконтурном Baxi LUNA 3 Comfort такой вентиль уже заложен в корпус котла.

Так как в напольных котлах основной насос отопления устанавливается в не котла, то в таких схемах (с напольным котлом) предпочтительней применять схему с двумя насосами (вместо трех-ходового клапана).

При необходимости нагрева воды в бойлере, автоматика котла или другая автоматика, включает насос бойлера и выключает насос отопления. После нагрева — наоборот. Электрическую часть всех подключений смотрите в инструкции к котлу. В данном случае в бойлере необходимо установить датчик температуры или термостат, который будет давать сигнал котлу.

Сложные схемы с напольным котлом, гидрострелкой и распределительным коллектором

Такие схемы применяются в случай с большим количеством независимых контуров отопления. Например, радиаторы дома, теплый пол дома, отопление бани, бойлер косвенного нагрева, нагрев бассейна и др.

В качестве котла может быть абсолютно любой котел, настенный, напольный, газовый или электрический. Наличие гидравлической стрелки в таких схемах обязателен, т. к. выполняет достаточно функций (защита чугунного котла от холодной обратки, уравнивание перепада давлений, согласование работы насосов и др.). Более подробную информацию можно найти на страницах нашего сайта.

Данную схему можно немного изменить, а именно, бойлер косвенного нагрева можно подключить не от коллектора, а перед гидрострелкой, тем самым получив предыдущую схему с двумя насосами.

Схемы отопления – попутка, тупиковая, коллекторная и др. Сравнение и выбор

Для дома нужно подобрать подходящую схему отопления, чтобы она надежно работала весь период эксплуатации, не была излишне дорогой. Схема разводки отопительных трубопроводов подбирается под конкретную планировку здания. На выбор влияют размещение котельной относительно других комнат, этажность здания, отапливаемая площадь, размещение комнат и их теплопотери и др.

Чтобы определиться с выбором подходящей отопительной схемы, рассмотрим какие системы отопления бывают, их достоинства и недостатки и области применения.

Начнем с самых популярных схем, которые применяются наиболее часто и рекомендуются специалистами для создания отопления в частных домах и квартирах. В них предусматривается установка насосов для циркуляции жидкости. Самотечную систему рассмотрим последней.

Попутная разводка отопительного трубопровода

«Попутка» является универсальной двухтрубной схемой разводки отопительного трубопровода. Подача (горячий трубопровод) от отопительного котла прокладывается по периметру всего здания и к нему последовательно подключаются радиаторы, а заканчивается она на последнем по ходу движения жидкости радиаторе.

Обратка начинается с первого радиатора, к ней попутно подключаются остальные радиаторы и она возвращает теплоноситель обратно в котел.

Из схемы видно, что для каждого радиатора суммарная протяженность подачи и обратки будет примерно одинаковой, поэтому все радиаторы работают в примерно одних и тех же гидравлических условиях.

Схема наилучшим образом подходит для больших площадей отопления, так как позволяет максимально упростить всю разводку для большого здания. В подающем трубопроводе и будет происходить некоторое снижение температуры жидкости, но в данном случае это не критично.

Диаметр основных труб требуется повышенный, в зависимости от подключенной к ним тепловой мощности, чтобы скорость теплоносителя не превышала максимальные рекомендуемые значения (0,7 м/с) при наибольшей нагрузке.

Это обстоятельство значительно удорожает систему, потому что большие фитинги дороже, попутка хоть и самая стабильная, но не самая дешевая.

Тупиковая схема включения радиаторов

Тупиковая схема состоит из двух или нескольких плечей (ветвей, направлений, тупиков…), приблизительно одинаковых по протяженности и по подключенной мощности радиаторов. В ней можно применить более тонкие трубы, так как длина плечей не большая, она ограничена по количеству радиаторов, что и делает систему дешевле.

Подача в каждом плече прокладывается до последнего радиатора, параллельно ей проводится и обратка до котла, или до стояка на каждом этаже.

Разводка может применяться и в маленьких дома и в больших, является универсальной и надежной, но лучше всего ее удается реализовать в домах небольших или средней площади – до 200 м кв. Что бы в каждом плече было не более чем по 5 радиаторов, тогда меньше проблем с их отладкой.

Важно соблюсти примерное равенство мощностей и гидравлических сопротивлений в каждом плече (по 5 а не 6 и 4). Разница в длине двух труб (подача и обратка) между плечами не должна превышать 20 метров.

Коллекторная (лучевая) разводка отопительного трубопровода

В центре дома устанавливается коллектор, к которому парами тонких трубопроводов (подача и обратка) подключаются все радиаторы.

Здесь трубы чаще прячутся под полом и недоступны для обслуживания, так как иначе выполнить разводу не представляется возможным. Недостатки – сложность прокладки трубопроводов с учетом теплоизоляции, трудность регулировки системы.

Обязательно должно быть примерное равенство гидравлических сопротивлений каждой ветви, отходящей от коллектора, иначе система будет разнотемпературной.

Схеме присущи сложность балансировки и не желательность изменения параметров системы «самостоятельно», так как каждая ветвь влияет на все другие подключения в коллекторе. Поэтому при неграмотной регулировке тепло может «пропасть» из какой-то комнаты.

Достоинства – меньшая стоимость, целесообразность монтажа при толстом пироге чернового пола, так как диаметры труб не большие. Отсутствие множества труб в видимой части интерьера.

Однотрубное отопление — «ленинградка»

Здесь действительно имеется экономия на длине трубопровода, но она не большая. Также один трубопровод большого диаметра, проложенный у пола (под полом в теплоизоляторе), меньше портит дизайн по сравнению с двухтрубными системами.

Радиаторы подключаются последовательно по длине трубопровода. Циркуляция жидкости в них за счет конвекции, за счет сопротивления в трубопроводе по длине подключения, которое создается искусственно уменьшением диаметра и др.

Каждый из радиаторов забирает энергию, охлаждая жидкость. В итоге к последнему радиатору приходит наиболее охлажденный теплоноситель.

Бороться с этим явлением можно уменьшая длину трубопровода, а также увеличивая диаметр труб, и создавая в нем большую скорость движения воды, уменьшая, таким образом, разность температур между подачей и обраткой (но скорость не может превышать допустимые значения по шуму для данного диаметра).

Также, по ходу движения жидкости просто увеличивают мощность радиаторов, чтобы компенсировать потери температуры. По сути, схема эффективно может применяться, лишь в небольших до 200 м кв. площадях на одно кольцо.

Система применяется не часто, так как проигрывает остальным по распределению энергии, потреблению электричества для создания скорости струи, а также из-за сложности регулировки и нестабильности работы, так как один радиатор влияет на работу других. Кроме того, система в итоге дороже из-за большого диаметра трубы.

Самотечное отопление

Сверхдостоинство самотечной схемы — не нужно электричество для движения жидкости. Кроме того, как правило, работа системы стабильна и безотказна.

Но она не может применяться на больших площадях, так как естественного теплового напора не хватает, чтобы вода циркулировала с должной скоростью, которая необходима для подачи нужного количества тепла к радиаторам. Обычная максимальная площадь одного этажа, где может быть применима самотечная схема — не более 150 м кв на 1 этаж.
К ней нельзя подключить дополнительные контура с насосами, например обогрев гаража или теплый пол.

Но при должной разности высотных отметок горячей и холодной воды, а также при больших диаметрах трубопровада, площадь может быть большей, что проверяется расчетом.

Также система самотеком обычно обходится дороже в 2 раза, чем схемы с насосом:

  • Требуется большой диаметр трубопроводов и их фитингов для уменьшения гидравлического сопротивления.
  • Как правило, применяются стальные трубопроводы, обеспечивающие этот самый большой внутренний диаметр, которые ржавеют и сложны в монтаже.
  • Котел устанавливается в приямке (в отапливаемом подвале) чтобы быть ниже радиаторов, чем и создается напор от разности температур.
  • Кроме того, наличие множества толстых труб, которые должны иметь определенную начальную и конечную высотные отметки, может значительно подпортить внутренний интерьер.

Схема востребована на удаленных дачах, в местах с нестабильным энергоснабжением, пользуется популярностью «по привычке», так как люди бояться отключений электроэнергии и т.п.

Какую схему отопления предпочесть

  • Для большого дома чаще проектируют попутную схему разводки отопительного трубопровода, стабильную и простую.
  • В домах поменьше чаще стараются сэкономить, и делается более дешевая, стабильно работающая, но несколько более сложная плечевая схема разводки. При этом плечи создаются приблизительно одинаковыми по характеристикам.
  • Лучевая разводка отопления находит все больше сторонников в связи с применением высоких окон, обогреваемых полов, внутрипольных конвекторов. При этом создается вместительное основание пола в котором иногда дешевле проложить тонкие трубы к каждому обогревателю от единого коллектора на этаже.
  • От «ленинградки» специалисты не в восторге из-за их нестабильной работы и сложности проектирования и налаживания. Не стоит усложнять, и искать проблемы «на ровном месте», это касается и отопления.

Если возможны перебои с электроэнергией, то для частного дома нужно приобрести и подключить элеткрогенератор , который должен быть в рабочем состоянии всю зиму. А если обеспечить работу системы не возможно, то в нее необходимо заливать незамерзающую жидкость.

Для твердотопливных котлов, которые не прекращают работу при отключении электроэнергии, насос системы отопления необходимо подключать к «бесперебойнику», чтобы обеспечивалась циркуляция жидкости несколько часов в аварийной обстановке.

А если этим всем заниматься не хочется, а электроэнергия не стабильна, то выручит самотечная система со своей схемой разводки. Правда она сгодится только на небольшой дом при ее создании придется потрудиться и излишне потратится.

принцип действия, варианты монтажа своими руками, достоинства и недостатки

Открытая система отопления самая простая схема системы отопления дачи или частного дома. Такая схема отопления сильно распространена в деревенских домах. Несмотря на то, что прогресс не стоит на месте, и сегодня чаще всего применяется закрытая система отопления, открытая система по-прежнему с успехом применяется по сей день иногда в несколько модифицированном виде.

Принцип действия

Часто открытая система отопления называется гравитационной, благодаря тому, что прокачка теплоносителя осуществляется благодаря силе тяжести или гравитации.

Принцип работы открытой системы отопления очень прост. Котел нагревает теплоноситель. Обычно в качестве теплоносителя используют воду, горячая вода по стояку поднимается вверх, толкая по системе холодную.

Работоспособность такой схемы отопления обеспечивает разность плотностей горячей и холодной воды. Горячая вода имеет меньшую плотность, чем холодная, в результате чего возникает циркуляция. Горячая вода стремиться подняться вверх, в то время как холодная опуститься вниз. Естественно, что под холодной водой подразумевается вода, которая проходя через отопительные приборы отдает тепло, в результате чего ее температура ниже, чем вода, нагретая котлом.

При эксплуатации такой системы отопления следует учитывать, что чем выше разность температуры подачи (горячей воды), и обратки (холодной воды), тем больше скорость циркуляции, соответственно, чем разница меньше, тем скорость меньше. Отсюда вытекает одна неприятная особенность работы такой системы. Если нагреть теплоноситель до такой степени, что разница температур будет очень маленькой, то циркуляция остановится, как следствие может произойти перегрев воды до состояния пара с последующей аварией.

Варианты монтажа открытой системы отопления

Существует два варианта конструкции системы или схемы открытой системы отопления: однотрубная в качестве радиаторов использующая стальную трубу, двух трубная схема с традиционными радиаторами. Каждая из этих схем системы отопления имеет свои особенности и возможные варианты исполнения.

Простейшая однотрубная схема отопления из труб

Условно однотрубную систему отопления, использующую в качестве радиаторов стальную трубу, можно представить следующим образом.


Рис.1. Схема открытой системы

Вода, нагреваемая котлом, поднимается по стояку, а далее под силой тяжести проходит по трубе постепенно остывая возвращается обратно в котел.

В качестве радиаторов в этой схеме применяют стальную трубу диаметром 80-100 мм, которую пропускают по периметру всего дома или нескольких стен, за исключением входной двери. Для лучшей циркуляции теплоносителя трубу устанавливают под углом к горизонтальной плоскости. Размер угла зависит от длины трубы отопления, обычно составляет порядка 1,5 -3 градуса.

Для того чтобы обеспечить максимальный обогрев дома стараются провести трубу отопления по самой большой траектории. Для этого устанавливают котел отопления с одной стороны входной двери, а трубу пропускают вдоль стен по дому, постепенно уменьшая расстояние между ними, тем самым образуя необходимый угол наклона. Таким образом получается, что вода, обходя весь дом остывает, нагревая воздух в помещении.

Это самая простая и доступная схема системы отопления для загородного дома или дачи, главным образом благодаря своей простоте. Легкости монтажа и безотказности. Особенно она хороша в небольших одноэтажных домах, особенно с холодным, не утепленным чердаком.

Дело в том, что особенностью открытой системы отопления является наличие расширительного бака, который должен быть установлен выше всей схемы отопления. Естественно. Что он не должен замерзнуть, поэтому выносить его на неотапливаемый чердак не допустимо. Кроме того, так как бак открытого типа, то подразумевает возможность испарения теплоносителя, а, следовательно, требует периодической проверки. В рассмотренной схеме, благодаря ее компактности расширительный бак можно установить внутри помещения рядом с котлом, тем самым решив все описанные проблемы.

Двухтрубная схема открытой системы отопления

Если для Вас важны не только технические качества системы отопления, но и эстетические, то целесообразно рассмотреть двухтрубную схему открытой системы отопления. Схематично она представлена на рисунке ниже.


Рис.2. Модифицированная схема

Эта схема работает по такому же принципу, как и предыдущая, разница лишь в разводке труб отопления. Двухтрубная схема может быть использована как для одноэтажного, так и для двухэтажного дома.

Для сохранения эстетических качеств системы расширительный бак и трубу подачи обычно располагают на чердаке. При этом следует, во-первых, обеспечить легкий доступ к расширительному баку, для контроля количества воды, во-вторых, обеспечить должный уровень теплоизоляции чердака и подачи.

От трубы подачи разводят стояки по комнатам к ним подсоединяются батареи отопления. Трубу обратки можно установить по полу помещения.

Для снижения количества стояков можно подключать радиаторы по однотрубной схеме. Это справедливо для двух и более этажного дома.


Рис.3. Схема для многоэтажного дома

Модифицированный вариант открытой системы отопления

В последнее время получил популярность модифицированный вариант открытой системы отопления. Модификация схемы заключена в том, что в схему дополнительно устанавливают циркуляционный насос, который позволяет производить принудительную прокачку теплоносителя.

К установке циркуляционного насоса прибегают тогда, когда мощности системы отопления недостаточно. Насос же позволяет поднять КПД системы.

Достоинства открытой системы отопления

  • Основное достоинство системы отопления открытого типа заключено в простоте и не прихотливости. По большому счету для ее работы необходим только источник тепла — котел.
  • В открытой схеме (в традиционном варианте) нет дополнительных элементов, таких как например насос, следовательно, она не зависит от электричества.
  • Простое управление открытой системой. Управление мощностью системы отопления осуществляется по средства управлением мощности нагрева воды, т.е. фактически только управление котлом.
  • Открытая система отопления, имеется ввиду простейший вариант, не требует балансировки и прочей настройке. Как следствие нет необходимости приобретать специальные балансные вентили и прочую арматуру.

Недостатки открытой системы отопления

  • Открытый расширительный бак, за которым постоянно нужно следить, чтобы в нем уровень теплоносителя не опускался до минимума, в противном случае может быть авария. Кроме того, к расширительному баку предъявляются особые требования по объему и установке.
  • Не возможность регулировки системы. Нельзя в каком-то месте убавить отопление, а в другом прибавить. Поэтому либо всем холодно, либо всем жарко.
  • Применяя гравитационную схему системы отопления невозможно сделать теплые полы, что очень актуально для отопления загородного дома.
  • Так же благодаря специфичности открытой системы, невозможно сделать срытую прокладку стояков.

Все описанные недостатки легко решаются в закрытой системе отопления. Естественно, что она более сложная и дорогостоящая, но если речь идет о жилом загородном доме, то целесообразнее обратить внимание именно на закрытую систему, так она позволит создать идеальный микроклимат в доме.

Открытая система отопления хороша для дачного не большого домика или домика в деревне, где нет больших требований по отоплению, а на первое место ставится надежность, неприхотливость и простота.

устройство и виды, как собрать самому, простая схема монтажа

Автономное отопление жилья всегда считалось более экономичным по сравнению с централизованным. Немаловажное преимущество заключается и в том, что независимая система отопления частного дома позволяет его владельцам чувствовать себя полноправными хозяевами. Ведь можно без проблем начать отопительный сезон и закончить его самостоятельно, установить желаемый уровень температуры в любой комнате, а также определить наиболее приемлемый уровень финансовых затрат на поддержание необходимого теплового режима.

Частный дом можно отапливать разными способами. От ставшего экзотичным печного или каминного отопления до высокотехнологичных пленочных электронагревателей. Выбор подходящего варианта зависит от множества факторов, но, в первую очередь, от удобства эксплуатации и доступности ресурсов. Сегодня самым распространенным способом является создание системы водяного отопления.

Схемы водяного отопления

Система водяного отопления включает в себя нагреватель, он же котел, собственно отопительные приборы, отдающие тепло воздуху внутри помещений, и систему трубопроводов, связывающих воедино все элементы схемы.

Котлы

Котлы различаются по мощности, виду топлива и способу установки. Бытовые отопительные котлы могут использовать такие виды топлива, как природный газ, сжиженный газ, жидкое топливо (мазут), дизельное топливо, твердое топливо (дрова), уголь или современное топливо — пеллеты. Также широко распространены электрические котлы, которые могут быть нагревательными, или электродными. Также существуют комбинированные котлы, которые в состоянии комбинировать различные виды топлива.

Напольный котел.

Большинство котлов имеет напольную конструкцию, но существуют разновидности, в частности, газовые котлы мощностью до 25 кВт в настенном исполнении. Электрические электродные котлы вообще не требуют отдельного места для установки и монтируются прямо в системе трубопроводов. Многие современные модели имеют отдельный нагревательный контур для горячего водоснабжения, их также можно собрать в каскад для обогрева помещений большой площади.

В любом случае, для отопления частного дома предпочтение следует отдать моделям котлов, позволяющим в большой степени автоматизировать работу системы и максимально упростить ее эксплуатацию. Большое значение имеет также энергонезависимость системы отопления частного дома, то есть надежная работа котла и всей системы при отсутствии электроэнергии. В полной мере этому условию отвечает применение газовых котлов, а также схемы, в которой не используются электрические насосы.

Отопительные приборы

Отопительные приборы для системы отопления частных домов можно разбить на две основные группы — регистры и радиаторы. Схема работы простая. В обеих группах теплоноситель, перемещаясь по каналам внутри отопительного прибора, отдает свое тепло окружающему воздуху. Выбор группы отопительных приборов зависит от этажности частного дома. Если помещения в доме расположены в двух и более уровнях, то предпочтение следует отдать эстетичным и компактным отопительным радиаторам.

Регистр.

Применение радиаторов в системах отопления частных домов удобнее еще и с точки зрения расстановки мебели в помещениях. Они размещаются под оконными проемами, и трубы их подключения могут быть скрыты в полу или стенах здания. Теплоотдача регулируется количеством секций, которое определяется площадью и назначением отапливаемого помещения.

Тип радиатора определяется характеристиками системы отопления, такими, как температура теплоносителя, скорость потока и давление в системе. В зависимости от этих показателей выбираются чугунные батареи или алюминиевые ребристые радиаторы. Чугунные отдают тепло за счет своей большой теплоемкости и инфракрасного излучения, а алюминиевые ребристые — за счет восходящих конвективных потоков воздуха в каналах между ребрами радиатора.

В общем случае при высокой температуре теплоносителя на уровне 90-95°С и низкой скорости теплоносителя лучше отдает тепло массивная чугунная батарея, а при температурах 65-80°С и применении насоса в системе отопления большей эффективностью будет обладать ребристый алюминиевый радиатор.

Радиатор из алюминия.

Кроме того, отопительные системы частных домов зачастую дополняют устройством теплых полов. При температуре воды в трубах в пределах 40°С теплый пол позволяет получить максимально комфортный микроклимат в жилых помещениях. Устройство водяных теплых полов требует обязательной установки электрического насоса.

Система трубопроводов

Котел и отопительные приборы соединяются между собой трубопроводом, устройство которого также зависит от этажности здания, длины его периметра и расположения отопительных приборов.

Материал труб в схеме отопления выбирается, исходя из условий удобства монтажа, их ремонтопригодности, долговечности самих труб и фитингов. В современных системах отопления на смену громоздким видам стальных, нержавеющих и оцинкованных труб пришли металлопластиковые и полипропиленовые трубы. В сочетании с чугунными батареями отопления также широко используются медные трубы.

План схема системы отопления.

Для монтажа полипропиленовых труб и фитингов также необходим специальный инструмент и оснастка. Соединение таких труб осуществляется с помощью электронагревательного прибора — паяльника, каждый стык потребует от двух до семи минут времени. Полипропиленовые трубы не изгибают, применяют угловые фитинги. Кроме того, для этих труб обязательно устройство линейных компенсаторов расширения.

Использование стальных или медных труб в трубопроводах требует проведения сварочных работ или пайки соединений, а согнуть такие трубы можно только с помощью специального приспособления — трубогиба.

С точки зрения простоты монтажа выигрывают металлопластиковые трубы, которые соединяются фитингами. Для сборки систем отопления частных домов в большинстве случаев потребуется только гаечный ключ. Существующие виды фитингов позволят собрать систему любой сложности. Любой поврежденный участок может быть заменен всего за несколько минут.

Однотрубная схема

При однотрубной схеме соединения отопительных приборов все регистры, батареи или радиаторы соединяются последовательно. Перед первым по порядку отопительным прибором устанавливается коллектор разгона теплоносителя с перепадом высоты не менее 2,2 м, который позволяет запустить и эксплуатировать систему без применения электрического насоса, исключительно под действием силы тяжести.

Эта простая схема предполагает устройство подающего трубопровода с постоянным углом возвышения от нижней точки коллектора разгона до верхней точки последнего по счету радиатора отопления. При большом периметре частного дома бывает целесообразно устроить не одно, а два и более кольца трубопроводов. Если не предполагается использовать электрический насос в контуре трубопровода, то для обеспечения движения теплоносителя котел должен нагревать воду до температуры 90-95°С.

Достоинством такой схемы в системах отопления частных домов является их энергонезависимость и небольшой расход труб, но есть и недостатки. В каждом из радиаторов теплоноситель остывает, и в последних по счету батареях необходимо увеличивать число секций. Кроме того, регулирование температуры в одном из радиаторов одновременно снижает температуру всего контура.

Двухтрубная схема

При двухтрубной схеме системы отопления частного дома линия подачи теплоносителя от котла производится во все радиаторы через коллектор или стояк с одинаковой температурой. Отвод воды от нижних точек отопительных приборов к котлу осуществляется через параллельный коллектор. Схема предполагает больший расход труб для устройства стояков, но дает большую свободу в регулировании теплоотдачи каждого из радиаторов в отдельности.

При такой схеме также нетрудно добиться естественной циркуляции теплоносителя за счет действия силы тяжести. Для большей эффективности в схему может включаться электрический насос, который позволит снизить температуру воды и подключать к коллекторам трубопроводы системы теплых полов.

Разводка отопления двухэтажного дома — схема и план

Схема с естественной циркуляцией теплоносителя

Выбор схемы отопления двухэтажного дома зависит от его площади и планировки. Наиболее привычной и широко распространенной схемой для дач и загородных домов по-прежнему остается система отопления с естественной циркуляцией теплоносителя, мало чем отличающаяся от схемы отопления одноэтажных домов.
 

Единственной особенностью схемы разводки отопления с естественной циркуляцией в двухэтажном доме является выбор места для установки расширительного бака. Нет необходимости выносить его на чердак и можно ограничиться расположением в любом месте на втором этаже (разумеется, в самой высокой точке комнаты), обеспечив возможность сброса теплоносителя.

При таком способе подключения отопительных приборов теплоноситель поступает в них сверху (верхняя разводка), благодаря чему обеспечивается равномерный прогрев радиаторов и отапливаемых помещений. Для обеспечения направленного движения теплоносителя трубы необходимо прокладывать с уклоном 3-5 градусов, помня о том, что диаметр обратного трубопровода по мере приближения к котлу должен увеличиваться.

Подающий трубопровод может быть проложен под потолком или под подоконниками. Примеры подключения радиаторов приведены на рисунке 1.

Среди достоинств схемы отопления двухэтажного дома с естественной циркуляцией можно отметить:

  • Независимость от подачи электроэнергии
  • Надежность
  • Простоту эксплуатации
  • Бесшумность работы системы

К сожалению, недостатков в системе отопления с естественной циркуляцией на много больше, чем достоинств:

  • Сложность монтажа и необходимость прокладки труб с обязательным уклоном
  • Малая обогреваемая площадь: у системы просто не хватит напора для обогрева двухэтажного дома площадью более 130 м2
  • Низкая эффективность
  • Большой перепад температур между подачей и обраткой, что негативно сказывается на работе котла
  • Присутствие в теплоносителе кислорода и как следствие, внутренняя коррозия системы
  • Необходимость следить за уровнем постоянно испаряющегося теплоносителя и подливать его. В итоге на трубах образуется накипь.
  • По этой же причине нельзя использовать антифриз
  • Высокая материалоемкость системы

Намного эффективнее в двухэтажном доме использовать системы отопления с принудительной циркуляцией теплоносителя. При этом проще всего реализовать следующие схемы:

  • Однотрубную
  • Двухтрубную
  • Коллекторную

Их можно выполнить самостоятельно

Однотрубная схема отопления двухэтажного дома

При однотрубной схеме подключения отопительных приборов движение теплоносителя разделяется на две ветви, одна из которых идет на первый этаж, а вторая на второй этаж. На каждом этаже на входе трубы отопления ставится запорная арматура, что позволяет обогревать только половину помещений.

После прохождения через приборы отопления трубы с теплоносителем вновь объединяются в одну, идущую к котлу. Подключение радиаторов на каждом этаже такое же, как и для одноэтажных построек.

Для регулирования уровня нагрева радиаторов и проведения балансировки системы на входе каждого отопительного прибора устанавливается запорная арматура. На выходе из радиатора также устанавливается запорная арматура, предназначенная для его отключения в случае замены или ремонта. При таком подключении замену приборов отопления можно выполнять без остановки всей системы и слива воды. Также на каждый радиатор в верхней его части устанавливается вентиль для сброса воздуха.

Установка радиаторов выполняется с байпасной линией, что в значительной мере повышает равномерность прогрева помещения. Монтировать отопительные приборы можно и без байпасной линии, но в этом случае необходимо устанавливать в доме отопительные приборы различной тепловой мощности с учетом потери остывания теплоносителя: чем дальше от котла, тем больше секций должно быть у радиатора. Если не следовать этому правилу, то в одних комнатах будет жарко, а в других, наоборот, холодно.

Схема отопления двухэтажного дома может быть и без запорной арматуры, вернее, с меньшим ее количеством, но при этом в значительной степени снижается ее маневренность. В этом случае вести речь о раздельном отоплении первого и второго этажей уже не придется.

Достоинства и недостатки однотрубной системы отопления

  • Однотрубная система отопления относительно проста в монтаже
  • Ее использование обеспечивает эффективную теплоотдачу
  • Однотрубная система отопления двухэтажного дома позволяет сэкономить на материалах.

К недостаткам отопительной системы этого вида следует отнести неравномерность распределения тепла по отопительным приборам, а также необходимость проведения балансировки системы.

Всех этих недостатков лишена двухтрубная система отопления двухэтажного дома с принудительной циркуляцией теплоносителя.

Схема отопления с принудительной циркуляцией двухэтажного дома

Двухтрубная система отопления двухэтажного дома с принудительной циркуляцией обеспечивает равномерное распределение тепла и является более эффективной системой, не зря ее часто сравнивают с кровеносной системой человека. В ней к каждому отопительному прибору нагретый теплоноситель подается отдельно через ответвление из общей подающей трубы. К обратному трубопроводу от каждого радиатора также предусмотрен отвод.

Радиаторы устанавливаются с воздухоотводчиками и запорной арматурой на трубе подачи, позволяющей менять степень нагрева отопительного прибора. В целях безопасности и во избежание избыточного давления в отопительном приборе, на отводе от радиатора обратной трубы запорная арматура не ставится.  Подающая труба может быть проложена под потолком или под подоконником.

Единственным недостатком двухтрубной системы отопления является ее высокая материалоемкость: трубы нужны в двойном количестве для подачи и обратки. К тому же трубы трудно декорировать, а спрятать их не всегда удается. Всех этих недостатков лишена коллекторная схема отопления.

Коллекторная схема отопления двухэтажного дома

Коллекторная схема с равным успехом может использоваться для обогрева как одноэтажного, так и двухэтажного дома. Работает она только с принудительным движением теплоносителя, который подается предварительно на коллектор. При этом каждый отопительный прибор отдельно подключается к коллектору через запорную арматуру.

Преимущества коллекторной системы

Подобный способ подключения позволяет монтировать и демонтировать отопительные приборы на работающей системе, без ее остановки и слива теплоносителя.

  • Системой легко управлять. Каждый ее контур является независимым и может быть подключен к отдельной системе автоматического регулирования с отдельным циркуляционным насосом.
  • Можно подключить теплый пол
  • Можно спрятать трубы в фальшпол, расположив коллектор в отдельном шкафу
  • Система отопления просто монтируется и может быть выполнена «собственными руками»

Чему отдать предпочтение

Любая из приведенных схем отопления двухэтажного дома проверена на практике и неоднократно доказывала свою эффективность. Принципиальной разницы между ними нет. Реализовать на практике намного проще коллекторную схему отопления.
 
 

Схема простого индукционного нагревателя своими руками

Этот замечательный небольшой проект демонстрирует принципы высокочастотной магнитной индукции и способы изготовления индукционного нагревателя. Схема очень проста в сборке и использует только несколько общих компонентов. С показанной здесь индукционной катушкой схема потребляет около 5 А от источника питания 15 В, когда наконечник отвертки нагревается. Кончик отвертки нагревается докрасна примерно за 30 секунд!

Схема управления использует метод, известный как ZVS (переключение при нулевом напряжении), для активации транзисторов, что позволяет эффективно передавать мощность.В схеме, которую вы видите здесь, транзисторы почти не нагреваются из-за метода ZVS. Еще одна замечательная особенность этого устройства заключается в том, что это саморезонансная система, которая автоматически работает на резонансной частоте подключенной катушки и конденсатора. Если вы хотите сэкономить время, в нашем магазине есть индукционный нагреватель. Возможно, вы все равно захотите прочитать эту статью, чтобы получить несколько полезных советов по правильной работе вашей системы.

Как работает индукционный нагрев?

Когда магнитное поле изменяется около металла или другого проводящего объекта, в материале индуцируется ток (известный как вихревой ток), который генерирует тепло. Вырабатываемое тепло пропорционально квадрату тока, умноженному на сопротивление материала. Эффекты индукции используются в трансформаторах для преобразования напряжений во всех видах приборов. Большинство трансформаторов имеют металлический сердечник, поэтому при использовании в них наведены вихревые токи. Разработчики трансформаторов используют разные методы, чтобы предотвратить это, поскольку нагрев — это просто пустая трата энергии. В этом проекте мы будем напрямую использовать этот нагревательный эффект и постараемся максимизировать нагревательный эффект, создаваемый вихревыми токами.

Если мы приложим непрерывно изменяющийся ток к катушке с проволокой, у нас будет постоянно изменяющееся магнитное поле внутри нее. На более высоких частотах индукционный эффект довольно силен и имеет тенденцию концентрироваться на поверхности нагреваемого материала из-за скин-эффекта. Типичные индукционные нагреватели используют частоты от 10 кГц до 1 МГц.

ОПАСНО: Данное устройство может создавать очень высокие температуры!

Схема

Используемая схема представляет собой тип коллекторного резонансного генератора Ройера, который имеет преимущества простоты и саморезонансной работы. Очень похожая схема используется в обычных схемах инвертора, используемых для питания люминесцентного освещения, такого как подсветка ЖК-дисплея. Они приводят в действие трансформатор с центральным ответвлением, который повышает напряжение примерно до 800 В для питания фонарей. В этой схеме самодельного индукционного нагревателя трансформатор состоит из рабочей катушки и нагреваемого объекта.

Основным недостатком этой схемы является то, что требуется катушка с отводом по центру, которую может быть немного сложнее намотать, чем обычный соленоид. Катушка с отводом по центру необходима, чтобы мы могли создать поле переменного тока из одного источника постоянного тока и всего двух транзисторов N-типа.Центр катушки подключается к положительному источнику питания, а затем каждый конец катушки попеременно подключается к земле транзисторами, так что ток будет течь вперед и назад в обоих направлениях.

Сила тока, потребляемого от источника питания, зависит от температуры и размера нагреваемого объекта.

Из этой схемы индукционного нагревателя видно, насколько он на самом деле прост. Всего несколько основных компонентов — это все, что нужно для создания рабочего индукционного нагревателя.

R1 и R2 — стандартные резисторы 240 Ом, 0,6 Вт. Значение этих резисторов будет определять, насколько быстро МОП-транзисторы могут включиться, и должно быть достаточно низким. Однако они не должны быть слишком маленькими, так как резистор будет заземлен через диод при включении противоположного транзистора.

Диоды D1 и D2 используются для разряда затворов MOSFET. Это должны быть диоды с низким прямым падением напряжения, чтобы затвор хорошо разряжался, а полевой МОП-транзистор полностью выключался, когда другой включен.Рекомендуются диоды Шоттки, такие как 1N5819, поскольку они имеют низкое падение напряжения и высокую скорость. Номинальное напряжение диодов должно быть достаточным, чтобы выдерживать повышение напряжения в резонансном контуре. В этом проекте напряжение выросло до 70 В.

Транзисторы T1 и T2 представляют собой полевые МОП-транзисторы на 100 В, 35 А (STP30NF10). Для этого проекта они были установлены на радиаторах, но при работе с указанными здесь уровнями мощности они почти не нагревались. Эти полевые МОП-транзисторы были выбраны из-за их низкого сопротивления сток-исток и малого времени отклика.

Катушка индуктивности L2 используется как дроссель для предотвращения попадания высокочастотных колебаний в источник питания и для ограничения тока до приемлемого уровня. Значение индуктивности должно быть довольно большим (у нас было около 2 мГн), но оно также должно быть выполнено из достаточно толстого провода, чтобы пропускать весь ток питания. Если дроссель не используется или у него слишком малая индуктивность, цепь может перестать колебаться. Необходимое точное значение индуктивности будет зависеть от используемого блока питания и настройки катушки. Возможно, вам придется поэкспериментировать, прежде чем вы получите хороший результат.Показанный здесь был сделан путем намотки около 8 витков магнитной проволоки толщиной 2 мм на тороидальный ферритовый сердечник. В качестве альтернативы вы можете просто намотать провод на большой болт, но вам понадобится гораздо больше витков провода, чтобы получить такую ​​же индуктивность, как у тороидального ферритового сердечника. Вы можете увидеть пример этого на фото слева. В нижнем левом углу вы можете увидеть болт, намотанный на множество витков провода оборудования. Эта установка на макетной плате использовалась при малой мощности для тестирования. Для большей мощности пришлось использовать более толстую проводку и все спаять вместе.

Поскольку компонентов было так мало, мы спаяли все соединения напрямую и не использовали печатную плату. Это также было полезно для выполнения соединений для сильноточных частей, поскольку толстый провод можно было напрямую припаять к клеммам транзистора. Оглядываясь назад, возможно, было бы лучше подключить индукционную катушку, прикрутив ее непосредственно к радиаторам на полевых МОП-транзисторах. Это связано с тем, что металлический корпус транзисторов также является выводом коллектора, а радиаторы могут помочь охладить катушку.

Конденсатор C1 и индуктор L1 образуют резонансный контур резервуара индукционного нагревателя. Они должны выдерживать большие токи и температуры. Мы использовали полипропиленовые конденсаторы емкостью 330 нФ. Более подробная информация об этих компонентах представлена ​​ниже.

Индукционная катушка и конденсатор

Катушка должна быть сделана из толстой проволоки или трубы, так как в ней будут протекать большие токи. Медная труба работает хорошо, так как токи высокой частоты в любом случае будут протекать в основном по внешним частям.Вы также можете прокачать по трубе холодную воду, чтобы она оставалась прохладной.

Конденсатор должен быть подключен параллельно рабочей катушке, чтобы создать резонансный контур резервуара. Комбинация индуктивности и емкости будет иметь определенную резонансную частоту, на которой цепь управления будет работать автоматически. Используемая здесь комбинация катушка-конденсатор резонирует на частоте около 200 кГц.

Важно использовать конденсаторы хорошего качества, которые могут выдерживать большие токи и тепло, рассеиваемое в них, иначе они скоро выйдут из строя и разрушат вашу схему привода. Они также должны быть размещены достаточно близко к рабочей катушке и с использованием толстой проволоки или трубы. Большая часть тока будет протекать между катушкой и конденсатором, поэтому этот провод должен быть самым толстым. При желании провода, соединяющие цепь и источник питания, можно сделать немного тоньше.

Этот змеевик здесь был сделан из латунной трубы диаметром 2 мм. Его было просто наматывать и легко паять, но вскоре он начал деформироваться из-за чрезмерного нагрева. Затем повороты касаются друг друга, замыкаясь и делая его менее эффективным.Поскольку во время использования контур управления оставался относительно холодным, казалось, что его можно заставить работать на более высоких уровнях мощности, но необходимо будет использовать более толстую трубу или охлаждать ее водой. Затем установка была улучшена, чтобы выдерживать более высокий уровень мощности…

Продвигая дальше

Основным ограничением описанной выше схемы было то, что рабочая катушка через короткое время сильно нагрелась из-за больших токов. Чтобы в течение длительного времени иметь большие токи, мы сделали еще одну катушку, используя более толстую латунную трубку, чтобы вода могла прокачиваться, когда она работает.Более толстую трубу было труднее согнуть, особенно в центральной точке отвода. Перед сгибанием трубы необходимо было засыпать ее мелким песком, так как это предотвращает защемление на крутых изгибах. Затем он был очищен сжатым воздухом.

Индукционная катушка была сделана из двух половин, как показано здесь. Затем они были спаяны вместе, и небольшой кусок трубы из ПВХ использовался для соединения центральных труб, чтобы вода могла течь через всю катушку.

В этой катушке было использовано меньше витков, чтобы она имела более низкий импеданс и, следовательно, выдерживала более высокие токи.Емкость также была увеличена, чтобы резонансная частота была ниже. Всего было использовано шесть конденсаторов по 330 нФ, что дало общую емкость 1,98 мкФ.

Кабели, соединяющиеся с катушкой, были просто припаяны к трубе возле концов, оставляя место для установки трубы из ПВХ.

Этот змеевик можно охладить, просто пропустив воду прямо из крана, но для отвода тепла лучше использовать насос и радиатор. Для этого в емкость с водой поместили старый насос для аквариума, а к выпускному патрубку вставили трубу.Эта труба поступала в модифицированный кулер компьютерного процессора, в котором для отвода тепла использовались три тепловые трубы.

Кулер был преобразован в радиатор путем отрезания концов тепловых трубок и последующего соединения их с трубами PCV, чтобы вода текла через все 3 тепловые трубки, прежде чем выйти и вернуться к насосу.

Если вы сами разрезаете тепловые трубки, делайте это в хорошо вентилируемом помещении, а не в помещении, поскольку они содержат летучие растворители, которые могут быть токсичными для дыхания. Вы также должны носить защитные перчатки, чтобы предотвратить контакт с кожей.

Этот модифицированный кулер для процессора был очень эффективным в качестве радиатора и позволял воде оставаться довольно прохладной.

Другие необходимые модификации заключались в замене диодов D1 и D2 на диоды, рассчитанные на более высокое напряжение. Мы использовали обычные диоды 1N4007. Это было связано с тем, что с увеличением тока в резонансном контуре наблюдалось большее повышение напряжения. Вы можете видеть на изображении здесь, что пиковое напряжение составляло 90 В (желтая кривая осциллографа), что также очень близко к 100 В номиналу транзисторов.

Используемый блок питания был настроен на 30 В, поэтому также необходимо было подавать напряжение на затворы транзистора через стабилизатор напряжения 12 В. Когда внутри рабочей катушки не было металла, она потребляла около 7 А. Когда был добавлен болт на фотографии, он поднялся до 10 А, а затем постепенно снова упал, когда он нагрелся до температуры выше Кюри. С более крупными объектами он, безусловно, будет выше 10А, но используемый блок питания имеет ограничение в 10А. Вы можете найти подходящий блок питания на 24 В, 15 А в нашем интернет-магазине.

Болт, который вы видите на фотографии раскаленным докрасна, разогрелся примерно за 30 секунд.Отвертка на первом изображении теперь может нагреться докрасна примерно за 5 секунд.

Чтобы перейти на более высокую мощность, чем эта, необходимо использовать другие конденсаторы или их больший массив, чтобы ток распределялся между ними в большей степени. Это связано с тем, что протекающие большие токи и используемые высокие частоты могут значительно нагревать конденсаторы. Примерно через 5 минут использования на этом уровне мощности индукционный нагреватель DIY необходимо выключить, чтобы они могли остыть.Также необходимо использовать другую пару транзисторов, чтобы они могли выдерживать большие скачки напряжения.

Во всем этот проект оказался вполне удовлетворительным, так как дал хороший результат от простой и недорогой схемы. Как бы то ни было, он может быть полезен для закалки стали или для пайки мелких деталей. Если вы решили создать собственный проект индукционного нагревателя, разместите свои фотографии ниже. Пожалуйста, ознакомьтесь с другими комментариями, прежде чем делать свои собственные, поскольку это может сэкономить ваше время в дальнейшем.

Если вы хотите смоделировать этот проект для тестирования различных значений индуктивности или выбора транзисторов, загрузите LTSpice и запустите это моделирование самодельного индукционного нагревателя (щелкните правой кнопкой мыши, Сохранить как)

Насколько будет жарко?

Трудно сказать, насколько горячо вы сможете что-то получить, так как есть много параметров, которые необходимо учитывать. Различные материалы будут по-разному реагировать на индукционный нагрев, а их форма и размер будут влиять на то, как нагревание или отвод тепла в атмосферу.

Вы можете получить приблизительное представление, используя некоторые базовые вычисления по приведенной ниже формуле, или, если хотите, мы сделали удобный калькулятор мощности нагревателя, который может рассчитать это за вас. Эта форма включает в себя материалы (например, воду), которые нельзя нагревать напрямую с помощью индукционных нагревателей, но она по-прежнему полезна, если вы пытаетесь определить, например, мощность, необходимую для нагрева поддона с водой с помощью индукционного нагревателя.

ПРИМЕР: Насколько сильно нагреются 20 г стали за 30 секунд при нагревании с помощью нагревателя мощностью 300 Вт? (при условии, что 100 Вт потеряно для окружающей среды)

Формулы:
Q = m x Cp x ΔT
ΔT = Q ÷ m ÷ Cp

Рабочий:
(300Вт — 100Вт) x 30с = 6000Дж
6000Дж ÷ 20г ÷ 0.466Дж / г ° C = 643,78 ° C

Результат:
20 г стали нагреваются до температуры на 643,78 ° C при нагревании нагревателем мощностью 300 Вт в течение 30 секунд.

Поиск и устранение неисправностей

Если у вас возникли проблемы с тем, чтобы это заработало, вот несколько советов, которые помогут устранить неполадки в вашем домашнем проекте индукционного нагревателя….

PSU (источник питания)
Если ваш PSU не может обеспечить большой скачок тока при включении индукционного нагревателя, он не будет колебаться. В этот момент напряжение источника питания упадет (хотя блок питания может этого не отображать), и это помешает правильному переключению транзисторов.Чтобы решить эту проблему, вы можете разместить несколько больших электролитических конденсаторов параллельно источнику питания. Когда они заряжены, они могут подавать в вашу цепь большой импульсный ток. Хорошим мощным источником питания будет наш БП на 24 В 15 А постоянного тока.

Дроссель (индуктор L2)
Ограничивает мощность индукционного нагревателя. Если ваш не колеблется, вам может потребоваться дополнительная индуктивность, чтобы предотвратить падение напряжения в вашем блоке питания. Вам нужно будет поэкспериментировать с необходимой вам индуктивностью. Лучше иметь слишком много, чем слишком мало, так как это только ограничит мощность нагревателя.Слишком мало может означать, что это вообще не сработает. Если у вас слишком маленький сердечник индуктора, сильный ток приведет к его насыщению и вызовет слишком большой ток, что может привести к повреждению вашей цепи.

Электропроводка
Соединительные провода должны быть короткими, чтобы уменьшить паразитную индуктивность и помехи. Длинные провода добавляют в цепь нежелательное сопротивление и индуктивность, что может привести к нежелательным колебаниям или снижению производительности. Наш кабель питания на 30 А отлично подходит для этого.

Компоненты
Выбранные транзисторы должны иметь низкое падение напряжения / сопротивление в открытом состоянии, в противном случае они перегреются или даже не позволят системе колебаться.Вероятно, IGBT не будут работать, но большинство полевых МОП-транзисторов с аналогичными характеристиками должны работать нормально. Конденсаторы должны иметь низкое ESR (сопротивление) и ESL (индуктивность), чтобы они могли выдерживать высокие токи и температуры. Диоды также должны иметь низкое прямое падение напряжения, чтобы транзисторы правильно отключались. Они также должны быть достаточно быстрыми, чтобы работать на резонансной частоте вашего индукционного нагревателя.

Включение питания
При включении не допускайте попадания металла в нагревательную спираль.Это может привести к более сильным скачкам тока, что может помешать возникновению колебаний, как упомянуто выше. Также не пытайтесь нагревать большое количество металла. Этот проект подходит только для небольших индукционных нагревателей. Если вы хотите контролировать или постепенно увеличивать мощность, вы можете использовать одну из наших схем импульсного модулятора мощности. Подробности смотрите в публикации 5108 ниже.

Мозг
Для безопасного выполнения этого проекта вам понадобится разумно работающий мозг. Создание индукционного нагревателя может быть очень опасным, поэтому, если вы новичок в электронике, вам следует попросить кого-нибудь помочь вам сделать это.Подходите к делу логически; Если он не работает, проверьте, что используемые компоненты не неисправны, проверьте правильность подключения, прочтите всю эту статью и все комментарии, выполните поиск в Google, если вы не понимаете какие-либо термины, или прочитайте наш раздел «Обучение электронике». Помните: горячее обожжет вас и может поджечь; Электричество может убить вас электрическим током, а также вызвать пожар. Безопасность превыше всего.

Индукционный нагреватель DIY: 10 шагов (с изображениями)

Многие из вас, читающие это, могут спросить: «Что такое драйвер ZVS»? Что ж, это чрезвычайно эффективная схема генератора, способная создавать чрезвычайно мощное электромагнитное поле, которое нагревает металл.Это руководство показывает вам, как делать это основа индукционного нагревателя.

Чтобы понять, как работает этот блок питания, я объясню его различные разделы. Первая секция — это блок питания на 24 вольта. Блок питания должен выдавать 24 вольта при токе 10 ампер. В качестве источника питания я буду использовать две герметичные свинцово-кислотные батареи, соединенные последовательно. Затем питание подается на плату драйвера ZVS. Генератор ZVS проталкивает и пропускает ток через катушку вокруг нагреваемого объекта.2 * Р.

Теперь очень важен тип металла нагреваемого объекта. Черные металлы обладают более высокой магнитной проницаемостью, поэтому они могут использовать больше энергии магнитного поля. Это позволяет нагревать их быстрее, чем другие материалы. Металлы, такие как алюминий, имеют более низкую магнитную проницаемость, поэтому им требуется больше времени для нагрева. Вещи с высоким сопротивлением и низкой магнитной проницаемостью, такие как человеческий палец, вообще не будут нагреваться индукционным нагревателем.Также очень важна стойкость материала. Если у вас есть более высокое сопротивление в целевом металле, то будет течь меньше тока, поэтому мощность, преобразованная в тепло, станет экспоненциально меньше. Если у вас металл с меньшим сопротивлением, то ток будет выше, но потери мощности будут ниже из-за закона Ома. Это немного сложно, но из-за взаимосвязи между сопротивлением и выходной мощностью максимальная выходная мощность достигается, когда сопротивление объекта приближается к 0.

Генератор ZVS — самая сложная часть этой схемы, поэтому я собираюсь объяснить, как он работает. Прежде всего, когда ток включен, он проходит через 2 индуктивных дросселя с каждой стороны катушки. Дроссель предназначен для того, чтобы цепь не потребляла слишком много силы тока при запуске. Ток также течет через два резистора 470 Ом на затворы двух МОП-транзисторов. Теперь, поскольку ни один компонент не идеален, первым будет включаться один Mosfet. Когда это происходит, он забирает весь ток затвора от другого МОП-транзистора.Он также потянет сток того Mosfet, который находится на земле. Это не только позволит току течь через катушку к земле, но также позволит току течь через один из быстрых диодов, формирующих другой затвор другого МОП-транзистора, блокируя его. Поскольку параллельно катушке установлен конденсатор, он создает резонансный контур резервуара, который начинает колебаться. Из-за этого резонансного действия сток другого МОП-транзистора будет колебаться взад и вперед по своему напряжению, в конечном итоге достигая 0 вольт. Как только это напряжение будет достигнуто, заряд затвора от включенного МОП-транзистора разрядится через быстрый диод в сток противоположного МОП-транзистора, эффективно отключив его.Когда этот Mosfet выключен, у другого Mosfet есть возможность включиться. После этого цикл повторяется тысячи раз в секунду. Резистор 10 кОм предназначен для истощения любого избыточного заряда затвора на МОП-транзисторе, потому что он похож на конденсатор, а стабилитрон предназначен для поддержания на затворе МОП-транзистора напряжения 12 В или ниже, чтобы они не взорвались. Этот высокочастотный генератор большой мощности позволяет нагревать металлические предметы.

Пришло время построить эту штуку!

Принципиальная схема, работа и применение

Принцип индукционного нагрева используется в производственных процессах с 1920-х годов.Как уже было сказано, необходимость — мать изобретений, во время Второй мировой войны необходимость в быстром процессе упрочнения деталей металлического двигателя привела к быстрому развитию технологии индукционного нагрева. Сегодня мы видим применение этой технологии в наших повседневных потребностях. В последнее время потребность в улучшенном контроле качества и безопасных производственных технологиях снова привлекла внимание к этой технологии. С помощью современных передовых технологий внедряются новые и надежные методы реализации индукционного нагрева.


Что такое индукционный нагрев?

Принцип работы процесса индукционного нагрева представляет собой комбинированный рецепт электромагнитной индукции и джоулева нагрева. Процесс индукционного нагрева — это бесконтактный процесс нагрева электропроводящего металла путем создания в нем вихревых токов с использованием принципа электромагнитной индукции. Поскольку генерируемый вихревой ток течет против удельного сопротивления металла, по принципу джоулева нагрева в металле генерируется тепло.

Индукционный нагрев

Как работает индукционный нагрев?

Знание закона Фарадея очень полезно для понимания работы индукционного нагрева. Согласно закону электромагнитной индукции Фарадея, изменение электрического поля в проводнике приводит к возникновению переменного магнитного поля вокруг него, сила которого зависит от величины приложенного электрического поля. Этот принцип работает и наоборот, когда в проводнике изменяется магнитное поле.

Итак, вышеуказанный принцип используется в процессе индукционного нагрева.Здесь твердотельный источник питания с высокочастотной частотой подается на катушку индуктивности, а нагреваемый материал помещается внутри катушки. Когда через катушку пропускают переменный ток, вокруг нее создается переменное магнитное поле в соответствии с законом Фарадея. Когда материал, помещенный внутри индуктора, попадает в диапазон этого переменного магнитного поля, в материале генерируется вихревой ток.

Теперь соблюдается принцип джоулева нагрева. В соответствии с этим при прохождении тока через материал в нем выделяется тепло.Таким образом, когда в материале возникает ток из-за индуцированного магнитного поля, протекающий ток выделяет тепло изнутри материала. Этим объясняется процесс бесконтактного индукционного нагрева.

Индуктивный нагрев металла

Схема цепи индукционного нагрева

Установка, используемая для процесса индукционного нагрева, состоит из высокочастотного источника питания для подачи переменного тока в цепь. Медная катушка используется в качестве индуктора, и к ней подается ток. Нагреваемый материал помещается внутрь медного змеевика.

Типовая установка для индукционного нагрева

Изменяя силу подаваемого тока, мы можем контролировать температуру нагрева. Поскольку вихревой ток, возникающий внутри материала, течет противоположно удельному электрическому сопротивлению материала, в этом процессе наблюдается точный и локализованный нагрев.

Помимо вихревых токов, в магнитных частях также выделяется тепло из-за гистерезиса. Электрическое сопротивление, создаваемое магнитным материалом по отношению к изменяющемуся магнитному полю внутри индуктора, вызывает внутреннее трение.Это внутреннее трение создает тепло.

Поскольку процесс индукционного нагрева является процессом бесконтактного нагрева, нагреваемый материал может находиться вдали от источника питания или погружен в жидкость, или в любую газообразную среду, или в вакуум. Для этого типа нагрева не требуются дымовые газы.

Факторы, которые необходимо учитывать при проектировании системы индукционного нагрева

Есть несколько факторов, которые следует учитывать при проектировании системы индукционного нагрева для любого типа применения.

  • Обычно индукционный нагрев используется для металлов и токопроводящих материалов. Непроводящий материал можно нагревать напрямую.
  • При нанесении на магнитные материалы тепло выделяется как вихревыми токами, так и эффектом гистерезиса магнитных материалов.
  • Маленькие и тонкие материалы нагреваются быстрее по сравнению с большими и толстыми материалами.
  • Чем выше частота переменного тока, тем меньше глубина проплавления.
  • Материалы с более высоким удельным сопротивлением быстро нагреваются.
  • Индуктор, в который помещается нагревательный материал, должен позволять легко вставлять и удалять материал.
  • При расчете мощности источника питания необходимо учитывать удельную теплоемкость нагреваемого материала, массу материала и требуемое повышение температуры.
  • Потери тепла из-за теплопроводности, конвекции и излучения также следует принимать во внимание при выборе мощности источника питания.

Формула для индукционного нагрева

Глубина, на которую вихревой ток проникает в материал, определяется частотой индуктивного тока.Для токоведущих слоев эффективная глубина может быть рассчитана как

D = 5000 √ρ / µf

Здесь d означает глубину (см), относительная магнитная проницаемость материала обозначена как µ, ρ — удельное сопротивление. материала в Ом-см, f указывает частоту переменного тока в Гц.

Конструкция змеевика индукционного нагрева

Катушка, используемая в качестве индуктора, к которому подается питание, бывает различных форм.Индуцированный ток в материале пропорционален количеству витков в катушке. Таким образом, для эффективности и действенности индукционного нагрева важна конструкция катушки.

Обычно индукционные катушки представляют собой медные проводники с водяным охлаждением. В зависимости от наших приложений используются катушки различной формы. Чаще всего используется многооборотная спиральная катушка. Для этой катушки ширина диаграммы нагрева определяется количеством витков в катушке. Однооборотные катушки полезны в тех случаях, когда требуется нагрев узкой полосы заготовки или кончика материала.

Многопозиционный спиральный змеевик используется для нагрева более чем одной заготовки. Блинный змеевик используется, когда требуется нагреть только одну сторону материала. Внутренний змеевик используется для нагрева внутренних отверстий.

Области применения индукционного нагрева

  • Целенаправленный нагрев для поверхностного нагрева, плавления, пайки возможен с помощью процесса индукционного нагрева.
  • Помимо металлов, нагрев жидких проводников и газопроводов возможен с помощью индукционного нагрева.
  • Для нагрева кремния в полупроводниковой промышленности используется принцип индукционного нагрева.
  • Этот процесс используется в индукционных печах для нагрева металла до температуры плавления.
  • Поскольку это бесконтактный процесс нагрева, вакуумные печи используют этот процесс для производства специальной стали и сплавов, которые могут окисляться при нагревании в присутствии кислорода.
  • Процесс индукционного нагрева используется для сварки металлов, а иногда и пластмасс, когда они легированы ферромагнитной керамикой.
  • Индукционные плиты, используемые на кухне, работают по принципу индукционного нагрева.
  • Для пайки твердого сплава на валу используется процесс индукционного нагрева.
  • Для герметичного закрытия крышек бутылок и фармацевтических препаратов используется процесс индукционного нагрева.
  • В машине для моделирования впрыска пластмасс используется индукционный нагрев для повышения энергоэффективности впрыска.

Для обрабатывающей промышленности индукционный нагрев обеспечивает мощный пакет стабильности, скорости и контроля.Это аккуратный, быстрый и экологически чистый процесс нагрева. Потери тепла, наблюдаемые при индукционном нагреве, могут быть решены с помощью закона Ленца. Этот закон показал способ продуктивного использования тепловых потерь, возникающих в процессе индукционного нагрева. Какое из применений индукционного нагрева вас поразило?

Змеевики индукционного нагрева — компоненты индукционного нагрева

Элементы индукционного нагрева

Типичная система индукционного нагревателя включает источник питания, цепь согласования импеданса, цепь резервуара и аппликатор.Аппликатор, представляющий собой индукционную катушку, может быть частью цепи резервуара. Цепь резервуара обычно представляет собой параллельный набор конденсаторов и катушек индуктивности. Конденсатор и индуктор в цепи резервуара являются резервуарами электростатической энергии и электромагнитной энергии соответственно. На резонансной частоте конденсатор и катушка индуктивности начинают передавать накопленную энергию друг другу. В параллельной конфигурации это преобразование энергии происходит при большом токе. Большой ток через катушку способствует хорошей передаче энергии от индукционной катушки к заготовке.

Щелкните здесь, чтобы узнать о , что такое индукционные катушки и как они работают, а также о различных типах катушек .

а) Источник питания

Источники питания — одна из важнейших частей системы индукционного нагревателя. Обычно они оцениваются по диапазону рабочих частот и мощности. Существуют различные типы индукционных источников питания, в том числе источники сетевой частоты, умножители частоты, двигатели-генераторы, преобразователи искрового разрядника и твердотельные инверторы.Твердотельные инверторы имеют наибольший КПД среди источников питания.

Типичный твердотельный инверторный источник питания состоит из двух основных частей; Выпрямитель и инвертор. Линейные переменные токи преобразуются в постоянный в выпрямительной секции с помощью диодов или тиристоров. Постоянный ток поступает в инвертор, где твердотельные переключатели, такие как IGBT или MOSFET, преобразуют его в ток, на этот раз с высокой частотой (обычно в диапазоне от 10 до 600 кГц). Согласно диаграмме ниже, IGBT могут работать на более высоком уровне мощности и более низкой частоте по сравнению с MOSFET, работающими на более низком уровне мощности и более высоких частотах.

b) Согласование импеданса

Источники питания для индукционного нагрева, как и любое другое электронное устройство, имеют максимальные значения напряжения и тока, которые нельзя превышать. Чтобы передать максимальную мощность от источника питания к нагрузке (заготовке), полное сопротивление источника питания и нагрузки должно быть как можно ближе. Таким образом, значения мощности, напряжения и тока могут одновременно достигать своих максимально допустимых пределов. Для этого в индукционных нагревателях используются схемы согласования импеданса.В зависимости от области применения могут использоваться различные комбинации электрических элементов (например, трансформаторы, регулируемые катушки индуктивности, конденсаторы и т. Д.).

c) Резонансный резервуар

Резонансный бак в системе индукционного нагрева обычно представляет собой параллельный набор конденсатора и индуктора, который резонирует на определенной частоте. Частота получается по следующей формуле:

где L — индуктивность индукционной катушки, а C — емкость.Согласно анимации ниже, явление резонанса очень похоже на то, что происходит в качающемся маятнике. В маятнике кинетическая и потенциальная энергии преобразуются друг в друга, пока он колеблется от одного конца к другому. Движение затухает из-за трения и других механических потерь. В резонансном резервуаре энергия, обеспечиваемая источником питания, колеблется между индуктором (в форме электромагнитной энергии) и конденсатором (в форме электростатической энергии). Энергия затухает из-за потерь в конденсаторе, катушке индуктивности и заготовке.Потери в заготовке в виде тепла желательны и предназначены для индукционного нагрева.

Сам резонансный бак состоит из конденсатора и индуктора. Блок конденсаторов используется для обеспечения необходимой емкости для достижения резонансной частоты, близкой к мощности источника питания. На низких частотах (ниже 10 кГц) используются масляные конденсаторы, а на более высоких частотах (более 10 кГц) используются керамические или твердые диэлектрические конденсаторы.

г) Индукторы индукционного нагревателя

Что такое индукционные катушки и как они работают?

Катушка индукционного нагрева представляет собой медную трубку особой формы или другой проводящий материал, через который пропускается переменный электрический ток, создавая переменное магнитное поле.Металлические части или другие проводящие материалы помещаются внутри, через катушку индукционного нагрева или рядом с ней, не касаясь катушки, и создаваемое переменное магнитное поле вызывает трение внутри металла, вызывая его нагрев.

Как работают индукционные катушки?

При проектировании катушки необходимо учитывать некоторые условия:

1. Для повышения эффективности индукционных нагревателей расстояние между катушкой и заготовкой должно быть минимизировано.Эффективность связи между катушкой и заготовкой обратно пропорциональна квадратному корню из расстояния между ними.

2. Если деталь расположена в центре спиральной катушки, она будет лучше всего связана с магнитным полем. Если он смещен по центру, область заготовки, расположенная ближе к виткам, будет получать больше тепла. Этот эффект показан на рисунке ниже.

3. Кроме того, позиция рядом с соединением выводов и катушки имеет более слабую плотность магнитного потока, поэтому даже центр внутреннего диаметра спиральной катушки не является центром индукционного нагрева.

4. Следует избегать эффекта отмены (рисунок слева). Это происходит, когда раскрытие катушки очень мало. Добавление петли в катушку поможет обеспечить необходимую индуктивность (рисунок справа). Индуктивность индуктора определяет способность этого индуктора накапливать магнитную энергию. Индуктивность можно рассчитать по следующей формуле:

.

где ε — электродвижущая сила, а dI / dt — скорость изменения тока в катушке. Сам по себе ε равен скорости изменения магнитного потока в катушке (- dφ / dt), где магнитный поток φ может быть рассчитан из NBA, где N — количество витков, B — магнитное поле и A — площадь индуктор.Следовательно, индуктивность будет равна:

.

Очевидно, что величина индуктивности линейно пропорциональна площади индуктора. Следовательно, необходимо учитывать минимальное значение для контура индуктора, чтобы он мог накапливать магнитную энергию и передавать ее индукционной заготовке.

Эффективность катушки

КПД змеевика определяется следующим образом:

В таблице ниже показаны типичные значения КПД различных катушек:

Модификация катушки по заявке

В некоторых случаях нагревательный объект не имеет однородного профиля, но требует равномерного нагрева.В этих случаях необходимо изменить поле магнитного потока. Для этого есть два типичных метода. Один из способов — разделить витки там, где деталь имеет большее поперечное сечение (при использовании спиральной катушки). Более распространенный метод — увеличить расстояние между обмотками в тех областях, где поперечное сечение детали больше. Оба метода показаны на рисунке ниже.

Такая же ситуация бывает при нагреве плоских поверхностей большими змеевиками. Центральная зона получит излишнее тепло.Чтобы избежать этого, зазор между поверхностью катушки и плоским предметом будет увеличен путем придания катушке блина конической формы.

Змеевик с футеровкой используется в приложениях, где требуется широкая и однородная зона нагрева, но мы не хотим использовать большие медные трубки. Лайнер представляет собой широкий лист, который прихваткой припаян к гибкой трубе как минимум в двух точках. Остальная часть стыка будет припаяна только для обеспечения максимальной теплопередачи. Также синусоидальный профиль поможет увеличить охлаждающую способность змеевика.Такая катушка изображена на рисунке ниже.

По мере увеличения длины нагрева необходимо увеличивать количество витков, чтобы сохранить равномерность нагрева.

Схема нагрева меняется в зависимости от изменения формы заготовки. Магнитный поток имеет тенденцию накапливаться на краях, порезах или вмятинах на поверхности нагреваемого объекта, вызывая тем самым более высокую скорость нагрева в этих областях. На рисунке ниже показан «краевой эффект», когда змеевик находится выше края нагревательного элемента, и в этой области происходит чрезмерный нагрев.Чтобы этого не произошло, катушку можно опустить ниже, ровно или немного ниже края.

Индукционный нагрев дисков также может вызвать чрезмерный нагрев кромок, как показано на рисунке ниже. Края нагреваются сильнее. Высота катушки может быть уменьшена, или концы катушки могут быть сделаны с большим радиусом для отделения от края заготовки.

Острые углы прямоугольных катушек могут вызвать более глубокий нагрев детали.Разделение углов катушки, с одной стороны, снизит скорость нагрева угла, но, с другой стороны, снизит общую эффективность индукционного процесса.

Одним из важных моментов, которые следует учитывать при проектировании многопозиционных катушек, является влияние соседних катушек друг на друга. Чтобы сохранить максимальную мощность нагрева каждой катушки, расстояние между центрами соседних катушек должно быть как минимум в 1,5 раза больше диаметра катушки.

Разделенные индукторы используются в приложениях, где требуется тесная связь, а также невозможно извлечь деталь из катушки после процесса нагрева.Важным моментом здесь является обеспечение очень хорошего электрического контакта в месте соединения шарнирных поверхностей. Обычно для обеспечения наилучшего электрического контакта с поверхностью используется тонкий слой серебра. Разделенные части змеевиков будут охлаждаться с помощью гибкого водяного шланга. Автоматическое пневматическое сжатие часто используется для закрытия / открытия змеевика, а также для обеспечения необходимого давления в шарнирной области.

Типы нагревательных змеевиков

Катушка для блинов с двойной деформацией

В таких применениях, как нагрев наконечника валов, достижение однородности температуры может быть затруднено из-за эффекта компенсации в центре поверхности наконечника.Двойной деформированный змеевик для блинов с обработанными сторонами, подобный приведенной ниже схеме, можно использовать для достижения равномерного профиля нагрева. Следует обратить внимание на направление двух блинов, в которых центральные обмотки намотаны в одном направлении и имеют дополнительный магнитный эффект.

Катушка с разделением и возвратом

В таких применениях, как сварка узкой ленты на одной стороне длинного цилиндра, где относительно большая длина должна нагреваться значительно выше, чем другие области объекта, обратный путь тока будет иметь значение.При использовании катушки типа Split-Return большой ток, индуцируемый на пути сварки, будет разделен на две части, которые будут еще шире. Таким образом, скорость нагрева на сварочном пути как минимум в четыре раза выше, чем у остальных частей объекта.

Канальные катушки Катушки

канального типа используются, если время нагрева невелико, а также требуются довольно низкие удельные мощности. Несколько нагревательных частей проходят через змеевик с постоянной скоростью и достигают максимальной температуры при выходе из машины.Концы катушки обычно согнуты, чтобы обеспечить путь для входа и выхода деталей из катушки. Там, где требуется обогрев профиля, можно использовать пластинчатые концентраторы с многооборотными канальными змеевиками.

Квадратная медная трубка

имеет два основных преимущества по сравнению с круглой трубкой: а) поскольку она имеет более плоскую поверхность, «смотрящую» на заготовку, она обеспечивает лучшую электромагнитную связь с нагревательной нагрузкой и б) конструктивно легче выполнять повороты. с квадратными трубками, а не с круглыми.

Конструкция выводов индукционных катушек

Конструкция выводов: выводы являются частью индукционной катушки, и хотя они очень короткие, они имеют конечную индуктивность. В общем, на приведенной ниже схеме показана принципиальная электрическая схема тепловой станции системы индукционных агрегатов. C — резонансный конденсатор, установленный в тепловой станции, L_lead — это общая индуктивность выводов катушки, а L_coil — индуктивность индукционной катушки, связанной с нагревательной нагрузкой. V_total — это напряжение, подаваемое от индукционного источника питания на тепловую станцию, V_lead — это падение напряжения на индуктивности вывода, а V_coil — это напряжение, которое будет приложено к индукционной катушке.Общее напряжение складывается из напряжения на выводах и индукционной катушке:

V_lead представляет собой величину общего напряжения, занятого выводами, и не оказывает никакого полезного индукционного воздействия. Задача дизайнера — минимизировать это значение. V_lead можно рассчитать как:

Из приведенных выше формул очевидно, что для минимизации значения V_lead индуктивность выводов должна быть в несколько раз меньше индуктивности индукционной катушки (L_lead≪L_coil).

Уменьшение индуктивности свинца: На низких частотах, обычно из-за использования катушек с высокой индуктивностью (многооборотные и / или с большим внутренним диаметром), L_lead намного меньше, чем L_coil. Однако, поскольку количество витков и общий размер катушки уменьшается для высокочастотных индукторов, становится важным применять специальные методы для минимизации индуктивности выводов. Ниже приведены два примера для этого.

Концентраторы потока: Когда магнитный материал помещается в окружающую среду, включая магнитные поля, из-за низкого магнитного сопротивления (сопротивления) они имеют тенденцию поглощать линии магнитного потока.Способность поглощать магнитное поле количественно оценивается относительной магнитной проницаемостью. Это значение для воздуха, меди и нержавеющей стали равно единице, но для мягкой стали может доходить до 400, а для железа — до 2000. Магнитные материалы могут сохранять свою магнитную способность до температуры Кюри, после чего их магнитная проницаемость падает до единицы и они больше не будут магнитными.

Концентратор потока — это материал с высокой проницаемостью и низкой электропроводностью, который предназначен для использования в конструкции катушек индукционного нагревателя для увеличения магнитного поля, приложенного к нагревающей нагрузке.На рисунке ниже показано, как размещение концентратора потока в центре блинной катушки будет концентрировать силовые линии магнитного поля на поверхности катушки. Таким образом, материалы, помещенные поверх змеевика для блинов, лучше соединятся и получат максимальный нагрев.

Влияние концентратора потока на плотность тока в индукционной катушке показано на рисунке ниже. Большая часть тока будет сосредоточена на поверхности, не покрытой концентратором флюса.Следовательно, змеевик может быть сконструирован таким образом, что только сторона змеевика, обращенная к нагревательной нагрузке, останется без материалов концентратора. В электромагнетизме это называется щелевым эффектом. Щелевой эффект значительно увеличит эффективность змеевика, и для нагрева потребуется более низкий уровень мощности.

Артикул:

  • С. Зинн и С. Л. Семятин, «Элементы индукционного нагрева, проектирования, управления и приложений», A S M International, ISBN-13: 9780871703088, 1988

Система центрального отопления — обзор

6.1 Общие положения

Для распределения солнечного тепла в зданиях можно использовать гидравлическую систему (излучающие панели и водяные радиаторы) или центральную систему приточной вентиляции.

В системах центрального отопления температура подачи горячей воды может иметь разные значения. В недавнем прошлом наиболее используемым значением в Румынии, а также в других странах Европейского Союза было 90 ° C с перепадом температуры на 20 ° C, но в настоящее время температура подачи обычно ниже 90 ° C.

Обеспечение потребности в тепле для зданий, оборудованных установками центрального отопления, требует систем с высокой эффективностью не только в процессе производства тепла, но и в распределении тепловой энергии.Одним из способов повышения эффективности систем отопления является использование пониженной температуры [1]. Кроме того, можно использовать ВИЭ с более высокой эффективностью в качестве солнечной энергии. Обычно плоские жидкостные коллекторы нагревают передающую и распределяющую жидкость до температуры от 35 до 50 ° C. Систему необходимо контролировать и оптимизировать в соответствии с постоянно меняющейся потребностью в тепле.

Энергетическая и эксергетическая эффективность систем центрального отопления выше при пониженных температурах горячей воды [2], но, основываясь на [3], необходимо указать, что это справедливо только для полностью сбалансированных систем.Стабильность системы центрального отопления с пониженной температурой может быть улучшена за счет уменьшения уровня перепада температуры. Таким образом, можно получить системы отопления с более высокой стабильностью и энергоэффективностью за счет одновременного снижения температуры подачи и падения температуры.

После внедрения пластиковых трубопроводов применение водного лучистого отопления с трубами, встроенными в поверхности помещений (например, полы, стены и потолки), значительно расширилось во всем мире. Ранее системы лучистого отопления применялись в основном для жилых домов из-за комфорта и свободного использования площади без каких-либо препятствий для установки.По тем же причинам, а также для возможного снижения пиковых нагрузок и экономии энергии, излучающие системы широко применяются в коммерческих и промышленных зданиях. Из-за больших поверхностей, необходимых для передачи тепла, системы работают с водой с низкой температурой для обогрева. Однако, чтобы расширить использование этих типов генераторов и извлечь выгоду из их энергоэффективности для достижения целей 20–20–20 (повышение энергоэффективности на 20%, сокращение выбросов CO 2 на 20% и возобновляемые источники энергии на 20%) к 2020 году), необходима работа с радиаторами, которые в прошлом были наиболее часто используемыми оконечными устройствами в системах отопления.

В Европе предстоит отремонтировать десятки тысяч зданий, большинство из которых — жилые. Энергетическая задача будущего будет заключаться в ремонте существующих зданий и предложении системно-инженерных технологий, которые могут быть установлены с минимальным вмешательством, что будет чрезвычайно успешным. Следовательно, если продвигается солнечная технология, она должна быть рассчитана также на работу с радиаторами.

В этой главе представлены системы распределения тепла в зданиях, включая водяные радиаторы, излучающие панели (пол, стены, потолок и пол-потолок) и комнатные воздухонагреватели.Первой целью данного исследования является анализ экономии энергии в системах центрального отопления с пониженной температурой подачи для различных типов радиаторов с учетом теплоизоляции распределительных труб и исследование производительности различных типов низкотемпературных систем отопления с разные методы. Кроме того, разработана и экспериментально подтверждена математическая модель для численного моделирования теплового излучения излучающих полов, а также проведен сравнительный анализ энергетических, экологических и экономических характеристик полов, стен, потолка и пола-потолка с использованием численного моделирования с Выполняется программное обеспечение моделирования переходных систем (TRNSYS).Наконец, включена важная информация по контролю и эффективности SHS, разработана аналитическая модель для энергетического анализа SHS, и представлены некоторые показатели экономического анализа, показывающие возможность внедрения этих систем в зданиях.

Типы систем отопления | Умный дом

Центральное отопление

Печи

Большинство домохозяйств в Северной Америке используют центральную печь для обеспечения тепла. Печь работает, продувая нагретый воздух через воздуховоды, которые доставляют теплый воздух в комнаты по всему дому через воздушные регистры или решетки.Такой тип системы отопления называется канальной или принудительной системой распределения теплого воздуха. Он может работать на электричестве, природном газе или мазуте.

Внутри печи, работающей на газе или мазуте, топливо смешивается с воздухом и сжигается. Пламя нагревает металлический теплообменник, в котором тепло передается воздуху. Воздух проталкивается через теплообменник печным вентилятором «обработчика воздуха», а затем проходит через воздуховоды после теплообменника. В топке продукты сгорания выводятся из здания через дымоход.Старые «атмосферные» печи выпускали воздух прямо в атмосферу и тратили около 30% энергии топлива только на то, чтобы выхлоп оставался достаточно горячим, чтобы безопасно подниматься по дымоходу. Современные печи с минимальной эффективностью значительно сокращают эти отходы за счет использования «нагнетательного» вентилятора, который втягивает отработанные газы через теплообменник и создает тягу в дымоходе. «Конденсационные» печи предназначены для утилизации большей части этого уходящего тепла путем охлаждения выхлопных газов до температуры ниже 140 ° F, где водяной пар в выхлопных газах конденсируется в воду.Это основная особенность высокоэффективной печи (или котла). Обычно они вентилируются через боковую стенку с пластиковой трубкой.

Новые стандарты для печей в настоящее время разрабатываются Министерством энергетики США и должны быть завершены весной 2016 г. Действующие стандарты для печей не обновлялись с 1987 г.

Органы управления системой отопления регулируют включение и выключение различных компонентов системы отопления. Самым важным элементом управления с вашей точки зрения является термостат, который включает и выключает систему или, по крайней мере, систему распределения, чтобы вам было комфортно.Типичная система с принудительной подачей воздуха будет иметь единственный термостат. Но в системе отопления есть и другие внутренние средства контроля, такие как выключатели «верхнего предела», которые являются частью невидимого, но важного набора средств контроля безопасности.

Лучшие газовые печи и котлы на сегодняшний день имеют КПД более 90%

КПД печи или котла, работающего на ископаемом топливе, является мерой количества полезного тепла, производимого на единицу потребляемой энергии (топлива). Эффективность сгорания — простейшая мера; это просто эффективность системы во время ее работы.Эффективность сгорания сравнима с количеством миль на галлон, который ваша машина проезжает со скоростью 55 миль в час по шоссе.

В США эффективность печи регулируется минимумом AFUE (Annual Fuel Utilization Efficiency). AFUE оценивает сезонную эффективность, усредняя пиковые и частичные нагрузки. AFUE учитывает пусковые, охлаждающие и другие эксплуатационные потери, которые происходят в реальных условиях эксплуатации, и включает оценку электроэнергии, используемой устройством обработки воздуха, нагнетательным вентилятором и элементами управления.AFUE — это как пробег вашего автомобиля между заправками, включая как движение по шоссе, так и движение с остановками. Чем выше AFUE, тем эффективнее топка или котел.

Котлы

Котлы водонагреватели специального назначения. В то время как печи переносят тепло в теплом воздухе, системы котлов распределяют тепло в горячей воде, которая отдает тепло, проходя через радиаторы или другие устройства в комнатах по всему дому. Затем более холодная вода возвращается в бойлер для повторного нагрева. Системы горячего водоснабжения часто называют гидравлическими системами.В бытовых котлах в качестве топлива обычно используется природный газ или мазут.

В паровых котлах, которые сегодня гораздо реже встречаются в домах, вода кипятится, и пар переносит тепло по дому, конденсируясь в воду в радиаторах при охлаждении. Обычно используются нефть и природный газ.

Вместо системы вентиляции и воздуховодов в котле используется насос для циркуляции горячей воды по трубам к радиаторам. В некоторых системах горячего водоснабжения вода циркулирует по пластиковым трубам в полу. Эта система называется лучистым напольным отоплением (см. «Современное отопление»).Важные элементы управления котлом включают термостаты, аквастаты и клапаны, регулирующие циркуляцию и температуру воды. Хотя стоимость не является тривиальной, обычно гораздо проще установить «зонные» термостаты и регуляторы для отдельных комнат с гидравлической системой, чем с принудительной подачей воздуха. Некоторые элементы управления являются стандартными функциями в новых котлах, в то время как другие могут быть добавлены для экономии энергии (см. Раздел «Модификации, выполненные специалистами по отопительным системам» на странице технического обслуживания отопления).

Как и печи, конденсационные газовые котлы относительно распространены и значительно более эффективны, чем неконденсирующие котлы (если не используются очень сложные системы управления).Конденсационные котлы, работающие на жидком топливе, не распространены в США по нескольким причинам, связанным с более низким потенциалом скрытой теплоты и возможностью большего загрязнения обычным мазутом.

Тепловые насосы

Тепловые насосы — это просто кондиционеры двустороннего действия (подробное описание см. В разделе «Системы охлаждения»). Летом кондиционер работает, перемещая тепло из относительно прохладного помещения в относительно теплое снаружи. Зимой тепловой насос меняет этот трюк, собирая тепло от холода снаружи с помощью электрической системы и отводя это тепло внутри дома.Почти все тепловые насосы используют системы принудительной подачи теплого воздуха для перемещения нагретого воздуха по дому.

Земной тепловой насос нагревает и охлаждает в любом климате, обмениваясь теплом с землей, которая имеет более постоянную температуру.

Есть два относительно распространенных типа тепловых насосов. Тепловые насосы с воздушным источником тепла используют наружный воздух в качестве источника тепла зимой и радиатора летом. Наземные тепловые насосы (также называемые геотермальными, GeoExchange или GX) получают тепло из-под земли, где температура более постоянна круглый год.Воздушные тепловые насосы гораздо более распространены, чем наземные тепловые насосы, потому что они дешевле и проще в установке. Однако наземные тепловые насосы намного более эффективны, и их часто выбирают потребители, которые планируют оставаться в одном доме в течение длительного времени или имеют сильное желание жить более устойчиво. Как определить, подходит ли тепловой насос в вашем климате, обсуждается далее в разделе «Варианты топлива».

В то время как тепловой насос с воздушным источником воздуха устанавливается во многом как центральный кондиционер, для тепловых насосов с грунтовым источником требуется, чтобы «петля» была закопана в землю, обычно в длинных неглубоких (3–6 футов) траншеях или в одной или более вертикальных скважин.Конкретный используемый метод будет зависеть от опыта установщика, размера вашего участка, недр и ландшафта. В качестве альтернативы некоторые системы забирают грунтовые воды и пропускают их через теплообменник вместо использования хладагента. Затем грунтовые воды возвращаются в водоносный горизонт.

Поскольку электричество в тепловом насосе используется для перемещения тепла, а не для его генерации, тепловой насос может выдавать больше энергии, чем потребляет. Отношение поставленной тепловой энергии к потребляемой энергии называется коэффициентом полезного действия, или COP, с типичными значениями в диапазоне от 1.От 5 до 3,5. Это «установившаяся» мера, и ее нельзя напрямую сравнивать с коэффициентом полезного действия в отопительный сезон (HSPF), сезонной мерой, обязательной для оценки эффективности нагрева тепловых насосов с воздушным источником тепла. Преобразование между измерениями непросто, но наземные агрегаты обычно более эффективны, чем воздушные тепловые насосы.

Прямой нагрев

Газовые обогреватели

В некоторых регионах популярно газовое отопительное оборудование прямого нагрева. Сюда входят настенные, напольные и напольные печи, для которых характерно отсутствие воздуховодов и относительно небольшая тепловая мощность.Поскольку в них отсутствуют воздуховоды, они наиболее полезны для обогрева отдельной комнаты. Если требуется обогрев нескольких комнат, либо двери между комнатами должны быть открыты, либо необходим другой метод обогрева. В лучших моделях используются системы «герметичного воздуха для горения» с трубами, проложенными через стену для подачи воздуха для горения и отвода продуктов горения. Эти агрегаты могут обеспечить приемлемую производительность, особенно для кают и других зданий, где допустима большая разница температур между спальнями и основными комнатами.Модели могут работать на природном газе или пропане, а некоторые сжигают керосин.

Газовые обогреватели без вентиляции: плохая идея

Газовые или керосиновые обогреватели, у которых нет вытяжной вентиляции, продаются десятилетиями, но мы настоятельно не рекомендуем их использовать из соображений здоровья и безопасности. Известные производителями как газовые отопительные приборы «без вентиляции», они включают в себя настенные и отдельно стоящие обогреватели, а также газовые камины открытого пламени с керамическими поленьями, которые фактически не соединены с дымоходом.Производители заявляют, что, поскольку полнота сгорания этих продуктов очень высока, они безопасны для жителей здания. Однако это утверждение справедливо только в том случае, если вы держите близлежащее окно открытым для достаточного количества свежего воздуха, что лишает вас возможности дополнительного тепла. Опасности включают воздействие побочных продуктов сгорания, как описано в разделе «Вентиляция», и недостаток кислорода (эти обогреватели должны быть оборудованы датчиками истощения кислорода). Из-за этих опасностей по крайней мере пять штатов (Калифорния, Миннесота, Массачусетс, Монтана и Аляска) запрещают их использование в домашних условиях, и многие города США и Канады также запретили их использование.

Электрические обогреватели

Переносные (съемные) электронагреватели недорого купить, но дорого использовать. Эти резистивные нагреватели включают «маслонаполненные» и «кварцево-инфракрасные» нагреватели. Они преобразуют электрический ток из розетки прямо в тепло, как тостер или утюг. Как объясняется далее в разделе «Выбор новой системы», требуется много электроэнергии, чтобы доставить такое же количество полезного тепла, которое природный газ или нефть могут обеспечить на месте. Вставной нагреватель мощностью 1500 Вт будет использовать почти всю мощность 15-амперной ответвленной цепи; таким образом, добавление дополнительной нагрузки приведет к срабатыванию автоматического выключателя или срабатыванию предохранителя.Стоимость эксплуатации блока мощностью 1500 ватт в час легко подсчитать: это в 1,5 раза больше ваших затрат на электроэнергию в центах за киловатт-час. При средних тарифах по стране — 12 центов за электроэнергию — этот обогреватель будет стоить 18 центов в час, и быстро будет стоить дороже, чем его закупочная цена. С другой стороны, для периодического использования это «наименее плохое» решение, когда альтернативы потребуют значительных инвестиций, например, для улучшения воздуховодов для конкретной области. Просто помните, что тепло с помощью электрического сопротивления обычно является самым дорогим видом тепла, и поэтому его редко рекомендуют.

«Электрический обогрев плинтуса» — это еще один вид резистивного обогрева, похожий на подключаемый обогреватель помещения, за исключением того, что он является проводным. У него есть два основных достоинства: низкая стоимость установки и простота установки индивидуальных комнатных термостатов, позволяющих уменьшить нагрев в неиспользуемых помещениях. Эксплуатационные расходы, как и для всех резистивных систем, обычно очень высоки, если только дом не является «сверхизолированным».

Дровяные печи и пеллетные печи

Дровяное отопление может иметь большой смысл в сельской местности, если вам нравится складывать дрова и топить печь или топку.Цены на древесину обычно ниже, чем на газ, нефть или электричество. Если вы пилите дерево самостоятельно, вы можете значительно сэкономить. Загрязняющие вещества от сжигания древесины были проблемой в некоторых частях страны, что вынудило Агентство по охране окружающей среды США (EPA) ввести правила, регулирующие выбросы загрязняющих веществ от дровяных печей. В результате новые модели вполне горят. Пеллетные печи имеют ряд преимуществ перед дровяными печами. Они менее загрязняют окружающую среду, чем дровяные печи, и предлагают пользователям большее удобство, контроль температуры и качество воздуха в помещении.

Камины

Газовые (и большинство деревянных) камины в основном являются частью декора комнаты, обеспечивая теплое свечение (и способ избавиться от секретных документов), но обычно не являются эффективным источником тепла. При обычных установках, в которых воздух, поступающий из комнаты в камин для сгорания и разбавления, обычно теряет больше тепла, чем обеспечивает, потому что через устройство проходит очень много теплого воздуха, и его необходимо заменять холодным наружным воздухом. С другой стороны, если камин снабжен герметичной стеклянной дверцей, источником наружного воздуха и хорошей заслонкой дымохода, он может обеспечить полезное тепло.

Современное отопление

Лучистое отопление для пола обычно относится к системам, в которых теплая вода циркулирует по трубам под полом. Это согревает пол, который, в свою очередь, согревает людей, использующих комнату. Он хорошо управляем, его сторонники считают его эффективным и дорогостоящим в установке. Это также требует очень опытного проектировщика и установщика системы и ограничивает выбор ковров и других видов отделки пола: вы не хотите «закрывать» свой источник тепла.

Свяжитесь с ассоциацией Radiant Panel Association

Бестоковые, мини-разъемы, мульти-разъемы .Жилые воздуховоды относительно редки за пределами Северной Америки. Широко используются «бесканальные» тепловые насосы, которые распределяют энергию по линиям хладагента вместо воды или воздуха. Крупные полевые испытания на северо-западе Тихого океана показывают, что они могут иметь хорошие характеристики в холодную погоду и быть очень рентабельными при замене электрического резистивного нагрева. Как и в случае систем с наземным источником питания, относительная незрелость рынка помогает гарантировать, что мульти-сплит-системы для всего дома будут иметь высокие цены.

Комбинированное производство тепла и электроэнергии (ТЭЦ) или когенерация для домов серьезно изучается в некоторых странах.Основная предпосылка заключается в использовании небольшого генератора для удовлетворения некоторой потребности дома в электроэнергии и рекуперации отработанного тепла (обычно более 70% теплотворной способности топлива) для обогрева дома (водяного или водяного отопления). воздушные системы) и горячее водоснабжение. Эти системы еще не получили широкого распространения. Они, вероятно, будут иметь лучшую экономику в домах с высокими счетами за отопление, потому что дом не может быть практически изолирован, например, дома из цельного камня или кирпича.

Простая схема

Простая схема

Понимание основ работы с автомобильной электрической системой важно для ваших базовых навыков и помогает вам диагностировать основные причины и устранять электрические неисправности.Следующая информация поможет вам изучить элементы электричества, определить методы понимания цепей, сопротивления, нагрузки, проверить напряжение холостого хода или доступное напряжение, а также падение напряжения.

Помните о трех элементах электричества; напряжение, сила тока и сопротивление. Напряжение (иногда называемое электродвижущей силой) — это представление электрической потенциальной энергии между двумя точками в электрической цепи, выраженное в вольтах. Подумайте о напряжении как об электрическом давлении, которое существует между двумя точками в проводнике, или о силе, заставляющей электроны двигаться в электрической цепи.Другими словами, это давление или сила, которые заставляют электроны двигаться в определенном направлении внутри проводника. Когда электроны перемещаются из отрицательно заряженной области в положительно заряженную область, это движение электронов между атомами называется электрическим током. Электрический ток — это мера потока этих электронов через проводник или электричества, протекающего в цепи или электрической системе. Если вы подумаете о садовом шланге в качестве примера, ток — это количество воды, протекающей через шланг.Напряжение — это величина давления, под действием которого вода проходит через шланг.

Этот поток электронов измеряется в единицах, называемых амперами. Амперы или ампер — это единица измерения силы или скорости протекания электрического тока. Электрическое сопротивление описывает величину сопротивления протеканию тока. Чем больше значение сопротивления, тем больше он борется. Все, что препятствует или останавливает прохождение тока, увеличивает сопротивление цепи. Это сопротивление или противодействие тока измеряется в Ом.Один вольт — это величина давления, необходимая для того, чтобы пропустить один ампер тока через один ом сопротивления в цепи.

ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ

Цепь — это законченный путь, по которому течет электричество. Основными элементами базовой электрической цепи являются: источник, нагрузка и заземление. Электричество не может течь без источника питания (батареи), нагрузки (лампочка или резистор-электрическое устройство / компонент) и замкнутого проводящего пути (соединяющих его проводов).Электрические цепи состоят из проводов, соединителей проводов, переключателей, устройств защиты цепей, реле, электрических нагрузок и заземления. Схема, показанная ниже, имеет источник питания, предохранитель, выключатель, лампу и провода, соединяющие их в петлю. Когда соединение завершено, ток течет от положительной клеммы батареи через цепь к отрицательной клемме батареи.

В замкнутой цепи напряжение источника обеспечивает электрическое давление, проталкивающее ток через цепь.Сторона источника цепи включает в себя все части цепи между положительным полюсом батареи и нагрузкой. Нагрузка — это любое устройство в цепи, которое производит свет, тепло, звук или электрическое движение при протекании тока. Нагрузка всегда имеет сопротивление и потребляет напряжение только при протекании тока. В приведенном ниже примере один конец провода от второй лампы возвращает ток в аккумулятор, поскольку он подключен к кузову или раме транспортного средства. Корпус или рама работают как заземление (то есть часть цепи, которая возвращает ток к батарее).

ТРЕБОВАНИЯ К ЦЕПИ

Полная электрическая цепь необходима для практического использования электричества. Электроны должны течь от источника питания и возвращаться к нему. Соединяя отрицательный и положительно заряженный концы источника питания с проводником, мы получаем потенциал движения электронов. Таким образом, полная цепь — это «путь» или петля, которая позволяет электричеству (току) течь. Но чтобы заставить этот контур или схему работать на нас, нам нужно добавить две вещи: источник питания (аккумулятор или генератор переменного тока) и нагрузку (пример — фары).После того, как электричество выполнило свою работу через Нагрузку, оно должно вернуться обратно к Источнику (Батареи). Если у вас где-то в этой цепи произойдет обрыв, у вас будет разрыв электрического тока. Это также известно как «разомкнутая цепь». Напряжение холостого хода измеряется при отсутствии тока в цепи.

Типы цепей

Существует три основных типа цепей: последовательные, параллельные и последовательно-параллельные. Отдельные электрические цепи обычно объединяют одно или несколько устройств сопротивления или нагрузок.Конструкция автомобильной электрической цепи будет определять, какой тип цепи используется, но все они требуют одинаковых основных компонентов для правильной работы:

1. Источник питания (аккумулятор, генератор, генератор и т. Д.) Необходим для обеспечения потока электронов (электричества).

2. Защитное устройство (предохранитель, плавкая вставка или автоматический выключатель) предотвращает повреждение цепи в случае короткого замыкания.

3. Управляющее устройство (переключатель, реле или транзистор) позволяет пользователю управлять включением или выключением цепи.

4.Нагрузочное устройство (лампа, двигатель, обмотка, резистор и т. Д.) Преобразует электричество в работу.

5. Проводник (обратный путь, заземление) обеспечивает электрический путь к источнику питания и от него.

Цепи серии

Компоненты последовательной цепи соединены встык один за другим, чтобы образовалась простая петля для прохождения тока через цепь. Последовательная цепь имеет только один путь к земле, все нагрузки размещены последовательно, поэтому ток должен проходить через каждый компонент, чтобы вернуться на землю.Если в цепи есть разрыв (например, перегоревшая лампочка), вся цепь и любые другие лампочки гаснут. Если путь прерван, ток не течет, и никакая часть цепи не работает. Рождественские огни — хороший тому пример; когда гаснет одна лампочка, вся струна перестает работать.

Параллельные схемы

Параллельная цепь имеет более одного пути для прохождения тока. На каждую ветвь подается одинаковое напряжение. Если сопротивление нагрузки в каждой ветви одинаково, ток в каждой ветви будет одинаковым.Если сопротивление нагрузки в каждой ветви разное, ток в каждой ветви будет разным. Компоненты параллельной цепи соединены бок о бок, поэтому для протекания тока можно выбирать пути в цепи. Если одна ветвь сломана, ток продолжит течь к другим ветвям.

В параллельной цепи ниже два или более сопротивления (R1, R2 и т. Д.) Соединены в цепь следующим образом: один конец каждого сопротивления подключен к положительной стороне цепи, а один конец подключен к отрицательной боковая сторона.

Последовательно-параллельные схемы

Последовательно-параллельная схема включает некоторые компоненты, включенные последовательно, а другие — параллельно. Источник питания и устройства управления или защиты обычно включены последовательно; нагрузки обычно параллельны. Если последовательный участок прерывается, ток перестает течь по всей цепи. Если параллельная ветвь разорвана, ток продолжает течь в последовательной части и оставшихся ветвях.

Внутреннее освещение приборной панели — хороший пример соединения резисторов и ламп в последовательно-параллельную цепь.В этом примере, регулируя реостат, вы можете увеличить или уменьшить яркость света.

Диагностические схемы

Проблемы с электрической цепью обычно вызваны неисправным компонентом или низким или высоким сопротивлением в цепи.

Низкое сопротивление в цепи, как правило, может быть вызвано коротким замыканием компонента или замыканием на землю и, как правило, приводит к перегоранию предохранителя, плавкой вставки или автоматического выключателя.

Высокое сопротивление в цепи может быть вызвано коррозией или обрывом в цепи источника или заземления.Все, что препятствует или останавливает прохождение тока, увеличивает сопротивление цепи.

УСТРОЙСТВА ЗАЩИТЫ ЦЕПИ

Устройства защиты цепей используются для защиты проводов и разъемов от повреждения избыточным током, вызванным перегрузкой по току или коротким замыканием. Избыточный ток вызывает чрезмерное нагревание, что может вызвать «разрыв цепи» защиты цепи. Предохранители, плавкие элементы, плавкие вставки и автоматические выключатели используются в качестве устройств защиты цепей. Устройства защиты цепей доступны в различных типах, формах и определенных номинальных токах.

Предохранители

Предохранитель

A является наиболее распространенным типом устройства защиты от перегрузки по току. В электрическую цепь вставлен предохранитель, который получает такое же электрическое питание, что и защищаемая цепь. Короткое замыкание или заземление позволяет току течь на землю до того, как он достигнет нагрузки. Поэтому, когда подается слишком большой ток, превышающий номинал предохранителя, он «перегорает» или «перегорает», потому что металлический провод или плавкий элемент в предохранителе плавится. Это размыкает или прерывает цепь и предотвращает повреждение проводов, разъемов и электронных компонентов схемы перегрузкой по току.Размер металлического плавкого элемента (или плавкой вставки) определяет его номинал.

Помните, что чрезмерный ток вызывает избыточное тепло, и именно тепло, а не ток вызывает размыкание цепи защиты. Как только предохранитель «перегорел», его необходимо заменить новым. После того, как вы определили, что предохранитель перегорел, наиболее важным элементом является обеспечение замены предохранителя с той же номинальной силой тока, что и перегоревший. Максимальная нагрузка на один предохранитель не должна превышать семидесяти процентов от номинала предохранителя.Обычно следует выбирать предохранитель с номиналом, немного превышающим нормальный рабочий ток (сила тока), который может использоваться при любом напряжении ниже номинального напряжения предохранителя. Если новый предохранитель тоже перегорел, значит, в цепи что-то не так. Проверьте проводку к компонентам, которые выходят из строя сгоревшим предохранителем. Ищите плохие соединения, порезы, разрывы или шорты.

Предохранители

имеют разные время-токовые нагрузочные характеристики для конечного времени работы при использовании и для скорости, с которой плавкий элемент перегорает в ответ на состояние перегрузки по току.Со временем нормальные скачки напряжения могут вызвать усталость предохранителей, что может привести к перегоранию предохранителя даже при отсутствии неисправности. На предохранителях всегда указывается номинальный ток в амперах, на который они рассчитаны в непрерывном режиме при стандартной температуре.

Расположение предохранителей

Предохранители расположены по всему автомобилю. Обычное расположение включает в себя моторный отсек, под приборной панелью за левой или правой панелью для ног или под IPDM.Предохранители обычно сгруппированы вместе и часто смешиваются с другими компонентами, такими как реле, автоматические выключатели и элементы предохранителей.

Крышки блока предохранителей

Крышки блока предохранителей / реле обычно маркируют расположение и положение каждого предохранителя, реле и элемента предохранителя, содержащегося внутри.

Типы предохранителей

Предохранители подразделяются на основные категории: предохранители ножевого типа и патронные предохранители старого образца. Используются несколько вариаций каждого из них.

Общие типы предохранителей

Лопастной предохранитель и плавкий элемент на сегодняшний день являются наиболее часто используемыми. Предохранители ножевого типа имеют пластиковый корпус и два штыря, которые вставляются в гнезда и могут быть установлены в блоки предохранителей, линейные держатели предохранителей или зажимы предохранителей. Существуют три различных типа плавких предохранителей; предохранитель Maxi, предохранитель Standard Auto и предохранитель Mini.

Базовая конструкция

Предохранитель плоского типа представляет собой компактную конструкцию с металлическим элементом и прозрачным изоляционным корпусом, который имеет цветовую кодировку для каждого номинального тока.(Стандартный автоматический режим показан ниже; однако конструкция предохранителей Mini и Maxi одинакова.)

Номинальный ток предохранителя, сила тока

Номинальные значения силы тока предохранителя для предохранителей Mini и Standard Auto идентичны. Однако для определения номинальной силы тока предохранителей макси используется другая схема цветовой кодировки.

Плавкие вставки и элементы предохранителей

Плавкие вставки делятся на две категории: патрон плавкого элемента и плавкая вставка.Конструкция и принцип действия плавких вставок и элементов предохранителей аналогичны плавким предохранителям. Основное отличие состоит в том, что плавкая вставка и плавкий элемент используются для защиты электрических цепей с более высоким током, как правило, для цепей на 30 ампер или более. Как и в случае с предохранителями, при перегорании плавкой вставки или плавкого элемента его необходимо заменить новым. Плавкие вставки защищают цепи между аккумулятором и блоком предохранителей.

Плавкие вставки

Плавкие вставки — это короткие отрезки проволоки меньшего диаметра, предназначенные для плавления при перегрузке по току.Плавкая вставка обычно на четыре (4) сечения провода меньше, чем цепь, которую она защищает. Изоляция плавкой вставки — специальный негорючий материал. Это позволяет проводу расплавиться, но изоляция останется нетронутой в целях безопасности. Некоторые плавкие ссылки имеют на одном конце тег, который указывает их рейтинг. Как и предохранители, плавкие вставки необходимо заменять после того, как они «перегорели» или расплавились. Многие производители заменили плавкие вставки предохранителями или предохранителями Maxi.

Картридж с предохранителем

Предохранители, плавкая вставка картриджного типа, также известна как предохранители Pacific.Элемент имеет клеммную и плавкую части как единое целое. Элементы предохранителя почти заменили плавкую перемычку. Они состоят из корпуса, в котором находятся клемма и предохранитель. Картриджи с плавкими предохранителями имеют цветовую маркировку для каждой силы тока. Хотя элементы предохранителей доступны в двух физических размерах и могут быть вставлены или привинчены на болтах, вставной тип является наиболее популярным.

Конструкция картриджа с плавким предохранителем

Конструкция элемента предохранителя довольно проста.Цветной пластиковый корпус содержит элемент термозакрепления, который виден через прозрачный верх. Номиналы предохранителей также указаны на корпусе.

Цветовая маркировка элемента предохранителя

Номинальные значения силы тока предохранителя

приведены ниже. Плавкая часть элемента предохранителя видна через прозрачное окошко. Номинальные значения силы тока также указаны на предохранительном элементе.

Плавкие элементы

Плавкие элементы часто располагаются рядом с аккумулятором сами по себе.

Плавкие элементы также могут располагаться в блоках реле / ​​предохранителей в моторном отсеке.

Автоматические выключатели

Автоматические выключатели используются вместо предохранителей для защиты сложных силовых цепей, таких как электрические стеклоподъемники, люки на крыше и цепи обогревателя. Существует три типа автоматических выключателей: тип с ручным сбросом — механический, тип с автоматическим сбросом — механический и твердотельный с автоматическим сбросом — PTC. Автоматические выключатели обычно располагаются в блоках реле / ​​предохранителей; однако в некоторые компоненты, такие как двигатели стеклоподъемников, встроены автоматические выключатели.

Конструкция автоматического выключателя (ручного типа)

Автоматический выключатель в основном состоит из биметаллической ленты, соединенной с двумя выводами и контактом между ними. Ручной автоматический выключатель при срабатывании (ток превышает номинальный) размыкается и должен быть сброшен вручную. Эти ручные автоматические выключатели называются автоматическими выключателями «без цикла».

Автоматический выключатель (ручной тип)

Автоматический выключатель содержит металлическую полосу, состоящую из двух разных металлов, соединенных вместе, называемую биметаллической полосой.Эта полоса имеет форму диска и вогнута вниз. Когда тепло от чрезмерного тока превышает номинальный ток автоматического выключателя, два металла меняют форму неравномерно. Полоса изгибается или деформируется вверх, и контакты размыкаются, чтобы остановить прохождение тока. Автоматический выключатель можно сбросить после срабатывания.

Ручной сброс Тип

Когда автоматический выключатель размыкается из-за перегрузки по току, автоматический выключатель требует сброса. Для этого вставьте небольшой стержень (канцелярскую скрепку), чтобы установить биметаллическую пластину в исходное положение, как показано на рисунке.

Тип с автоматическим сбросом — механический

Автоматические выключатели с автоматическим сбросом называются «циклическими» выключателями. Этот тип автоматического выключателя используется для защиты сильноточных цепей, таких как дверные замки с электроприводом, электрические стеклоподъемники, кондиционеры и т. Д. Автоматический выключатель с автоматическим возвратом в исходное положение содержит биметаллическую полосу. Биметаллическая полоса будет перегреваться и открываться из-за перегрузки по току в условиях перегрузки по току и автоматически сбрасывается, когда температура биметаллической ленты остывает.

Устройство и работа с автоматическим сбросом

Циклический автоматический выключатель содержит металлическую полосу, состоящую из двух разных металлов, соединенных вместе, называемую биметаллической полосой. Когда тепло от чрезмерного тока превышает номинальный ток автоматического выключателя, два металла меняют форму неравномерно. Полоса изгибается вверх, и набор контактов размыкается, чтобы остановить прохождение тока. При отсутствии тока биметаллическая полоса охлаждается и возвращается к своей нормальной форме, замыкая контакты и возобновляя прохождение тока.Автоматические выключатели с автоматическим возвратом в исходное состояние считаются «циклическими», потому что они циклически размыкаются и замыкаются, пока ток не вернется к нормальному уровню.

Тип твердотельного накопителя с автоматическим сбросом — PTC

Полимерный прибор с положительным температурным коэффициентом (PTC) известен как самовосстанавливающийся предохранитель.

Полимерный PTC — это специальный тип автоматического выключателя, называемый термистором (или терморезистором). Термистор PTC увеличивает сопротивление при повышении температуры.PTC, которые сделаны из проводящего полимера, представляют собой твердотельные устройства, что означает, что они не имеют движущихся частей. PTC обычно используются для защиты электрических цепей стеклоподъемников и дверных замков.

Конструкция и эксплуатация полимеров PTC

В нормальном состоянии материал в полимерном ПТК имеет форму плотного кристалла с множеством частиц углерода, упакованных вместе. Углеродные частицы обеспечивают проводящие пути для прохождения тока. Это сопротивление низкое.Когда материал нагревается от чрезмерного тока, полимер расширяется, разрывая углеродные цепи. В этом расширенном «отключенном» состоянии есть несколько путей для тока. Когда ток превышает порог срабатывания, устройство остается в состоянии «разомкнутой цепи» до тех пор, пока на цепь остается поданное напряжение. Он сбрасывается только при снятии напряжения и остывании полимера. PTC используются для защиты электрических цепей стеклоподъемников и дверных замков.

УСТРОЙСТВА УПРАВЛЕНИЯ

Управляющие устройства используются для «включения» или «выключения» протекания тока в электрической цепи.Устройства управления включают в себя различные переключатели, реле и соленоиды. Электронные устройства управления включают конденсаторы, диоды и переключающие транзисторы. Коммутационные транзисторы действуют как переключатель или реле с электронным управлением. Преимущество транзистора — это скорость открытия и закрытия цепи.

Управляющие устройства необходимы для запуска, остановки или перенаправления тока в электрической цепи. Устройство управления или переключатель позволяет включать или выключать электричество в цепи.Выключатель — это просто соединение в цепи, которое можно разомкнуть или замкнуть. Большинству переключателей для работы требуется физическое движение, в то время как реле и соленоиды работают с электромагнетизмом.

Коммутаторы

  • Однополюсный односторонний (SPST)
  • Однополюсный, двусторонний (SPDT)
  • Многополюсный многопозиционный переключатель (MPMT или групповой переключатель)
  • Мгновенный контакт
  • Меркурий
  • Температура (биметалл)
  • Задержка по времени
  • Мигалка
  • РЕЛЕ
  • СОЛЕНОИДЫ

Переключатель — это наиболее распространенное устройство управления цепями.Переключатели обычно имеют два или более набора контактов. Размыкание этих контактов называется «разрывом» или «размыканием» цепи, замыкание контактов называется «замыканием» или «завершением» цепи.

Переключатели описываются количеством полюсов и ходов, которые они имеют. «Полюса» относятся к количеству клемм входной цепи, а «Броски» относятся к количеству клемм выходной цепи. Переключатели называются SPST (однополюсные, одноходовые), SPDT (однополюсные, двухпозиционные) или MPMT (многополюсные, многоходовые).

Однополюсный одинарный бросок (SPST)

Самый простой тип переключателя — переключатель «шарнирная защелка» или «лезвие ножа». Он либо «завершает» (включает), либо «размыкает» (выключает) цепь в одной цепи. Этот переключатель имеет один входной полюс и один выходной ход.

Однополюсный, двойной бросок (SPDT)

Однополюсный входной двухпозиционный выходной переключатель имеет один провод, идущий к нему, и два выходных провода. Переключатель света фар является хорошим примером однополюсного двухпозиционного переключателя.Переключатель диммера фары посылает ток либо в дальний, либо в ближний свет цепи фары.

Многополюсная многоточечная (MPMT)

Многополюсный вход, многополюсные выходные переключатели, также известные как «групповые» переключатели, имеют подвижные контакты, подключенные параллельно. Эти переключатели перемещаются вместе для подачи тока на разные наборы выходных контактов. Выключатель зажигания — хороший пример многополюсного многопозиционного переключателя. Каждый переключатель посылает ток из разных источников в разные выходные цепи одновременно в зависимости от положения.Пунктирная линия между переключателями указывает, что они движутся вместе; один не будет двигаться без движения другого.

Мгновенный контакт

Переключатель мгновенного действия имеет подпружиненный контакт, который не позволяет ему замкнуть цепь, кроме случаев, когда на кнопку прикладывается давление. Это «нормально открытый» тип (показан ниже). Выключатель звукового сигнала является хорошим примером переключателя с мгновенным контактом. Нажмите кнопку звукового сигнала и раздастся звуковой сигнал; отпустите кнопку, и звуковой сигнал прекратится.

Вариантом этого типа является нормально закрытый (не показан), который работает наоборот, как описано выше. Пружина удерживает контакты в замкнутом состоянии, кроме случаев, когда кнопка нажата. Другими словами, цепь находится в состоянии «ВКЛ» до тех пор, пока не будет нажата кнопка для разрыва цепи.

Меркурий

Ртутный выключатель представляет собой герметичную капсулу, частично заполненную ртутью. На одном конце капсулы расположены два электрических контакта. Когда переключатель вращается (перемещается из истинной вертикали), ртуть течет к противоположному концу капсулы с контактами, замыкая цепь.Ртутные переключатели часто используются для обнаружения движения, например, тот, который используется в моторном отсеке на светофоре. Другие применения включают отключение подачи топлива при опрокидывании и некоторые приложения для датчиков подушки безопасности. Ртуть — опасные отходы, с которыми следует обращаться осторожно.

Температурный биметаллический

Термочувствительный переключатель, также известный как «биметаллический» переключатель, обычно содержит биметаллический элемент, который изгибается при нагревании, замыкая контакт, замыкая цепь, или размыкая контакт, размыкая цепь.В реле температуры охлаждающей жидкости двигателя, когда охлаждающая жидкость достигает предельной температуры, биметаллический элемент изгибается, вызывая замыкание контактов в переключателе. Это замыкает цепь и загорается предупреждающий индикатор на панели приборов.

Время задержки

Выключатель с выдержкой времени содержит биметаллическую полосу, контакты и нагревательный элемент. Переключатель задержки времени нормально замкнут. Когда ток течет через переключатель, ток течет через нагревательный элемент, вызывая его нагрев, в результате чего биметаллическая полоса изгибается и размыкает контакты.Поскольку ток продолжает течь через нагревательный элемент, биметаллическая полоса остается горячей, сохраняя контакты переключателя открытыми. Время задержки перед размыканием контактов определяется характеристиками биметаллической ленты и количеством тепла, выделяемого нагревательным элементом. Когда питание выключателя отключается, нагревательный элемент охлаждается, и биметаллическая полоса возвращается в исходное положение, а контакты замыкаются. Обычное применение переключателя с задержкой времени — обогреватель заднего стекла.

Мигалка

Мигающий сигнал работает в основном так же, как переключатель задержки времени; кроме случаев, когда контакты размыкаются, ток перестает течь через нагревательный элемент. Это вызывает охлаждение нагревательного элемента и биметаллической ленты. Биметаллическая полоса возвращается в исходное положение, замыкая контакты, позволяя току снова течь через контакты и нагревательный элемент. Этот цикл повторяется снова и снова, пока не будет отключено питание мигающего устройства. Обычно этот тип переключателя используется для включения сигналов поворота или четырехпозиционного указателя поворота (аварийных фонарей).

Реле

Реле — это просто переключатель дистанционного управления, который использует небольшой ток для управления большим током. Типичное реле имеет как цепь управления, так и цепь питания. Конструкция реле содержит железный сердечник, электромагнитную катушку и якорь (набор подвижных контактов). Существует два типа реле: нормально разомкнутые (показаны ниже) и нормально замкнутые (НЕ показаны). Нормально разомкнутые (Н.О.) реле имеют контакты, которые «разомкнуты» до тех пор, пока реле не будет под напряжением, а нормально замкнутые (N.C.) реле имеет контакты, которые «замкнуты» до тех пор, пока реле не сработает.

Работа реле

Ток протекает через управляющую катушку, которая намотана на железный сердечник. Железный сердечник усиливает магнитное поле. Магнитное поле притягивает верхний контактный рычаг и тянет его вниз, замыкая контакты и позволяя мощности от источника питания поступать на нагрузку. Когда катушка не находится под напряжением, контакты разомкнуты, и питание на нагрузку не поступает.Однако, когда переключатель схемы управления замкнут, ток течет к реле и питает катушку. Возникающее магнитное поле тянет якорь вниз, замыкая контакты и позволяя подавать питание на нагрузку. Многие реле используются для управления большим током в одной цепи и низким током в другой цепи. Примером может служить компьютер, который управляет реле, а реле управляет цепью более высокого тока.

Соленоиды — тянущие, тип

Соленоид — это электромагнитный переключатель, который преобразует ток в механическое движение.Когда ток течет через обмотку, создается магнитное поле. Магнитное поле притянет подвижный железный сердечник к центру обмотки. Этот тип соленоида называется соленоидом «тянущего» типа, поскольку магнитное поле втягивает подвижный железный сердечник в катушку. Обычно тянущие соленоиды используются в пусковой системе. Соленоид стартера соединяет стартер с маховиком.

Работа вытяжного типа

Когда ток течет через обмотку, создается магнитное поле.Эти магнитные силовые линии должны быть как можно меньше. Если рядом с катушкой, по которой течет ток, поместить железный сердечник, магнитное поле будет растягиваться, как резинка, протягиваясь и втягивая железный стержень в центр катушки.

Работа толкающего / толкающего типа

В соленоиде двухтактного типа в качестве сердечника используется постоянный магнит. Поскольку «одинаковые» магнитные заряды отталкиваются, а «непохожие» магнитные заряды притягиваются, изменяя направление тока, протекающего через катушку, сердечник либо «втягивается», либо «выталкивается наружу».«Обычно этот тип соленоида используется в электрических дверных замках.

УСТРОЙСТВА НАГРУЗКИ

Любое устройство, такое как лампа, звуковой сигнал, электродвигатель стеклоочистителя или обогреватель заднего стекла, потребляющее электричество, называется нагрузкой. В электрической цепи все нагрузки считаются сопротивлением. Нагрузки расходуют напряжение и контролируют величину тока, протекающего в цепи. Нагрузки с высоким сопротивлением вызывают протекание меньшего тока, в то время как нагрузки с более низким сопротивлением позволяют протекать большим токам.

Фары

Фонари бывают разной мощности, чтобы излучать больше или меньше света. Когда лампы соединяются последовательно, они разделяют доступное напряжение в системе, и излучаемый свет уменьшается. Когда лампочки расположены параллельно, каждая лампочка имеет одинаковое количество напряжения, поэтому свет будет ярче.

Двигатели

Двигатели используются в различных системах автомобиля, включая сиденья с электроприводом, дворники, систему охлаждения, системы отопления и кондиционирования воздуха.Двигатели могут работать на одной скорости, например, сиденья с электроприводом, или на нескольких скоростях, например, двигатель вентилятора отопления и кондиционирования воздуха. Когда двигатели работают на одной скорости, на них обычно подается системное напряжение. Однако, когда двигатели работают с разной скоростью, входное напряжение может быть в разных точках якоря, чтобы уменьшить, чтобы увеличить скорость двигателя, аналогично тому, как спроектирован двигатель стеклоочистителя, или они могут делить напряжение с резистором, который находится в серия с двигателем, как двигатель вентилятора для системы отопления и кондиционирования воздуха.

Нагревательные элементы

Нагревательные элементы установлены в наружных зеркалах, заднем стекле и сиденьях. На нагревательные элементы обычно подается напряжение системы в течение определенного времени для нагрева компонента по запросу.

ЧТО ТАКОЕ ЗАКОН ОМА?

Понимание взаимосвязи между напряжением, током и сопротивлением в электрических цепях важно для быстрой и точной диагностики и ремонта электрических проблем.Закон Ома гласит: ток в цепи всегда будет пропорционален приложенному напряжению и обратно пропорционален величине имеющегося сопротивления. Это означает, что если напряжение повышается, ток будет расти, и наоборот. Кроме того, когда сопротивление растет, ток падает, и наоборот. Закон Ома можно найти хорошее применение при поиске и устранении неисправностей в электросети. Но вычисление точных значений напряжения, тока и сопротивления не всегда практично … да и действительно необходимо. Однако вы должны быть в состоянии предсказать, что должно происходить в цепи, в отличие от того, что происходит в аварийном транспортном средстве.

Source Voltage не зависит ни от тока, ни от сопротивления. Он либо слишком низкий, либо нормальный, либо слишком высокий. Если он слишком низкий, ток будет низким. Если это нормально, ток будет высоким, если сопротивление низкое, или ток будет низким, если сопротивление высокое. Если напряжение слишком высокое, ток будет большим.

На ток влияет напряжение или сопротивление. Если напряжение высокое или сопротивление низкое, ток будет высоким. Если напряжение низкое или сопротивление велико, ток будет низким.Ток увеличивается, когда сопротивление падает.

На сопротивление не влияют ни напряжение, ни ток. Он либо слишком низкий, хорошо, либо слишком высокий. Если сопротивление слишком низкое, ток будет высоким при любом напряжении. Если сопротивление слишком велико, ток будет низким, если напряжение в норме. Мера сопротивления — насколько сложно протолкнуть поток электрического заряда.

Хорошее сопротивление: для правильной работы некоторым цепям требуется «ограничение» протекания тока. В этом случае используются «резисторы».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *